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Abstract

This paper describes initial work on a family of projectiezonstruction techniques that com-
pute projection matrices directly and linearly from matahtensors estimated from the image
data. The approach is based on ‘joint image closure relgitienbilinear constraints between
matching tensors and projection matrices, that expresgatitethat the former derive from
the latter. The simplest methods use fundamental matricg@®pgipoles, alternative ones use
trilinear tensors. Itis possible to treat all of the imagé&daiformly, without reliance on ‘priv-
ileged’ images or tokens. The underlying theory is discdsaad the performance of the new
methods is quantified and compared with that of severaliegisines.

Keywords: Multi-image structure, projective reconstruction, manchtensors.

1 Introduction

Traditional stereo vision systems use carefully calibrated cameras to prmottic reconstruction
from a single pair of static images. It has long been clear that the redund#iaced by further
images can significantly increase the quality and stability of visual reeanigins, as well as
extending their coverage to previously hidden parts of the scene. éfomtine, much of the 3D
structure can be recovered withoarty prior camera calibration. Even in the extreme case of
several distinct unknown projective cameras viewing the scene fromowrkpositions, the entire
metric scene geometry can be recovered up to just 9 global parameters — 3 scate Saskews
and 3 projective distortiot§4, 7, 13]. Various common scene or camera constraints can be used to
further reduce this ambiguitg,g. known vanishing points or length ratios, known skew or aspect
ratio, motion-constancy of intrinsic parameters, ...[6]. This jseegally relevant to applications
such as scene modelling for virtual reality or robot navigation, wheasynimages are needed to
cover the scene and precise calibration is difficult owing to uncertain camdrmansochanges in
internal parameters (focus, zooming) or the use of several cameras.

There is a need for visual reconstruction methods with the followirsgastteristics:
1) Multi-image/multi-point/missing data: It is hard to match features reliably across many im-
ages, especially under large changes of viewpoint. Reconstruction mettpdsng long se-
guences of matches tend to run into missing data problems. For exampbeizZiiadn methods
[26, 25, 30, 24] are very stable and treat all images and points equallyetpuire completely
filled ‘blocks’ of pointsvs. images. Traditional methods further limit these blocks to small fixed

This work was supported by INRIA Rhdéne-Alpes, the EspritMi@etwork and Esprit LTR grant CUMULI. Submitted to
Image & Vision Computing. An earlier version appeared in BEIY6.
1|f there is lens distortion, this can also (in theory) be kered up to an unknown image homography.



numbers of images or points. The stability of such methods is crificdpendent on the im-
ages chosen, and since these must usually be closely-spaced to allow rebaddéngy overall
accuracy suffers. It is possible to work around gaps in the data by ‘ipat¢bgether’ several
partial reconstructions, but it would be useful to have methods #radled missing data naturally,
without relying onad hoc patching, key points, or key images.

2) Flexible calibration: Calibration constraints come in many forms: prior knowledge, calibra-
tion images, scene or motion constraints, ... Itis not always obviowso incorporate them into
the multi-image reconstruction process. Often it is simpler to igtleem at first, working projec-
tively and only later going back and using them to ‘straighten’ the recovan@dctive structure.
This ‘stratification’ school [6] has its critics [32, 20]. In particuld@ris felt that stability may be
compromised by failing to enforce reasonable camera and motion modelsatttae. However

as far as | know it is the only approach that has yet produced true multieimegpnstruction
algorithms for general cameras and motions [25, 30, 29, 24].

3) Precision/robustness/stability: Precision means that the method gives accurate results when
it works; robustness that it works reliably é.g. in the face of mismatches or initialization errors);
stability that the results are not overly sensitive to perturbations in thetidpta. Stability is a
precondition for precision and robustness, but is easily compromisdddeneracies in either the
viewing geometry or the algorithmic formulation used.

