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Abstract

This paper presents an application of some recent results in com-
puter vision, in particular, the use of geometric properties. The prob-
lem we examine here is the accurate positioning of an object with
respect to another, say a tool. Such applications could be used in
complex and hazardous environments like nuclear plants.

Because high accuracy in positioning is our goal here, we suppose
that the objects have planar faces on which targets can be put. With-
out loss of generality, we have used only 2 objects in our experiments.
Throughout this paper, we have called them the reference object and
the unknown object respectively. The positions of the targets of the
reference object with their associated projective invariants are com-
puted in an off-line stage. Hence, given at least 2 images of the two
objects, we can automatically identify the reference object points in
the images and reconstruct the points of the unknown object relative
to the reference object. The experiments show that a precision of
0.1lmm in relative positioning can be reached for an object observed
at a distance of 2m.

1 Introduction

This paper is primarily an application paper which illustrates how recent develop-
ments to geometry for vision can be applied to solve delicate industrial problems.
The problem we examine here is the accurate positioning of an object with respect
to another in a complex and hazardous environment, for instance a nuclear plant.
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Three main subjects are treated in this paper: firstly, the use of projective
invariants for point identification in a way pioneered by Morin [14] and Meer [12].
For a more detailed description, but restricted to the linear case, see the work of
Maybank[11]. In this paper, 2D projective invariants for point identification are
considered; the next section describes how these invariants are used. For a more
general study on projective invariants and their use in computer vision see [15]
and [18] for invariant-based recognition.

Second, the image points (the target centers in our case) have to be located
with a high accuracy. We use here an approach originally proposed by Gruen [8]
and redesigned by Brand [4]. This work will not be described here.

Finally we need a reconstruction from point matches using uncalibrated cam-
eras. Following the work on projective reconstruction [6] [10], we implemented a
method for going from the projective reconstruction to the Euclidean world using a
priori available Euclidean information [3]. In our case the positions of some points
in their reference frame provide this Euclidean information.

2 Point identification

The point identification procedure is used in our process to identify the projec-
tions of the 3D reference object’s points in the images. As both the calibration of
the camera and the position of the reference object are unknown, identification is
done using projective invariants. The invariants characterizing the reference ob-
ject’s points are computed, in an off-line step, using an image only containing the
reference object. The reference object’s points can then be identified in an image
containing several other objects, by comparing the invariants values.

An accurate 2D positioning of image points is required to reliably compute
projective invariants. This is achieved by fixing targets on the objects. All image
points are defined by the targets centers position which can be extracted with very
good accuracy.

2.1 Projective invariants

In our algorithm, we have used projective invariants from sets of coplanar points
only. In fact it can be shown that projective invariants can be recovered from non-
coplanar points [7][9][17]. However a minimum of 6 points is required, whereas only
5 points are needed in the coplanar case. Furthermore, invariants of non-coplanar
points can not be extracted from a single image. Using several images would
require first matching the points, whereas we want to use projective invariants to
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identify points prior to any matching procedure.
The fundamental projective invariant is the cross-ratio. The cross-ratio of four
collinear points A, B, C, D is defined by :

[A,B,C,D]:C;x; (1)

where AB is the algebraic measure of AB.

The cross-ratio of a pencil of four lines [y, lo, I3, l4 intersecting on point O is
defined as the cross-ratio [P1, P», Ps, Py] of the points of intersection of the [; with
any line [ not containing O. The obtained value is independent of the choice of [.

Five points O, Py, P», P3, Py define a pencil of four lines with vertex O. The
associated cross-ratio can be computed from the points homogeneous coordinates
according to the Mobius formula:

T; x; T
|OP, P3| |OP, Py iy
O:P,, P, P;, P = h PP;P.|=| v v 2
[O; Py, Py, Ps, Py] OB\, [OP,Py| where | P, P; Py | 2: Z] @;k (2)
i % 2k

and (z;, yi, z;) are the homogeneous coordinates of P;.

2.2 Evaluating similarity between cross-ratios

In order to compare projective invariants, one needs a measure of distance. An
Euclidean distance is not adapted to compare projective quantities. A similarity
measure can be derived from the probability density function of the cross ratio [1].
We prefer to use the Mahalanobis distance defined from a first order linearization
of the cross ratio. This approximation is valid as long as we stay close to the
point where the linearization is made and far from the singularities of the cross
ratio function. The first condition is guaranteed by the very good accuracy of
the image points measurements (1/20 of a pixel). In order to avoid singularities
when computing the cross ratio from 5 coplanar points, we have to exclude points
which are aligned, and for which a separate type of projective invariants can be
computed.

