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Local Greyvalue Invariants for Image Retrieval

Cordelia Schmid and Roger Mohr

Abstract— This paper addresses the problem of retrieving
images from large image databases. The method is based
on local greyvalue invariants which are computed at auto-
matically detected interest points. A voting algorithm and
semi-local constraints make retrieval possible. Indexing al-
lows for efficient retrieval from a database of more than 1000
images. Experimental results show correct retrieval in the
case of partial visibility, similarity transformations, extra-
neous features, and small perspective deformations.

Keywords— image retrieval, image indexing, greylevel in-
variants, matching

I. INTRODUCTION

This paper addresses the problem of matching an image
to a large set of images. The query image is a new (partial)
image of an object imaged in the database. The image
may be taken from a different viewing angle (made precise
below).

A. Existing recognition methods

Existing approaches in the literature are of two types:
those that use geometric features of an object; and those
that rely on the luminance signature of an object.

Geometric approaches model objects by 3D properties
such as lines, vertices and ellipses and try to extract these
features in order to recognise the objects. General sur-
veys on such model-based object recognition systems are
presented in [1], [2]. These methods generally comprise
three components: matching, pose computation, and ver-
ification. The key contribution of several recognition sys-
tems has been a method of cutting down the complexity of
matching. For example tree search is used in [3] and recur-
sive evaluation of hypotheses in [4]. In indexing, the feature
correspondence and search of the model database are re-
placed by a look-up table mechanism [5], [6], [7]. The major
difficulty of these geometry based approaches is that they
use human-made models or require CAD-like representa-
tions. These representations are not available for objects
such as trees or paintings; in the case of “geometric” ob-
jects these CAD-like representations are difficult to extract
from the image.

An alternative approach is to use the luminance informa-
tion of an object. The idea is not to impose what has to be
seen in the image (points, lines ...) but rather to use what
is really seen in the image to characterise an object. The
first idea was to use colour histograms [8]. Several authors
have improved the performance of the original colour his-
togram matching technique by introducing measures which
are less sensitive to illumination changes [9], [10], [11], [12].
Instead of using colour, greyvalue descriptors can also be
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used for histograms [13]. Another idea is to use a collection
of images and reduce them in an eigenspace. This approach
was first used in [14] for face recognition and then in [15]
for general objects. A different reduction is proposed in
[16] who learns features which best describe the image. It
is also possible to compute local greyvalue descriptors at
points of a global grid. The descriptors are either steerable
filters [17] or Gabor filters [18], [19]. In the case of partial
visibility grid placement gets difficult, as the grid cannot
be centred.

B. Our approach

All of the existing luminance approaches are global and
therefore have difficulty in dealing with partial visibility
and extraneous features. On the other hand, geometric
methods have difficulties in describing “non-geometric” ob-
jects and they have problems differentiating between many
objects. Local computation of image information is nec-
essary when dealing with partial visibility ; photometric
information is necessary when dealing with a large num-
ber of similar objects. The approach described here uses
local greyvalue features computed at interest points as dis-
played in figure 1. Interest points are local features with
high informational content (section II).

The local characteristics used in this work are based on
differential greyvalue invariants [20], [21]. This ensures in-
variance under the group of displacements within an image.
A multi-scale approach [22], [23] makes this characterisa-
tion robust to scale changes, that is to similarity transfor-
mations (section III). Due to a stable implementation of
these invariants, a reliable characterisation of the signal is
obtained. Moreover, this characterisation is significant, as
it is computed at interest points.

A voting algorithm makes retrieval robust to miss-
matches as well as outliers.  Outliers are caused by
miss-detection of feature points and extraneous features.
Semi-local constraints reduce the number of miss-matches.
Furthermore, indexing via a multi-dimensional hash-table
makes fast retrieval possible (section IV).

vector of local
characteristics

Fig. 1.

Representation of an image.

Our approach allows the handling of partial visibility
and transformations such as image rotation and scaling
(section V). Experiments have been conducted on a set
of more than a thousand images, some of them very sim-
ilar in shape or texture. The high recognition rate is the
result of careful design in which robustness to outliers and
tolerance to image noise were considered at each step.



II. INTEREST POINTS

Computing image descriptors for each pixel in the image
creates too much information. Interest points are local fea-
tures at which the signal changes two-dimensionally. The
use of interest points has advantages over features such as
edges or regions, particularly robustness to partial visibility
and high informational content.