For the best precision there is no substitute for rigorous statlgbarameter estimatior,g.
maximum likelihood. For this, a nonlinear cost reflecting a statisticarenodel of the image ob-
servations must be globally optimized over all unknown 3D structudecatibration parameters.
With Gaussian errors, this reduces to covariance-weighted nonlinear leastsg8uch statistical
‘bundle adjustment’ is a truism for photogrammetrists but seerbg tacitly discouraged in com-
puter vision, where the traditional emphasis is on A.l. image unaiedstg rather than precision
(howevercf. [17, 10, 19, 14, 9]). Efficient numerical methods exist for handlergé problems,
both off-line and in a linearized recursive framework [1, 18].

Rigorous, statistically weighted least squares should not be confusiedunwweighted’ or
‘linear least squares’ minimization @d hoc ‘algebraic distances’ — sums of squared algebraic
constraint violations with no direct relation to measured image residaatexample the ‘linear’
method for the fundamental matrix [12], reconstruction by affine angeptive factorization [26,
25, 30, 24], and the new ‘closure based’ methods presented here, allds#aei problem and
minimize algebraic distances using linear algebra techniqugsSVD). Common characteristics
of such methods arei)( they are linear and much simpler to implement than the corresponding
statistical methods;iij no prior initialization is needed;i{) somewhat more than the minimal
amount of data is required, to allow nonlinearities to be “linearized awayj'ttfey are sensitive
to the relative weighting of different components of the error funciout the choice is not too
critical once you realize it has to be mada)) ith suitable weighting, they give results not too
far from (but still worse than) the statistical optimum. Criticsmclude: {) ignoring constraints
may reduce stability and make the results difficult to interprgtgéneral linear methods are often
slower than dedicated nonlinear ones, as large matrices tend to be invali)eitljg difficult to
detect outliers without a clear error model.

Bundle adjustment routines provide all of the desirable feature=llisbove, except robust-
ness against initialization. As they are only iterative improvement igales, they require initial
estimates for all unknown parameters. In practice they are seldom robussigaiss errors in
these, or even against re-parametrizatieg. convergence tests are notoriously sensitive to this).

Hence, there is still a need for stable and relatively tractable suboptimalsgotion methods
that require no prior initialization, take into account as many as pesseilthe above properties,
and can be used as input to nonlinear methods if more precision is req&ieetlly in response
to this, there has recently been a significant amount of work on the themdr&dundations of
multi-image projection and reconstruction [11, 10, 19, 18, 23, 28225, 16, 31, 27, 28, 3]. The
problem turns out to have a surprisingly rich mathematical stru@nceseveral complementary



approaches exist. The field is developing rapidly and there is no spaaestovey here, so | will
only mention a few isolated results. The epipolar constraint (the g&grof stereo pairs) is now
well understoodé.g. [5]). Shashua [22] and Hartley [11] developed the theory of thelint
tensor (three view constraint). Faugeras and Mourrain [8] and | [28kByatically studied the
complete family of multi-image constraints (only one was unknowauadrilinear one).

As a means to this, | developed a tensorial approach to multi-imagenj&8), which nicely
unifies the geometric and algebraic aspects of the subject. This lead jmirthémage picture,
in which the combined homogeneous coordinates of all the images of a 3D gei stacked
into a single big ‘joint image’ vector. The geometry of this space canelsead to that of the
original 3D points via the stacked projection matrices. All of the faanilmage entities — points,
lines, homographies, matching tensaats,— fall naturally out of this picture as the joint image
representatives of the corresponding 3D objects. The approach is also (iduidle sense of
Carlsson [3]) to Sparr’s ‘affine shape’ formalism [23, 15, 24], whewerdinates are stacked by
point rather than by image.

In the MOVI group, we have recently developed several families of priegotconstruction
methods based on the joint image approach. The factorization-based ‘mopkepth recovery’
methods [25, 30] use matching tensors to recover a coherent set of pejsrdie factors for the
image points. This gives an implicit reconstruction, which can be corety factorizing the
matrix of rescaled image points into projection and structure matricespsgaess analogous to
the Tomasi-Kanade-Poelman method for affine structure [26, 21]. Factorizzased methods
give an implicit linear least squares fit to all of the image data. They arplsiand extremely
stable, but have the serious practical disadvantage that each point musiblein every image
(modulo ‘hallucination’ [26]). This is unrealistic when there are mémages covering a wide
range of viewing positions.

