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IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1Local Greyvalue Invariants for Image RetrievalCordelia Schmid and Roger MohrAbstract|This paper addresses the problem of retrievingimages from large image databases. The method is basedon local greyvalue invariants which are computed at auto-matically detected interest points. A voting algorithm andsemi-local constraints make retrieval possible. Indexing al-lows for e�cient retrieval from a database of more than 1000images. Experimental results show correct retrieval in thecase of partial visibility, similarity transformations, extra-neous features, and small perspective deformations.Keywords| image retrieval, image indexing, greylevel in-variants, matching I. IntroductionThis paper addresses the problem of matching an imageto a large set of images. The query image is a new (partial)image of an object imaged in the database. The imagemay be taken from a di�erent viewing angle (made precisebelow).A. Existing recognition methodsExisting approaches in the literature are of two types :those that use geometric features of an object ; and thosethat rely on the luminance signature of an object.Geometric approaches model objects by 3D propertiessuch as lines, vertices and ellipses and try to extract thesefeatures in order to recognise the objects. General sur-veys on such model-based object recognition systems arepresented in [1], [2]. These methods generally comprisethree components : matching, pose computation, and ver-i�cation. The key contribution of several recognition sys-tems has been a method of cutting down the complexity ofmatching. For example tree search is used in [3] and recur-sive evaluation of hypotheses in [4]. In indexing, the featurecorrespondence and search of the model database are re-placed by a look-up table mechanism [5], [6], [7]. The majordi�culty of these geometry based approaches is that theyuse human-made models or require CAD-like representa-tions. These representations are not available for objectssuch as trees or paintings ; in the case of \geometric" ob-jects these CAD-like representations are di�cult to extractfrom the image.An alternative approach is to use the luminance informa-tion of an object. The idea is not to impose what has to beseen in the image (points, lines . . . ) but rather to use whatis really seen in the image to characterise an object. The�rst idea was to use colour histograms [8]. Several authorshave improved the performance of the original colour his-togram matching technique by introducing measures whichare less sensitive to illumination changes [9], [10], [11], [12].Instead of using colour, greyvalue descriptors can also beThe authors are with GRAVIR-IMAG and INRIA Rhône-Alpes,655 avenue de l'Europe, 38330 Monbonnot Saint-Martin, France.E-mail : cordelia.schmid@inrialpes.fr.Cordelia Schmid has been partially supported by the HCM programof the European Community.

used for histograms [13]. Another idea is to use a collectionof images and reduce them in an eigenspace. This approachwas �rst used in [14] for face recognition and then in [15]for general objects. A di�erent reduction is proposed in[16] who learns features which best describe the image. Itis also possible to compute local greyvalue descriptors atpoints of a global grid. The descriptors are either steerable�lters [17] or Gabor �lters [18], [19]. In the case of partialvisibility grid placement gets di�cult, as the grid cannotbe centred.B. Our approachAll of the existing luminance approaches are global andtherefore have di�culty in dealing with partial visibilityand extraneous features. On the other hand, geometricmethods have di�culties in describing \non-geometric" ob-jects and they have problems di�erentiating between manyobjects. Local computation of image information is nec-essary when dealing with partial visibility ; photometricinformation is necessary when dealing with a large num-ber of similar objects. The approach described here useslocal greyvalue features computed at interest points as dis-played in �gure 1. Interest points are local features withhigh informational content (section II).The local characteristics used in this work are based ondi�erential greyvalue invariants [20], [21]. This ensures in-variance under the group of displacements within an image.A multi-scale approach [22], [23] makes this characterisa-tion robust to scale changes, that is to similarity transfor-mations (section III). Due to a stable implementation ofthese invariants, a reliable characterisation of the signal isobtained. Moreover, this characterisation is signi�cant, asit is computed at interest points.A voting algorithm makes retrieval robust to miss-matches as well as outliers. Outliers are caused bymiss-detection of feature points and extraneous features.Semi-local constraints reduce the number of miss-matches.Furthermore, indexing via a multi-dimensional hash-tablemakes fast retrieval possible (section IV).
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Fig. 1. Representation of an image.Our approach allows the handling of partial visibilityand transformations such as image rotation and scaling(section V). Experiments have been conducted on a setof more than a thousand images, some of them very sim-ilar in shape or texture. The high recognition rate is theresult of careful design in which robustness to outliers andtolerance to image noise were considered at each step.



