Robust Hypothesis Verification : Application to Model Based Object Recognition

Frédéric Jurie 1
1 image
LASMEA - Laboratoire des sciences et matériaux pour l'électronique et d'automatique
Abstract : The use of hypothesis verification is recurrent in the model based recognition literature. Small sets of features forming salient groups are paired with model features. Pose can be hypothesised from this small set of correspondences. Verification of the pose consists in measuring how much model features transformed by the computed pose coincide with image features. When data involved in the initial pairing are noisy the pose is inaccurate and verification is a difficult problem. In this paper we propose to use a robust hypothesis verification algorithm to perform object recognition. We explain how to integrate it in two different recognition schemes (2D and 3D recognition). After describing these applications we present numerous experimental results proving the robustness and the efficiency of these algorithms.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 1999, 32 (6), pp.1069--1081. 〈10.1016/S0031-3203(98)00126-5〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00548321
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 08:43:19
Dernière modification le : jeudi 11 janvier 2018 - 06:26:46

Identifiants

Citation

Frédéric Jurie. Robust Hypothesis Verification : Application to Model Based Object Recognition. Pattern Recognition, Elsevier, 1999, 32 (6), pp.1069--1081. 〈10.1016/S0031-3203(98)00126-5〉. 〈inria-00548321〉

Partager

Métriques

Consultations de la notice

30