The current paper represents a first attempt to overcome this problemcilitdssa new fam-
ily of reconstruction methods that extract projection matrices directliaedrly from estimated
matching tensors, after which the scene structure can be recovered lineadglepiojecting the
image measurements. The projections are estimated using ‘joint imageectetations’ — bilin-
ear constraints between projections and their matching tensors, analogbasdepth recovery
relations used for projective factorization, but with projection matrrepéacing image points.

In principle, the closure based reconstruction methods treat all of tagamuniformly, so
they have the potential to be significantly more stable than the carlyrneed approach of initially
reconstructing from two key images, then reprojecting into the othes tmestimate the remaining
projection matrices. On the other hand, because they only use the imagiediegctly via the
matching tensors, they are not as stable as factorization based methodagghstion is that they
will prove good replacements for the ‘stereo + reprojection’ method®g&hmain application is
probably to initialize more refined nonlinear least squares iterations)thiat when tokens are
visible in every image factorization will still be the best linear metho

The rest of the paper outlines the theory of the closure relations,idesahe resulting re-
construction algorithms and their implementation, reports on amimitiperimental study of their
performance, and ends with a short discussion.

2 Theory

This section sketches the theoretical background of multi-image recotistruand discusses the
‘joint image closure relations’ on which the new reconstruction meshare based. The theory
is not difficult, but when more than two images are involved the equstwe hard to express
without using tensorial notation. We will use ordinary matrix-w&atotation except for a few

trivalent tensor equations, so you should be able to follow mosteopaper without a knowledge
of tensors. Arextremely brief introduction to them follows — see [28, 27] for more detaildl A
guantities are assumed to be projective, expressed in homogeneous ataxdin



Tensor s are just multidimensional arrays of components. Vectors (1-indexgyreayd matri-
ces (2-index arrays) are examples. Each index is associated with a specifi¢thpe®i world,
imagei, ...), and inherits the corresponding change-of-basis law. Many comvetior and ma-
trix operations generalize directly to tensors, provided we specify whiche many indices the
operation applies to. (For matrices, the index is implicit in the t@position = multiplication’
rule). To keep track of the indices, we write them out explicitlyd, c . . . for world-space indices
andA;, B;,C; ... for imagei ones. The most common operatiorcetraction — summing a
corresponding pair of indices over the range of their values, as in veat@rdduct, matrix prod-
uct or trace. The summation signs are elided: any index that appears twiterin & implicitly
summed over.

A further complication is that in projective geometry each space has a cordisgatual,
e.g. in each image, the space of points is dual to the space of lines (hyperplahissheans that
every index actually comes in two varieties: point-likecontravariant and hyperplane-like or
covariant. These havelifferent (complementary) transformation laws under changes of basis, so
they must be carefully distinguished: point indices are written aerseppts, hyperplane ones
as subscripts. Contractions are only meaningful between covariant-candra pairs of indices
from the same spaceg. there isno meaningful ‘dot product’ between pairs of projective points
— the result would be completely dependent on the basis chosen.

World pointsX*“ project to image ones”i by contraction wit8 x 4 projection matrice® /' :
x4 ~ PAiXa (implicit summation over). e’l“2 denotes the epipole of camera 1 in image 2;
F 4, B, the fundamental matrix between images 1 and 2;@@@3203 the trivalent tensor between
images 2 and 3 based in image 1. (There are also corresponding trivalemsteased in images
2 and 3). In ordinary matrix-vector notatioX, stands forX?, x; for x*:, P; for P;l“f, e;; for

A'.
e;’,andF;; forFu,p;.

