Robust hypothesis verification for model based object recognition using gaussian error model

Frédéric Jurie 1
1 image
LASMEA - Laboratoire des sciences et matériaux pour l'électronique et d'automatique
Abstract : The use of hypothesis verification is recurrent in the model based recognition literature. Small sets of features forming salient groups are paired with model features. Poses can be hypothesised from this small set of feature-to-feature correspondences. The verification of the pose consists in measuring how much model features transformed by the computed pose coincide with image features. When data involved in the initial pairing are noisy the pose is inaccurate and the verification is a difficult problem. In this paper we propose a robust hypothesis verification algorithm, assuming data error is Gaussian. We present experimental results obtained with 2D and 3D recognition proving that the proposed algorithm is fast and robust.
Type de document :
Communication dans un congrès
Roland Chin and Ting-Chuen Pong. Third Asian Conference on Computer Vision (ACCV '98), Jan 1998, Hong Kong, China. Springer-Verlag, II, pp.440--447, 1997, Lecture Notes in Computer Science (LNCS). 〈http://www.springerlink.com/content/343l108t1k0u3253/〉. 〈10.1007/3-540-63931-4_247〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00548333
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 08:43:26
Dernière modification le : mardi 5 juin 2018 - 18:00:02

Identifiants

Citation

Frédéric Jurie. Robust hypothesis verification for model based object recognition using gaussian error model. Roland Chin and Ting-Chuen Pong. Third Asian Conference on Computer Vision (ACCV '98), Jan 1998, Hong Kong, China. Springer-Verlag, II, pp.440--447, 1997, Lecture Notes in Computer Science (LNCS). 〈http://www.springerlink.com/content/343l108t1k0u3253/〉. 〈10.1007/3-540-63931-4_247〉. 〈inria-00548333〉

Partager

Métriques

Consultations de la notice

66