We also assume independent Gaussian noise with standard deviation o on
each of the x and y coordinate measurements of all the targets. Therefore the
distance between the reference cross ratio ¢ and the computed value ¢’ from points



{(zs,9i) }iz1.5, is :
(c—c)?

oc? o’
(% 5 )

5
o2 Z
=1

2

2.3 Index computation

Considering target points on the reference object, we want to find projective in-
variants which enable us to identify these points among n points in an image. The
minimum number of coplanar points with projective invariants is 5, and 5 copla-
nar points have only 2 functionally independent projective invariants. In order
to consider the C nonordered sets instead of the A2 ordered sets (both numbers
are of order n® however), the invariants should be computable regardless of the
order of the points in the set. Two such independent values can be computed using
symmetrical functions such as symmetrical polynomials or min and max functions.
However, experiments have shown that these symmetrical invariants are less dis-
criminative than simple cross ratios, and also that a redundant characterization
is more efficient in practice than a characterization with the minimum number of
invariants[14].

There is an implicit perspective invariant which is not used at this point: the
preservation of the convexity and orientation for observed points in the scene. This
can be very useful in the following way.

Five points may lie in one of the following configurations as displayed in Fig-
ure 1. These configurations are preserved under perspective projection, and for
each of them a particular set of cross ratios can be computed, which is independent
of the order of the points in the set. For instance, considering the third case of
5 points on the convex hull, 5 cross ratios are computed taking each point as the
origin of a pencil of lines, with the lines in the pencil ordered using the standard
plane orientation. The starting point is chosen so that the largest value is the first.

Using this characterization, two sets of nonordered points can be compared:
the computation of the invariant values in both sets gives a measure of distance
between the two sets, as well as a point-to-point correspondence. In order to
improve the time of computation, invariants for the reference object’s points are
computed off-line and used as indices in a table containing the 5 points sets.

Experiments conducted for this setup proved that the index table was really
discriminant, leading to an extremely low confusion rate, from about 1/4000 to
1/2000 for different sets of simulated data depending essentially on the minimum
distance between the considered points. The use of convexity improved these rates
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Figure 1: Different convex hull for five points and plane orientation. Note
how each case can lead to the consideration of a particular pencils

by a factor of 10, the use of a redundant set of data by a factor of 5. Part of these
results were confirmed by separate experiments [12].

It can be noted that such a characterization has been generalized recently by
Carlsson [5] and called “combinatorial structure” of a point set.

3 The steps of the positioning process

We have used 2 objects in our experiments: one of them is considered a reference
object and the other one an unknown object. We do not suppose that the reference
object is known, except that it has planar faces on which targets can be put. Note
that the use of targets here is only for the purpose of high accuracy, since the
target centers can be located in the images with subpixel precision. Our system
(the whole process) can still work without any change if, for example, corners are
used instead of target centers.

The system proposed in this paper consists of several steps listed below; all
these steps are completely automatic.

3.1 Reference object’s points reconstruction

The first step is the positioning or reconstruction of the reference object’s points
relative to some reference frame. The goal here is not to obtain an absolute
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reconstruction but rather a relative one, so any known set of 3D points could be
used as a reference frame. This off-line step could be called “the reference object
recognition”; it enables us to use the reference object as a known 3D reference
frame in the future.

For this purpose, the reference object is placed together with a highly precise
calibration pattern (see Figure 2) and several images (at least 2) are taken from
different viewpoints. Note that we have no knowledge of the camera’s positions or
intrinsic parameters, the camera (or cameras if many) is assumed unknown. How-
ever, the precise calibration pattern has point coordinates known in a Euclidean
frame.

Figure 2: One image of our reference object (unknown at this stage) placed
together with a highly precise calibration pattern. Using at least 2 images,
the reference object’s points will be reconstructed.

Once all target centers are extracted [8] from the images, the targets on the
reference object are identified and separated from the calibration pattern’s targets.
This is done automatically since the calibration pattern is known. At this stage
we need to match the reference object’s points (target centers) in the different
images. This is also done automatically by using epipolar geometry between im-
ages. The epipolar geometry between a pair of images is computed using the point
correspondences of the calibration pattern.

Some problems may arise at this stage, such as a correspondence conflict, i.e.,
for a point in one image there are 2 or more points in the other image lying
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on the corresponding epipolar line. This problem was solved simply by ignoring
the match. This choice was adopted for two main reasons: firstly this case is
statistically rare and secondly our implementation deals with missing matches.
This process is very fast, in particular we have used a new faster method for
epipolar geometry computation [2].