Consider the projections;,x;, = P;X, of n homogeneous world poins,,p =1,...,n,
into m images via3 x 4 perspective projection matricd;, i = 1,...,m. The resultingnn
homogeneous image pointg, are only defined up to unknown scale factdys, calledproj ective
depths. As eachP; and X, can be arbitrarily rescaled, there is some superficial freedom in
the choice of these scales. However there is a strong underlying cohehate@ntbodies the
projective structure of the scene: the depis really do capture the projective part of visual
depth. An algebraic result of the coherence is the low rank (four) ofabeaded data matrix:

A1X11 0 AaXin P
. = (X X))
Aml Xm1 Amnxmn Pm
Itis useful to view this column-by-column, as the projection of M@ointsX, to 3m-component
joint image space vectors via the stacke®in x 4 joint projection matrix P:
)\1pX1p P1
= PX, where P =
Ampxmp P,
The joint projection can be viewed as a projective injection mappingEhar8jective world bijec-
tively to thejoint image— a 3D projective subspace (fm — 1)-D projective joint image space
[28, 27]. This is a faithful projective copy of the world expressetirety in image coordinates.
Projection from it to the individual images is a trivial forgettingafordinates and scale factors.

Projective reconstruction of the joint image amounts to recovering issimg depths\;,. This
is a canonical proce$sip to a once-and-for-all choice of scales for the projectiBasThe four

2:‘Canonical’ means that it characterizes the imaging gegmeetd is characterized uniquely (up to the scales) by it; it
does not depend on the world or image coordinate systems asddt is in some sense the ‘natural’ arena of action for
any reconstruction method.



columns of the joint projection matrix form a spanning basis forjtie image. The coordinates
of a rescaled joint image point with respect to this basis are exactly thespanding 3D point’s
homogeneous world coordinates. But neither the basis nor the worldinates are canonical:
only the geometric position of the pointin the joint image is rezable from the image data.

The above geometry can be converted directly to algebra4The minors (submatrix deter-
minants) of the joint projection encode the location of the joint iménd hence the projective
camera geometry) in a well-defined algebraic sense: they are its ‘Grassmarkesfidordinates’.
Moreover, the minors turn out to be just the components ofitaiching tensor s between the im-
ages. These generate the multilinear constraints that tokens in diffexages must satisfy if
they are to be the projections of a single world token. They can alssée for projective depth
recovery, and to transfer tokens between images. There are four basic typa&hbfng tensors:
epipolese;; (tensorially:eff ), fundamental matrices F;; (F 4,5, ), trivalent tensors G 4, BiCu
andquadrivalent tensorsH4:Bi©» D1 These are formed from minors with respectively 3+1, 2+2,
2+1+1, and 1+1+1+1 rows from 2, 2, 3 and 4 imagesk, [ [22, 8, 28].

The ‘joint image closure relations’ that underlie the new recondtsnanethods are bilinear
constraints between projection matrices and the corresponding matchingstefisey guarantee
that the projections are coherent with the joint image subspace defindtekgnsors. Alge-
braically, they express the four-dimensionality (“closure”) of thajamage. The simplest way to
derive them is to append any column of the x 4 joint projection matrix to the existing matrix, to
form a rank deficien®m x 5 matrix. The5 x 5 minors of this matrix vanish. Expand by cofactors
in the appended column. The coefficients are matching tensor compo#ients ifiinors of the
original joint projection matrix). Closer examination reveals fiveib&ges of relation. We use
only the simplest two hefe

sz' P; + [eij]x Pj =0 F-e closure (1)
Gp, PB4 el PO Pl et = 0 e-G-e closure )

These relations provide constraints between matching tensors (which estifnated from the
image data) and columns of the joint projection matrix. For each columoo(itains 3 constraints
of which 2 are linearly independent, while (2) contaidns3 = 9 constraints of which 5 are linearly
independent. By accumulating enough of these constraints, we can seladylifor the four3m-
component joint projection columns, up to an ovedall 4 linear transformation that amounts to
a homography of the reconstructed world space. Geometrically, the joauge (the 4D subspace
spanned by the columns of the joint projection) is the null spaceettmnstraints. Given the
projections, the scene reconstruction can be completed by linearly ba@ciimgjimage structure
into the world space, which amounts to solving redundant linear eqation

Xip A (PiXp) =0 3

for the world pointsX,, in terms of their images;, and the projection matricd®,;.