II. Interest PointsComputing image descriptors for each pixel in the imagecreates too much information. Interest points are local fea-tures at which the signal changes two-dimensionally. Theuse of interest points has advantages over features such asedges or regions, particularly robustness to partial visibilityand high informational content.A wide variety of detectors for interest points exists inthe literature, the reader is referred to [24] for an exhaus-tive overview. In the context of matching, detectors shouldbe repeatable. A comparison of di�erent detectors undervarying conditions [25] has shown that most repeatable re-sults are obtained for the detector of Harris [26]. The basicidea of this detector is to use the auto-correlation functionin order to determine locations where the signal changesin two directions. A matrix related to the auto-correlationfunction which takes into account �rst derivatives of thesignal on a window is computed :exp� x2+y22�2 
 � I2x IxIyIxIy I2y �The eigenvectors of this matrix are the principal cur-vatures of the auto-correlation function. Two signi�cantvalues indicate the presence of an interest point.
Fig. 2. Interest Points detected on the same scene under rotation.The image rotation between the left image and the right imageis 155 degrees. The repeatability rate is 92%.Figure 2 shows interest points detected on the same sceneunder rotation. The repeatability rate is 92% which meansthat 92% of the points detected in the �rst image are de-tected in the second one. Experiments with images takenunder di�erent conditions show that the average repeata-bility rate is about 90%. Moreover, 50% repeatability issu�cient for the remaining process if we use robust meth-ods. III. Multi-scaled differential greyvalueinvariantsOur characterisation is based on derivatives which locallydescribe an image. In order to obtain invariance under thegroup SO(2) of rigid displacements in the image, di�er-ential invariants are computed. These invariants are theninserted into a multi-scale framework in order to deal withscale changes. Therefore the characterisation is invariantto similarity transformations which are additionally quasi-invariant to 3D projection (see [27]).

A. Local jetThe image in a neighbourhood of a point can be de-scribed by the set of its derivatives. Their stable computa-tion is achieved by convolution with Gaussian derivatives[28], [22], [23]. This set of derivatives has been named \lo-cal jet" by K�nderink [20] and de�ned as follows :Let I be an image and � a given scale. The \local jet"of order N at a point x = (x1;x2) is de�ned byJN [I ](x; �) = fLi1:::in(x; �) j (x; �) 2 I�IR+ ;n = 0; : : : ; Ngin which Li1:::in(x; �) is the convolution of image I withthe Gaussian derivatives Gi1:::in(x; �) and ik 2 fx1; x2g.The � of the Gaussian function determines the quantityof smoothing. This � also coincides with a de�nition ofscale-space which will be important for our multi-scale ap-proach. In the following, � will be referred to as the sizeof the Gaussian.B. Complete set of di�erential invariantsIn order to obtain invariance under the group SO(2), dif-ferential invariants are computed from the local jet. Di�er-ential invariants have been studied theoretically by K�n-derink [20] and Romeny et al.[28], [29], [30]. A complete setof invariants can be computed that locally characterises thesignal. The set of invariants used in this work is limited tothird order. This set is stacked in a vector, denoted by V .In equation 1 vector V is given in tensorial notation { theso-called Einstein summation convention. Notice that the�rst component of V represents the average luminance, thesecond component the square of the gradient magnitudeand the fourth the Laplacian.V[0::8] = 266666664 LLiLiLiLijLjLiiLijLji"ij(LjklLiLkLl � LjkkLiLlLl)LiijLjLkLk � LijkLiLjLk�"ijLjklLiLkLlLijkLiLjLk
377777775 (1)

with Li being the elements of the \local jet" and "ij the 2Dantisymmetric Epsilon tensor de�ned by "12 = �"21 = 1and "11 = "22 = 0.C. Multi-scale approachTo be insensitive to scale changes the vector of invariantshas to be calculated at several scales. A methodology toobtain such a multi-scale representation of a signal has beenproposed in [31], [22], [23].For a function f , a scale change � can be described bya simple change of variables, f(x) = g(u) where g(u) =g(u(x)) = g(�x). For the nth derivatives of f, we obtainf (n)(x) = �ng(n)(u). Theoretical invariants are then easyto derive, for example [f (n)(x)] knf (k)(x) is such an invariant.2