At this stage, we have the image points of the reference object matched in at
least 2 images. Using these matches, the reference object’s points are reconstructed
(see Paragraph 3.3 for the reconstruction method we have used).

3.2 Using the reference object to position an unknown
object

We have shown in the above paragraph how to compute the relative positions of
the reference object’s points. The same method is applied here; suppose we are
given at least two images of a scene containing the reference object together with
one unknown object (see Figure 3). The target centers are first extracted from
each image, then the reference object’s points are identified among all points using
projective invariants already computed in an off-line stage according to Section 2.
Using 2D invariants, the reference object’s points are then matched in the different
images and used to compute the epipolar geometry. The remaining points, points
of the unknown object(s), are then matched using the epipolar geometry.

Finally, the unknown object is reconstructed relative to the reference object,
the reconstruction method is described below.

Note that for our particular case where the unknown object has planar faces, it
is possible to use 2D invariants for point-matching in different images. However,
as we have stated before, the unknown object(s) is not constrained to have planar
faces; i.e., our system can reconstruct any unknown set of points. Hence, we have
chosen not to use 2D invariants for matching the points of the unknown object to
keep the method valid in the general case.

3.3 Positioning from multiple views

This reconstruction is done using matched points in at least two images. The
algorithm was originally described in [13]. It computes the projective 3D structure
of points from a sequence of images, and uses the a priori knowledge of the 3D
scene, for example the 3D Euclidean coordinates of at least 5 points, to transform
the projective reconstruction to a Euclidean one. However, our algorithm can be
used so that the Euclidean reconstruction is obtained directly when the Euclidean
positions of at least 5 points are supplied.
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Consider v > 2 images of a scene composed of p points, thus providing p X v
image points. Let {P;,i = 1,...,p} denote the unknown 3D coordinates of the
points projected in each image. Each point P; is represented by a column vec-
tor of its homogeneous coordinates (z;,;, z,t;)T, or its non-homogeneous coor-
dinates (X;,Y;, Z;)1 = (% %?, i—Z)T In image j, the point P; is projected to the
point p;;, represented by a column vector of its three homogeneous coordinates
(uij,vij, wij)T, or its image’s non-homogeneous coordinates (Ujj, Vi;)". Let M;
denote the 3 x 4 projection matrix of the j-th image.

For the non-homogeneous coordinates of the image points we have:

m@ zi+m) yi+m{) zi+mit;

LV m?ffwi+m§§)yi+m§?z¢+mgﬂ)ti
(4)

Vii = mg:l)w”'mgz)yﬁm%) zﬁméﬂ?ti

9 e rm) yirm) zirm$

These equations express the collinearity of the space points and their corresponding
projection points. Since we have p points and v images, we have 2 X p X v equations.
The number of unknowns is 11 x v for the projection matrices which are defined
up to a scaling factor, plus 3 x p for the space points. Therefore if v and p are
large enough, we have a redundant set of equations.

The solution of system (4) can only be defined up to a collineation. As a matter
of fact, if M; and P; are a solution for some 4, j, so are MJ-W_1 and WP;, where
W is a collineation of the 3-D space, i.e., a 4 X 4 invertible matrix. Consequently, a
basis for any 3D collineation can be arbitrarily chosen in IP3. Given the projective
space in IP3, 5 algebraically free points (where no four of them are coplanar) form
a basis.

From the above equations, the problem can be formulated as a conditional
parameter estimation problem. In the general case we have to estimate the pa-
rameters (here the matrices M; and the 3D coordinates of points), given noisy
measurements (here the image coordinates). We assume that the measurements
are obtained with a mean value equal to the observed one, and with a covariance
matrix C.

Let Q denote the vector of all parameters, ¢, denote one of its elements, U
denote the vector of all the measurements U;; and V;;, and u; denote one of its
elements. If the relation between the measurements u; and the parameters g
is linear, namely, if U = AQ, then the maximum likelihood estimation of the
parameters is the vector Q which minimizes the Mahalanobis distance, i.e., the
least square criterion:

X’ =(U-AQ)'C ' (U-AQ) (5)
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In the nonlinear case, linearization may be obtained by taking the first order
Taylor expansion of the nonlinear function linking Q with each u;. Therefore, in
our case, Eq (5) leads to the minimization of the sum:

Ui — mgjll)zi-l—mg]'z)yi-i—m%)zi—f—mg{fti Vi — mgjll)zi-l—mg]'z)yi-i—m%)z¢+mg{})ti
X2 o Z J mgjl)mi—l—mgé)yi-l-m%)zi-l-mg{l)ti n J mgjl)mi-l-mgé)yi-i-m%)zi+mgj4)ti

Oij ij ij

;From the above, the reconstruction problem turns to a nonlinear optimization
problem. Therefore, an initialization is required to ensure the convergence of the
nonlinear process. However, if more than five space point coordinates are given, a
first step linear computation of the projection matrices becomes possible and an
estimation of all the space points is then given. So to overcome the initialization
problem, we suppose in the following that we are given at least 6 space points
on the reference object. Furthermore, the reference object must consist of at least
8 points, not necessarily known in a 3D space, to make the epipolar geometry
computation possible.