The depth recovery relations used for projective factorization [25, 30, 27] follow directly
from the above closure constraints. Attaching a world p3iptto each projection gives bilinear
constraints between the matching tensors anddhectly rescaled image points\;,x;, = P;X,:

Fji (NipXip) + €55 A (Ajpxjp) = 0 (4)
G, M (yxP) = (x) et +ef (uxTr) = 0 (5)

Given the matching tensors, a coherent set of projective depths for #gesrof each world
point can be recovered linearly using these relations. These already containah projective
reconstruction, implicit in the fact that the rescaled data matrix (2) hds4amhe reconstruction
can be consolidated and ‘read off’ by any convenient matrix factorization égof25, 30].

3[x]x denotes the skew x 3 matrix giving the vector cross produdz]xy = x A y.



Another way to express (1) is to note tif&y; has rank 2 and hence can be decomposed (non-
uniquely) asF;; = u;v; — v;u;. Here,u; <+ u; andv; < v, turn out to be corresponding
pairs of epipolar line-vectors (with appropriate relative scaling), eanthe;; = u; A v, e;; =
v; A u;. Suitableu’s andv’s are easily obtained by rescaling the SVD basisFgf. Since
[eijl« = u;v] — vju], the combined-e closure constraints from imagég and;-i have rank

just 2 and are spanned by the rows &f a 6 matrix U;;:

Fji fegl \ _( —vi u 5 o _(ul uf
<[eji]x Fij ) \ vi —w Uiy where Uy = v Vj%

In fact, theu’s andv’s extracted from the SVD dF ;; combine to form a basis of the 2D orthogonal
complement of the-j joint image. (The space spanned by the 4 columns of-thpint projec-

tion matrix (5), or equivalently by those of thie; rescaled data matri@?lx’fl o ﬁ",”x"," ).
J ) ) ) JIXG1 0 AjnXin/ o
Hence, another way to obtain the constraint matiiy is to use any two image reconstruction
method é.g. factorization) and extract the left null space of the resultijgjoint projection or
rescaled data matrieg. by QR or SVD.
Similarly, thee-G-e closure constraint (2) can be written @nx 3 blocks) as @ x 9 rank 5

matrix

—e;" Isx3 | G.° ™ 1e;; 00 P;
—e?" I35 | G.* v |0 €j; 0 P]' =0
—ej“ I3 | G.* 10 0 €ji Py

Here, the 27 components Of 4; BiCr are viewed as threg x 3 matrices, forC, = z,y, 2. As
before, the rank remains 5 even if further bilinear or trilinear closurestamts are added for
the same images taken in a different order (@futhe discussion on scaling below). Any rank
5 decompositiolJ;;;, of this constraint matrix€g. by SVD) gives a trivalent equivalent of the
aboveU;; matrix. For any sucfU,;;, each of its 5 rows contains three 3-component row vectors
which define a matching triplet of image lines, and hence a corresponditige8If {u;, u;, u;}

is such a triplet, the closure constraint says that the pulled-bac&l\itanes meet in a common
3D line: (w;P;) + (u;P;) + (uiPr) = 0). The 4D projective space of linear combinations of
these 5 line-triplet vectors bijectively spans the entire 4D space (Pligeketric) of lines in 3D,
except that the correspondence is singular for lines in the trifocal plane.

The complete closure-based reconstruction process runs roughly assolla very large
number of closure constraints is available, relating the projectioagyselection of 2, 3, or even
(for higher closure constraints) 4 or 5 images. It would be impractaeahtorce all of these, but
in any case they are highly redundant and only a small subset of them nesdd@practice.
The choice must depend on the correspondences and matching tensors acaiagleience, and
a run timevs. redundancy trade-off. To fully constrain the projections, each image(gthe first
pair) must be related tat least two others. This can be done with oagG-e constraint or two
F-e ones, in either their full or reduce®imatrix) versions. (The experiments below use the full
versions).