A wide variety of detectors for interest points exists in
the literature, the reader is referred to [24] for an exhaus-
tive overview. In the context of matching, detectors should
be repeatable. A comparison of different detectors under
varying conditions [25] has shown that most repeatable re-
sults are obtained for the detector of Harris [26]. The basic
idea of this detector is to use the auto-correlation function
in order to determine locations where the signal changes
in two directions. A matrix related to the auto-correlation
function which takes into account first derivatives of the
signal on a window is computed :

eyt [ L,
exp 2o L, 12

The eigenvectors of this matrix are the principal cur-
vatures of the auto-correlation function. Two significant
values indicate the presence of an interest point.

Interest Points detected on the same scene under rotation.

Fig. 2.
The image rotation between the left image and the right image
is 155 degrees. The repeatability rate is 92%.

Figure 2 shows interest points detected on the same scene
under rotation. The repeatability rate is 92% which means
that 92% of the points detected in the first image are de-
tected in the second one. Experiments with images taken
under different conditions show that the average repeata-
bility rate is about 90%. Moreover, 50% repeatability is
sufficient for the remaining process if we use robust meth-
ods.

III. MULTI-SCALED DIFFERENTIAL GREYVALUE
INVARIANTS

Our characterisation is based on derivatives which locally
describe an image. In order to obtain invariance under the
group SO(2) of rigid displacements in the image, differ-
ential invariants are computed. These invariants are then
inserted into a multi-scale framework in order to deal with
scale changes. Therefore the characterisation is invariant
to similarity transformations which are additionally quasi-
invariant to 3D projection (see [27]).

A. Local jet

The image in a neighbourhood of a point can be de-
scribed by the set of its derivatives. Their stable computa-
tion is achieved by convolution with Gaussian derivatives
[28], [22], [23]. This set of derivatives has been named “lo-

cal jet” by Kcenderink [20] and defined as follows:

Let I be an image and o a given scale. The “local jet”
of order N at a point x = (x1,x2) is defined by
JN(x,0) = {Li, s, (x,0) | (x,0) € IXR*;n=0,...,N}
in which L;, ;, (x,0) is the convolution of image I with
the Gaussian derivatives G, . 4, (x,0) and iy € {z1,z2}.

The o of the Gaussian function determines the quantity
of smoothing. This ¢ also coincides with a definition of
scale-space which will be important for our multi-scale ap-

proach. In the following, o will be referred to as the size
of the Gaussian.

B. Complete set of differential invariants

In order to obtain invariance under the group SO(2), dif-
ferential invariants are computed from the local jet. Differ-
ential invariants have been studied theoretically by Koen-
derink [20] and Romeny et al.[28], [29], [30]. A complete set
of invariants can be computed that locally characterises the
signal. The set of invariants used in this work is limited to
third order. This set is stacked in a vector, denoted by V.
In equation 1 vector V is given in tensorial notation — the
so-called Einstein summation convention. Notice that the
first component of V represents the average luminance, the
second component the square of the gradient magnitude
and the fourth the Laplacian.

V[0..8] = LijLji (1)
€ij(LjriLiLp Ly — Ljpp Li Ly Ly)
LiijLyLyLy — LijpLiL; Ly
—¢€ijLjriLiLi Ly
LijnLiL; Ly, |

with L; being the elements of the “local jet” and ¢;; the 2D
antisymmetric Epsilon tensor defined by €19 = —g91 = 1
and €11 = €292 = 0.

C. Multi-scale approach

To be insensitive to scale changes the vector of invariants
has to be calculated at several scales. A methodology to
obtain such a multi-scale representation of a signal has been
proposed in [31], [22], [23].

For a function f, a scale change « can be described by
a simple change of variables, f(z) = g(u) where g(u) =
g(u(z)) = g(ax). For the nth derivatives of f, we obtain
f(x) = a”g™(u). Theoretical invariants are then easy
[ @)

W is such an invariant.

to derive, for example



However, in the case of a discrete representation of the
function, as for an image, derivatives are related by :

—+o00 —+o0
/Il(f)Gll zn(z,a’)df:a“/‘IQ('&')G” iy (@, oa)did  (2)
— o0 — 00

with G;,..i, being the derivatives of the Gaussian.

Equation 2 shows that the size of the Gaussian has to be
adjusted which implies a change of the calculation support.
As it is impossible to compute invariants at all scales, scale
quantisation is necessary for a multi-scale approach. Of-
ten a half-octave quantisation is used. The stability of the
characterisation has proven this not to be sufficient. Ex-
periments have shown that matching based on invariants is
tolerant to a scale change of 20% (see [25]). We have thus
chosen a scale quantisation which ensures that the differ-
ence between consecutive sizes is less than 20%. As we
want it to be insensitive to scale changes up to a factor of
2, the size o varies between 0.48 and 2.07, its values being:
0.48, 0.58, 0.69, 0.83, 1.00, 1.20, 1.44, 1.73, 2.07.