4 Experiments

We consider here 2 objects RO and UO of size ~ 100mm x 100mm x 100mm
(see Figure 3). In a first off-line stage, RO is reconstructed using a calibration
pattern (Figure 2) and 2D invariants characterizing RO are computed. We have
also reconstructed UO using the calibration pattern; however, this reconstruction
is used only for error computations.

In the remainder, RO is the reference object and UQ is the unknown object.
Two kinds of experiments were performed:

1. Accuracy measurement : the goal here is to compute the reconstruction ac-
curacy on UO relative to RO.

Two images of the scene (Figure 3) are used as our input. Target centers
are extracted, points of RO are identified using 2D invariants, image points
are matched using epipolar geometry and finally UO is reconstructed.

Table (1) shows the accuracy reached in these experiments, 0.lmm on the
computed coordinates. This is a good precision which is sufficient for most
industrial applications.



Figure 3: An image of the scene consisting of RO (reference object) on the
right and UO (unknown object) on the left

AX AY AZ

0.013 0.042 0.010
0.158 0.063 0.099
0.031 0.036 0.061
0.041 0.045 0.013
0.089 0.191 0.275
0.034 0.026 0.142
0.019 0.024 0.020
0.051 0.023 0.089
0.069 0.098 0.080
mean_error 0.091 0.082 0.104
relative_error | 0.101% | 0.091% | 0.116%

Table 1: Example of positioning errors
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2. Relative motion estimation : The goal here is to estimate the motion made
by UO using its reconstruction relative to RO. A micrometric table is used
to measure the object motions. UQ is reconstructed before and after its mo-
tion (see Figure 4). Having the 2 reconstructions of UO, we have computed
the rigid motion between these 2 reconstructions. Note, that all our steps
are based on automatic processes; the algorithm below gives an outline of
how the relative motion is computed. Table (2) gives motion errors for a
pure translation and a pure rotation.

Relative motion estimation algorithm :

Because UO is reconstructed before and after its motion, each physical point
P of UO has two different reconstructions (3D coordinates). Let P, be the
Euclidean 3D coordinate of P before the motion and P, the Euclidean 3D
coordinate of P after the motion. The relation between P, and P, is a rigid
transformation, namely a rotation and a translation. Therefore, we have:

P,=RP,+T

where, R is the 3 x 3 rotation matrix and T is the translation vector.

The above relation is linear; given at least 4 corresponding points, R and T
can be computed. However, the rotation constraints (the rotation has only
3 parameters) must be added to ensure a correct estimation of the motion.

Hence, we have computed the unknown object motion in 2 steps:

(a) Linear step: the rotation and translation are computed using the above
relation, this is done using the SVD method.

(b) Nonlinear step: the solution obtained in the linear step is used as a
starting point for a nonlinear optimization. The latter consists of the
linear equations from the above relation and the nonlinear constraints
on the rotation matrix (orthogonality of the matrix). This step is done
using the Levenberg-Marquardt algorithm [16].

5 Conclusion

This paper shows the applicability of recent tools developed within the framework
of projective vision. Automatic classification of points allows identification of
points on a planar patch, almost without ambiguity, thanks to the use of invariants
and to the accuracy with which targets are identified. It has to be noted that at
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On the left, the scene before the rotation of UO and
on the right the scene after a pure rotation of UO.

On the left, the scene before the translation of UO and
on the right the scene after a pure translation of UO.

Figure 4: Images of the scene for motion computation.



translation rotation

measured values | 50.00 mm | 20.00 degrees

computed values | 50.140mm | 20.244 degrees
relative errors 0.28% 1.2%

Table 2: The relative motion comparison

this level of accuracy, affine approximation of the projection would be no more
relevent.

Accurate reconstruction or positioning proved also to be feasible. In the en-
vironment suggested by the application, the exact position of the camera cannot
be known, nor can the intrinsic parameters of the camera be known, as a zoom
is used for getting full resolution in the image. Only the recent projective tools
could therefore allow such a result.

One might ask how good the projective model is in the presence of distor-
tion. We experimented with radial distortion on simulated data, using the type
of distortion provided for our lens. Experiments showed few differences from data
without distortion.
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