This paper considers only the simplest possible choices, based onahgdta of constraints
for the first two types of closure relation. Each image is connected to gtactiprevious ones in
a chain. The following types of chain have been considered

Q——E, O OO
NS A A $OL ORI S
F-e serial F-e parallel e-G-e serial

Serial chains connect each image to the two immediately preceding ones, whilelpamak
connect each image to two ‘key frames’. For th€&-e chains, the trivalent tensor based in (with



covariant index in) the middle image of the triplet is used, , e5'* — G 5,4'“* — e$* forimages
1-2-3. Note that the basic formulation is symmetric in that it al@my pair or triplet of images to
be incorporated. Choosing a particular constraint topology breaksyhimetry, but the choice is
at least under user control (modulo suitable estimates of the matchiraysgns

Each constraint contributes several rows to adbigcolumn,m image constraint matrix (un-
used elements are zero). It is essential to choose consistent relative s(sdmgglow), but once
this is done the constraint matrix generically has ramk— 4. Its null space is exactly the jointim-
age (the 4D space spanned by the joint projection columns). Any basiefaull space provides
four 3m-component column vectors that can be regarded as the columns of a validtrectaus
joint projection. The freedom of choice in the basis correspondslta @& nonsingular mixing of
the columns, which amounts to a projective deformation of the reamtett world coordinates.

The above process enforces a particular relative scaling for the projectitices, so it is
necessary to choose coherent scalings for the overlapping constraint equétifact, matching
tensors inherit ‘natural’ scalings from their definitions as minorprafection matrices, but these
are lost when they are estimated from image data. The closure relationgldejiieally on these
scalings, so the relevant part of them must be recovered.

It turns out that the scales can be chosen arbitrarily modulo one condtai@ach closed
loop in the above chains. The same constraints guarantee the existeraresistent choices of
depths in the depth recovery equations (4) or (5), and it turns out teabiest to recover the
scalings using this. For each closed loop, scalings are chosen arbitratifthardepths of (a
selection of) measured image points are propagated around the loop by aftctepth recovery
steps €f. [25]). Then, one of the tensor scales is modified to make the averagedelosp
gain’ unity, as it must be for consistency. For ffiee constraint this involves 3-image loopsd.

1 - 2 - 3 — 1), while for thee-G-e one we multiply (5) byle2;], so that only two terms
survive, and then propagate through just two images 2 — 3 — 2). The required epipoles are
also estimated fronGx and (5), by multiplying by{x;], or [x3], and solving. The epipoles and
scalings could also be found bilinearly fro@ alone, but for maximum stability | prefer to use
linear methods based on the image data.

Numerically, once the combined constraint matrix has been assembled theesena ways
to calculate its null space. The experiments reported here use the foluesnsaigular vectors
of the SVD, but eigendecomposition of the normal matrix gives simméaults. These methods
are numerically stable and easily handle redundant constraints, but &kemf are rather slow
when there are many images, as large matrices with many zeros are involvedspafitie sets
of constraints (as here), the null-space could also be estimated usings/agarse or recursive
methods. These should be much faster than the full SVD, although Staiviéity may be lost —
more investigation is needed here.

In fact, itis clear (in retrospect) from the above discussion that one canials closure-based
reconstruction as a means of ‘gluing together’ many overlapping virtoalimage reconstruc-
tions into a coherent multi-image whole. Each reconstruction implipitbvides & x 4 or9 x 4
joint projection matrix in some arbitrary world frame. The closuredasfsamework characterizes
these by their 2 or 5 dimensional left null spaces. These have the advanhtagjag independent
of the world frames chosen, and directly extractable from the matchingremsthout passing
through an explicit intermediate reconstruction. Finally, the accuredlaull space constraints
are re-inverted to give the combined joint projection matrix. In retexs, it is unclear whether
passing through a larg@m — 4)-D null space computation is an effective means of patching
together several (implicit) 4D partial reconstructions. This mustaest subject for future work.

In practice, thee-G-e method turns out to be quite a lot slower than @ one, mainly
because larger matrices are involved at each step. However it is also signifitamdystable. In
particular, for a camera moving in a straight line, the fundamental matiicegpipoles of differ-
entimages coincide. This is a well-known singular case for epipolabasad token transfer, and
F-e closure based reconstruction fails here too. The failure is intriosamy method based solely



on epipolar geometry (rather than image measurements). Camera zooms centredunigtie
epipole leave the epipolar geometry unchanged and hence can not be recovergrofdiam

still exists for two images, but there it can be absorbed by a 3D haapbg). In contrast, trivalent
transfer ande-G-e reconstruction are well behaved for aligned centres, as is reconstruction by
F-e depth recovery and factorization. Basically, some information aboutiposialong epipolar
lines is needed to stabilize things. This can be provided by trivalergfesgror even better by
anchoring onto explicitimage correspondences.