However, in the case of a discrete representation of thefunction, as for an image, derivatives are related by :+1Z�1 I1(~x)Gi1:::in(~x; �)d~x = �n +1Z�1 I2(~u)Gi1:::i2 (~u; ��)d~u (2)with Gi1:::i2 being the derivatives of the Gaussian.Equation 2 shows that the size of the Gaussian has to beadjusted which implies a change of the calculation support.As it is impossible to compute invariants at all scales, scalequantisation is necessary for a multi-scale approach. Of-ten a half-octave quantisation is used. The stability of thecharacterisation has proven this not to be su�cient. Ex-periments have shown that matching based on invariants istolerant to a scale change of 20% (see [25]). We have thuschosen a scale quantisation which ensures that the di�er-ence between consecutive sizes is less than 20%. As wewant it to be insensitive to scale changes up to a factor of2, the size � varies between 0.48 and 2.07, its values being :0.48, 0.58, 0.69, 0.83, 1.00, 1.20, 1.44, 1.73, 2.07.IV. Retrieval AlgorithmTo retrieve an image, it is necessary to decide if twoinvariant vectors are similar. Similarity is quanti�ed usingthe Mahalanobis distance. To de�ne the distance for a setof vectors which includes outliers to the database a votingalgorithm has to be used. An indexing technique makeaccess fast ; and semi-local constraints allow to reduce miss-matches.A. Vector comparison by Mahalanobis distanceA standard method is to model the uncertainties in thecomponents as random variables with Gaussian distribu-tion and use the Mahalanobis distance dM to compare in-variant vectors. This distance takes into account the dif-ferent magnitude as well as the covariance matrix � ofthe components. For two vectors a and b, dM (b; a) =p(b� a)T��1(b� a).The square of the Mahalanobis distance is a random vari-able with a �2 distribution. Since the square root functionis a bijection from IR+ to IR+, it is possible to use a tableof this distribution to threshold the distance and then toreject the k% of values that are most likely to correspondto false matches.In order to obtain accurate results for the distance, it isimportant to have a representative covariance matrix whichtakes into account signal noise, luminance variations as wellas imprecision of the interest point location. As a theoret-ical computation seems impossible to derive given realistichypotheses, we estimated it statistically by tracking inter-est points in image sequences.The Mahalanobis distance is impractical for implement-ing a fast indexing technique. However, a base changemakes conversion into the standard Euclidean distance dEpossible. As the covariance matrix is a real symmetric(semi) de�nite positive matrix, it can be decomposed into��1 = P TDP where P is orthogonal and D is diagonal.We then have dM (a;b) = dE(pDPa;pDPb).

B. Indexing and voting algorithmB.1. Voting algorithm. A database contains a set fMkgof models. Each model Mk is de�ned by the vectors of in-variants fVjg calculated at the interest points of the modelimages. During the storage process, each vector Vj is addedto the database with a link to the model k for which it hasbeen computed. Formally, the simplest database is a tableof couples (Vj ; k).Recognition consists of �nding the model Mk̂ which cor-responds to a given query image I , that is the model whichis most similar to this image. For this image a set of vec-tors fVlg is computed which corresponds to the extractedinterest points. These vectors are then compared to the Vjof the base by computing : dM (Vl;Vj) = dl;j 8(l; j). If thisdistance is below a threshold t according the �2 distribu-tion, the corresponding model gets a vote.As in the case of the Hough transform [32], the idea ofthe voting algorithm is to sum the number of times eachmodel is selected. This sum is stored in the vector T (k).The model that is selected most often is considered to bethe best match : the image represents the model Mk̂ forwhich k̂ = arg maxk T (k).Figure 3 shows an example of a vector T (k) in the formof a histogram. Image 0 is correctly recognised. However,other images have obtained almost equivalent scores.
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modelFig. 3. Result of the voting algorithm : the number of votes aredisplayed for each model image. Image 0 is recognised correctly.B.2. Multi-dimensional indexing. Without indexing thecomplexity of the voting algorithm is of the order of l�Nwhere l is the number of features in the query image andN the total number of features in the data base. As N islarge (about 150,000 in our tests) e�cient data structuresneed to be used.Search structures have been extensively studied. Anoverview of all tree-like data structures that allow fastand/or compact access to data is presented in [33]. Thedata structure used here is not referenced in the previousreview ; it can be seen as a variant of k-d trees.Here each dimension of the space is considered sequen-tially. Access to a value in one dimension is made through�xed size 1-dimensional buckets. Corresponding bucketsand their neighbours can be directly accessed. Accessingneighbours is necessary to take into account uncertainty.A bucket is extended in the next dimension if the num-ber of values stored is above a threshold. Therefore the3



data structure can be seen as a tree with a depth whichis at most the number of dimensions of the stored vectors.The complexity of indexing is of the order of l (number offeatures of the query image).This indexing technique leads to a very e�cient recog-nition. The database contains 154030 points. The meanretrieval time for our database containing 1020 objects isless than 5 seconds on a Sparc 10 Station. Performancecould be further improved by parallelisation, as each vec-tor is processed separately.C. Semi-local constraintsA given feature might vote for several models. Havinga large number of models or many very similar ones raisesthe probability that a feature will vote for several models.Califano [34] suggested that using longer vectors decreasesthis probability. Yet the use of higher order derivatives forour invariants is not practical. Another way to decreasethe probability of false matches is to use global features.However, global characteristics are sensitive to extraneousfeatures and partial visibility.
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a database entry and 
its p closest features