IV. RETRIEVAL ALGORITHM

To retrieve an image, it is necessary to decide if two
invariant vectors are similar. Similarity is quantified using
the Mahalanobis distance. To define the distance for a set
of vectors which includes outliers to the database a voting
algorithm has to be used. An indexing technique make
access fast ; and semi-local constraints allow to reduce miss-
matches.

A. Vector comparison by Mahalanobis distance

A standard method is to model the uncertainties in the
components as random variables with Gaussian distribu-
tion and use the Mahalanobis distance da; to compare in-
variant vectors. This distance takes into account the dif-
ferent magnitude as well as the covariance matrix A of
the components. For two vectors a and b, dy(b,a) =
V(b —a)TA- (b — a).

The square of the Mahalanobis distance is a random vari-
able with a x? distribution. Since the square root function
is a bijection from IR™ to IR", it is possible to use a table
of this distribution to threshold the distance and then to
reject the k% of values that are most likely to correspond
to false matches.

In order to obtain accurate results for the distance, it is
important to have a representative covariance matrix which
takes into account signal noise, luminance variations as well
as imprecision of the interest point location. As a theoret-
ical computation seems impossible to derive given realistic
hypotheses, we estimated it statistically by tracking inter-
est points in image sequences.

The Mahalanobis distance is impractical for implement-
ing a fast indexing technique. However, a base change
makes conversion into the standard Euclidean distance dg
possible. As the covariance matrix is a real symmetric
(semi) definite positive matrix, it can be decomposed into
A~' = PTDP where P is orthogonal and D is diagonal.
We then have das(a,b) = dg(v/DPa,/DPb).

B. Indezing and voting algorithm

B.1. Voting algorithm. A database contains a set {M}}
of models. Each model M, is defined by the vectors of in-
variants {V;} calculated at the interest points of the model
images. During the storage process, each vector V; is added
to the database with a link to the model &k for which it has
been computed. Formally, the simplest database is a table
of couples (V;, k).

Recognition consists of finding the model M}, which cor-
responds to a given query image I, that is the model which
is most similar to this image. For this image a set of vec-
tors {V;} is computed which corresponds to the extracted
interest points. These vectors are then compared to the V;
of the base by computing: da(Vi,V;) = d;; V(1,7). If this
distance is below a threshold ¢ according the x? distribu-
tion, the corresponding model gets a vote.

As in the case of the Hough transform [32], the idea of
the voting algorithm is to sum the number of times each
model is selected. This sum is stored in the vector T'(k).
The model that is selected most often is considered to be
the best match: the image represents the model M; for
which k = arg max;, T'(k).

Figure 3 shows an example of a vector T'(k) in the form
of a histogram. Image 0 is correctly recognised. However,
other images have obtained almost equivalent scores.
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Fig. 3. Result of the voting algorithm: the number of votes are
displayed for each model image. Image 0 is recognised correctly.

B.2. Multi-dimensional indexing. Without indexing the
complexity of the voting algorithm is of the order of [ x N
where [ is the number of features in the query image and
N the total number of features in the data base. As N is
large (about 150,000 in our tests) efficient data structures
need to be used.

Search structures have been extensively studied. An
overview of all tree-like data structures that allow fast
and/or compact access to data is presented in [33]. The
data structure used here is not referenced in the previous
review ; it can be seen as a variant of k-d trees.

Here each dimension of the space is considered sequen-
tially. Access to a value in one dimension is made through
fixed size 1-dimensional buckets. Corresponding buckets
and their neighbours can be directly accessed. Accessing
neighbours is necessary to take into account uncertainty.
A Dbucket is extended in the next dimension if the num-
ber of values stored is above a threshold. Therefore the



data structure can be seen as a tree with a depth which
is at most the number of dimensions of the stored vectors.
The complexity of indexing is of the order of 1 (number of
features of the query image).

This indexing technique leads to a very efficient recog-
nition. The database contains 154030 points. The mean
retrieval time for our database containing 1020 objects is
less than 5 seconds on a Sparc 10 Station. Performance
could be further improved by parallelisation, as each vec-
tor is processed separately.