3 Implementation

Now we summarize the reconstruction algorithms, and discuss a feariam implementation
details. TheF'-e closure algorithm has the following steps:

0) Extract and match features between images.

1) Standardize the image coordinates (see below).

2) Estimate fundamental matrices and epipoles connecting each image to at |leatbtetvgo

3) Correct the scales of the fundamental matrices and epipoles using. @dtion 2).

4) Build the constraint matrix of equations (1) and use SVD to find@sull space.

5) Extract the projection matrices from the null space column vectors.

6) Back-project and solve for 3D structure using (3).

7) De-standardize the projection matrices (see below).

Thee-G-e closure based method follows the same pattern, except thdtoth point and line
features can be used to estimate the trivalent tensorggluation 5 is used to correct the trivalent
scaling, and equation (2) to build the constraint matrix.

The currentimplementations use linear methods to estimate fundameniabsand trivalent
tensors. With properly standardized coordinates these turn out to pestedrle and surprisingly
accurate [12]. Using a nonlinear least squares iteration to refine the esgimatginally improves
the stability of (for example) the long serial chains of #ie method, but not enough to change
the basic conclusions. The linear method¥oincludes a finaB x 3 SVD to enforce deF = 0
and calculate the epipoles. The epipoles fordh@a-e method are found linearly frora and the
image data using (5).

For accurate results it Essential to work in a well-adapted coordinate system. This is standard
numerical practice, but it is particularly important when there are impléast-squares trade-
offs between redundant constraints, as here. If some components of theséqpors are typi-
cally much larger than others — for example when homogeneous pixel co@slnay, z) ~
(256,256,1) are used — some constraints have a much higher implicit weight thansather
this significantly distorts the estimated solution. Hartley hasedinted the importance of this for
fundamental matrix estimation [12], and it is equally true for recomsitbn. In practice it makes
little difference which of the many possible standardization schemesis. iHere, the pixel coor-
dinates are scaled uniformly into the unit squifé, 1] x [—1, 1], homogenized, and normalized
as 3-vectors to norm 1. This is easy, fast, independent of the image, aks egually well for
visible and off-image virtual pointe(g. distant vanishing points or epipoles). Figure 1 shows the
effect of standardization: pixel coordinates (scal@56) give reconstructions hundreds of times
worse than well standardized ones (scal&). The error rises rapidly at scales beld®! owing
to (32 bit) floating point truncation error.

4 Experiments

To help quantify the performance of the algorithms, | have run a sefissnulations using syn-
thetic data. The algorithms have also been tested on hand-matched paiattegkfrom real



Reprojection Error vs. Image Standardization Reconstruction Error vs. Image Standardization
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Figure 1: Mean reprojection and reconstruction ervsrimage coordinate standardization.

images, and an implementation on ‘live’ images is in progress. The siinsedre based on trial
scenes consisting of random 3D points in the unit cube. These are vigvigeltical perspective
cameras spaced evenly alon@@ arc of radius 2, looking directly at the centre of the scene.
These are ideal conditions for accurate reconstruction, but many other weniigns have also
been tested, including infinitesimal viewing angles and distant scenesegtiyible perspective.
When cameras are added, their spacing is decreased so that the total range af aieylés re-
mains the same. The positions of the projected image points are pafthybuniform random
noise. Mean-square (and median and maximum) 2D reprojection and 3D rectinstarrors are
accumulated over 50 trials. The 3D error is the residual after projectiverakgt of the recon-
struction with the scene. Unless otherwise stated, default values oE®3 V50 points ane-1
pixel noise are used.

Figure 2 summarizes the results, giving image reprojection and 3D rggotisn errorsvs.
image noise, number of points and number of views. The new technioees test are serial
and parallel chairF-e closure, and serial chaisrG-e closure. For comparison, several existing
techniques are also shown.