a match Fig. 4. Semi-local constraints : neighbours of the point have to matchand angles have to correspond. Note that not all neighbours haveto be matched correctly.Our solution is the use of local shape con�gurations, asin �gure 4. Semi-local constraints have previously beenused in [35], [36]. For each feature (interest point) in thedatabase, the p closest features in the image are selected.If we require that all p closest neighbours are matched cor-rectly, we suppose that there is no miss-detection of points.Therefore, we require that at least 50% of the neighboursmatch. In order to increase the recognition rate further,a geometric constraint is added. This constraint is basedon the angle between neighbour points. As we supposethat the transformation can be locally approximated by asimilarity transformation, these angles have to be locallyconsistent, for example the angles �1 and �2 in �gure 4.An example using the geometrical coherence and the semi-local constraints is displayed in �gure 5. It gives the votesif constraints are applied to the example in �gure 3. Thescore of the object to be recognised is now much more dis-tinctive.D. Multi-scale approachThe multi-scale approach can be very easily integratedinto the framework presented above. For a query image,invariants are computed at several scales (see section III).
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modelFig. 5. Result of applying semi-local constraints : the number ofvotes are displayed for each model image. Semi-local constraintsdecrease the probability of false votes. Image 0 is recognisedmuch more distinctively than in �gure 3.Invariants in the database are only stored for one scale.Matching invariants computed at several scales to invari-ants computed at one scale increases the possibility ofwrong matches and makes semi-local constraints even moreessential. These constraints implicitly include a scale con-straint, as the invariants for a point and its neighboursare calculated at the same scale. Hence, if a point and itsneighbours match, the scale constraint is ful�lled. Thus,using these constraints, the multi-scale approach works ef-�ciently as is demonstrated in the next section.V. Experimental ResultsExperiments have been conducted for an image databasecontaining 1020 images. They have shown the robustnessof the method to image rotation, scale change, small view-point variations, partial visibility and extraneous features.The obtained recognition rate is above 99% for a variety oftest images taken under di�erent conditions.A. Content of the databaseThe database includes di�erent kinds of images such as200 paintings, 100 aerial images and 720 images of 3Dobjects (see �gure 6). 3D objects include the Columbiadatabase. These images are of a wide variety. However,some of the painting images and some of the aerial im-ages are very similar. This leads to ambiguities which therecognition method is capable of dealing with.In the case of a planar 2D object, an object is repre-sented by one image in the database. This is also the casefor nearly planar objects as for aerial images. A 3D objecthas to be represented by images taken from di�erent view-points. Images are stored in the database with 20 degreesviewpoint changes.B. Recognition resultsIn this section some examples illustrate the di�erent con-ditions under which the method can still operate correctly.A systematic evaluation for a large number of test imagestaken under di�erent conditions is then presented. Moredetails are given in [25].B.1. Some examples of correct recognition. In the fol-lowing three examples are displayed, one for each type of4



Fig. 6. Some images of the database. The database contains more1020 images.image. For all of them, the image on the right is storedin the database. It is correctly retrieved using any of theimages on the left. Figure 7 shows recognition of a paintingimage in the case of image rotation and scale change. Italso shows that correct recognition is possible if only partof an image is given.
Fig. 7. The image on the right is correctly retrieved using any of theimages on the left. Images are rotated, scaled and only part ofthe image is given.In �gure 8 an example of an aerial image is displayed. Itshows correct retrieval in the case of image rotation and ifpart of an image is used. In the case of aerial images wealso have to deal with a change in viewpoint and extraneousfeatures. Notice that buildings appear di�erently becauseviewing angles have changed and cars have moved.Figure 9 shows recognition of a 3D object. The objecthas been correctly recognised in the presence of rotation,scale change, change in background and partial visibility.In addition, there is a change of 10 degrees of viewpointposition between the two observations. Notice that theimage of the object has not only been recognised correctly,but that the closest stored view has also been retrieved.B.2. Systematic evaluation of retrieval. The method isevaluated for di�erent transformations { image rotation,

Fig. 8. The image on the right is correctly retrieved using any of theimages on the left. Images are seen from a di�erent viewpoint(courtesy of Istar).
Fig. 9. The image on the right is correctly retrieved using any ofthe images on the left. The 3D object is in front of a complexbackground and only partially visible.scale change, viewpoint variations { as well as for partialvisibility.Image rotation To test invariance to image rotation, im-ages were taken by rotating the camera around its opticalaxis. The recognition rate obtained is 100% for di�erentrotations equally distributed over a circle. This experimentshows that the characterisation is completely invariant toimage rotation.Scale change Experiments were conducted on zoomedimages. Using a multi-scale approach, the recognition rateattains a score of 100% up to a scale change of 2. Atpresent, this factor seems to be the limit for our method.However, this limit is not due to our invariant characteri-sation but rather to the stability of the interest point de-tector. The repeatability of this detector decreases rapidlywhen the scale change is greater than 1.6.Viewpoint variation Test images are taken at angles dif-ferent from the images stored in the base. Each aerial im-age has been taken from 4 di�erent viewpoints. Viewpointnumber one is stored in the base. For images taken fromdi�erent viewpoints, the recognition rate is 99%. The onlyimage which is not recognised correctly is part of the har-bour and contains only water on which no reliable interestpoints can be identi�ed.For 3D objects, test images have been taken at 20 degreesdi�erence in viewing angle. The viewing angles of the testimages lie in between two images stored in the base. Therecognition rate is 99.86%. It is interesting to consider onlythe Columbia database which serves as a benchmark forobject recognition. On this base a 100% recognition ratehas been obtained in [15] as well as in [17]. Experimentsshow that our method attains the same recognition rate.Partial visibility Parts of di�erent size are extracted ran-domly from painting images. The relative size varies be-tween 10% and 100%. For parts of relative size greaterthan or equal to 30%, the recognition rate is 100%. For5



a relative size of 20%, a 95% rate is obtained ; and for arelative size of 10%, a 90% rate. Considering the size ofour database, this can be explained by the fact that pointsare very discriminating and thus only a few points are nec-essary to recognise an image. It is thus possible to retrievean image even if only part of this image is given. However,very small parts do not contain enough points, so the num-ber of votes is limited. In this case, the robust algorithmcan not overcome the statistical uncertainty.VI. ConclusionThis paper has shown that the di�erential greylevel in-variants introduced by K�nderink e�ciently characterisepoints. These invariants describe the image locally. Asautomatically detected interest points are characteristicsof patterns, invariants calculated at interest points can beused for indexing 2D greylevel patterns. A voting algo-rithm and multi-dimensional indexing make image retrievalpossible. However, blindly voting on individual invariantsis not su�cient to guarantee the correctness of the answerin database indexing. It is then crucial to introduce asemi-local coherence between these identi�cations. Thisincreases the recognition rate. Experiments conducted ona database containing 1020 images have shown very goodresults. Even small parts of images can be recognised cor-rectly. This is due to the fact that the proposed character-isation is very discriminating.Finally, di�erent extensions are possible. The voting al-gorithm can be improved by taking into account the statis-tical distributions of the invariants ; some of the invariantsare more discriminating than others. In addition, compu-tation of a con�dence value is then possible.Using global consistency checking for local matches or aglobal constraint such as the epipolar geometry is anotherpossible extension. Such additional constraints further in-crease the recognition rate and make detection of severalobjects possible. References[1] P.J. Besl and R.C. Jain, \Three-dimensional object recognition,"ACM Computing Surveys, vol. 17, no. 1, pp. 75{145, 1985.[2] R.T. Chin, H. Smith, and S.C. Fralick, \Model-based recognitionin robot vision," ACM Computing Surveys, vol. 18, no. 1, pp.67{108, 1986.[3] R.C. Bolles and R. Horaud, \3DPO : A three-dimensional PartOrientation system," Int'l J. Robotics Research, vol. 5, no. 3,pp. 3{26, 1986.[4] N. Ayache and O.D. Faugeras, \HYPER: a new approach forthe recognition and positioning of 2D objects," IEEE Trans.Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp.44{54, 1986.[5] D.J. Clemens and D.W. Jacobs, \Model-group indexing forrecognition," in Proc. DARPA Image Understanding Workshop,1990, pp. 604{613.[6] Y. Lamdan and H.J. Wolfson, \Geometric hashing: a generaland e�cient model-based recognition scheme," in Proc. 2nd Int'lConf. on Computer Vision, 1988, pp. 238{249.[7] C.A. Rothwell, Object Recognition Through Invariant Indexing,Oxford Science Publications, 1995.[8] M.J. Swain and D.H. Ballard, \Color indexing," Int'l J. ofComputer Vision, vol. 7, no. 1, pp. 11{32, 1991.[9] B.V. Funt and G.D. Finlayson, \Color constant color indexing,"IEEE Trans. Pattern Analysis and Machine Intelligence, vol.17, no. 5, pp. 522{529, 1995.
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