Evidently, the most stable techniques are ‘SVD’ and ‘SVD+L-M’: SVasbd projective fac-
torization [25, 30], and a Levenberg-Marquardt-like nonlinear leasasgs algorithm initialized
from this. However, remember that these are only applicable when pointsecaratched across
all images, while the other techniques require matches across only 2-3 fmages

The ‘2 image’ methods simply reconstruct the scene from two images, and¢jproject to
estimate the projection matrices for the remaining ones. The ‘serial 2einmagthod uses only
the first two images, and hence involves a considerable amount of extigpolThis can be very
inaccurate, but it is realistic in the sense that practical two image methedsften restricted
to nearby images when tracking is difficult. The seiiak ande-G-e closure methods fuse a
series of small, inaccurate steps of this sort and still manage to proiduifcantly better results,
despite the potential for accumulation of errors.

In contrast, the ‘parallel 2 image’ method uses the first and last images sktjfuence, and
hence maintains a constant baseline. The same applies to the ‘pBrallelosure method, which
links each image to the two end ones. These results require unrealistitcdéymatching win-
dows, but they provide a clear indication of the “integrating powérthe closure formalism. In
particular, adding more images does continue to improve the ‘palgdeiclosure results, while
the ‘parallel 2 image’ results stay roughly constant (as expected). Howbeeclosure method
seems to need about 10 images just to overcome the extreme stability2diftlage factorization
method.

All of the methods scale linearly with noise and initially improve asrepoints are added, but

4To allow fair comparison, the point reconstruction stepeach method has been allowed to combine data from all the
images using the recovered projections.
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Figure 2: Mean reprojection and reconstruction erwsrnoise, number of points and number of views.

level off after about 20 points. The serial methods eventually worsemesimages are added and
their baseline decreases: the ‘2 image’ one immediately (as expecteH)etlome after about 10
images; and the-G-e one after about 30. In general, the trivalent methods are significantlg mor
stable than the fundamental matrix ones. It definitely pays to select imageadely separated

as possible for the closure constraints, even if this means havingeaeveral ‘key’ images.
The instabilities arising from long chains seem to be far greater than asgdintroduced by
working from ‘key’ images. However, tracking reliability puts stigopractical limitations on the
separations that can be attained.

All of the methods are stable for both close and distant scenes (maduailghs line motion
for F-e closure), but all of them (especially the fundamental matrix ones) give p@oy results
for points near the axis of fronto-parallel motion, as there is no stbeseline there for point
reconstruction. (Surface continuity constraints are essential in thé.cas

One reason for the early failure &f-e closure is the fact that it is singular whenever three
adjacent camera centres are aligned. This happens to an increasing extent as tlyeadpagin
the circular baseline decreases, adding to the natural uncertainty associatttbvgtiort baseline
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itself. For this reason, it is advisable to use th€&-e method (or an equivalef matrix derived
from reconstruction of at least 3 images) whenever straight line moséiamvolved.

The factorization method is notable for being linear yet close to optithad. based orF-e
depth recovery (4) — essentially the same equations aB-#elosure based method, but applied
directly to the image points rather than to the projections. Cleargy/ditect use of image data
gives a significant improvement in accuracy. Unfortunately, factorizatigmactically limited as
it requires every token to be visible in every image: this is why theuge-based methods were
developed.

5 Summary

The closure relation based projective reconstruction techniques worknegalgovell in practice,
except that théd-e method fails for aligned camera centres. If there are many images, closure
is more accurate than the common ‘reconstruct from 2 images and reprojelogfottter projec-
tions’ paradigm, but it can not compete with projective factorization wikatures can be tracked
through all the images. In principle there is no need to single oitifpged’ features or images.
But short chains of closure relations turn out to be significantlyersiable than long ones, so
in practice it is probably best to relate all of the images to a few ‘kegwofor perhaps hierar-
chically). The trivalent techniques are slower, but significantly maablstthan the fundamental
matrix based ones.

Future work will implement the methods on real images, investigatedastsive solutions of
the reconstruction equations, study the stabilizing effects of incating redundant constraints,
and compare the closure-based methods with direct techniques for mergémgl ggrtial recon-
structions.
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