C. Semi-local constraints

A given feature might vote for several models. Having
a large number of models or many very similar ones raises
the probability that a feature will vote for several models.
Califano [34] suggested that using longer vectors decreases
this probability. Yet the use of higher order derivatives for
our invariants is not practical. Another way to decrease
the probability of false matches is to use global features.
However, global characteristics are sensitive to extraneous
features and partial visibility.

a database entry and
its p closest features

amatch

Fig. 4. Semi-local constraints: neighbours of the point have to match
and angles have to correspond. Note that not all neighbours have
to be matched correctly.

Our solution is the use of local shape configurations, as
in figure 4. Semi-local constraints have previously been
used in [35], [36]. For each feature (interest point) in the
database, the p closest features in the image are selected.
If we require that all p closest neighbours are matched cor-
rectly, we suppose that there is no miss-detection of points.
Therefore, we require that at least 50% of the neighbours
match. In order to increase the recognition rate further,
a geometric constraint is added. This constraint is based
on the angle between neighbour points. As we suppose
that the transformation can be locally approximated by a
similarity transformation, these angles have to be locally
consistent, for example the angles a; and as in figure 4.
An example using the geometrical coherence and the semi-
local constraints is displayed in figure 5. It gives the votes
if constraints are applied to the example in figure 3. The
score of the object to be recognised is now much more dis-
tinctive.

D. Multi-scale approach

The multi-scale approach can be very easily integrated
into the framework presented above. For a query image,
invariants are computed at several scales (see section III).

30
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Fig. 5. Result of applying semi-local constraints: the number of
votes are displayed for each model image. Semi-local constraints
decrease the probability of false votes. Image 0 is recognised
much more distinctively than in figure 3.

Invariants in the database are only stored for one scale.
Matching invariants computed at several scales to invari-
ants computed at one scale increases the possibility of
wrong matches and makes semi-local constraints even more
essential. These constraints implicitly include a scale con-
straint, as the invariants for a point and its neighbours
are calculated at the same scale. Hence, if a point and its
neighbours match, the scale constraint is fulfilled. Thus,
using these constraints, the multi-scale approach works ef-
ficiently as is demonstrated in the next section.

V. EXPERIMENTAL RESULTS

Experiments have been conducted for an image database
containing 1020 images. They have shown the robustness
of the method to image rotation, scale change, small view-
point variations, partial visibility and extraneous features.
The obtained recognition rate is above 99% for a variety of
test images taken under different conditions.

A. Content of the database

The database includes different kinds of images such as
200 paintings, 100 aerial images and 720 images of 3D
objects (see figure 6). 3D objects include the Columbia
database. These images are of a wide variety. However,
some of the painting images and some of the aerial im-
ages are very similar. This leads to ambiguities which the
recognition method is capable of dealing with.

In the case of a planar 2D object, an object is repre-
sented by one image in the database. This is also the case
for nearly planar objects as for aerial images. A 3D object
has to be represented by images taken from different view-
points. Images are stored in the database with 20 degrees
viewpoint changes.

B. Recognition results

In this section some examples illustrate the different con-
ditions under which the method can still operate correctly.
A systematic evaluation for a large number of test images
taken under different conditions is then presented. More
details are given in [25].

B.1. Some examples of correct recognition.  In the fol-
lowing three examples are displayed, one for each type of



Fig. 6. Some images of the database. The database contains more
1020 images.

image. For all of them, the image on the right is stored
in the database. It is correctly retrieved using any of the
images on the left. Figure 7 shows recognition of a painting
image in the case of image rotation and scale change. It
also shows that correct recognition is possible if only part

of an image is given.
B W

&

Fig. 7. The image on the right is correctly retrieved using any of the
images on the left. Images are rotated, scaled and only part of
the image is given.

In figure 8 an example of an aerial image is displayed. It
shows correct retrieval in the case of image rotation and if
part of an image is used. In the case of aerial images we
also have to deal with a change in viewpoint and extraneous
features. Notice that buildings appear differently because
viewing angles have changed and cars have moved.

Figure 9 shows recognition of a 3D object. The object
has been correctly recognised in the presence of rotation,
scale change, change in background and partial visibility.
In addition, there is a change of 10 degrees of viewpoint
position between the two observations. Notice that the
image of the object has not only been recognised correctly,
but that the closest stored view has also been retrieved.

B.2. Systematic evaluation of retrieval.  The method is
evaluated for different transformations — image rotation,

Fig. 8. The image on the right is correctly retrieved using any of the
images on the left. Images are seen from a different viewpoint
(courtesy of Istar).

Fig. 9. The image on the right is correctly retrieved using any of
the images on the left. The 3D object is in front of a complex
background and only partially visible.

scale change, viewpoint variations — as well as for partial
visibility.

Image rotation To test invariance to image rotation, im-
ages were taken by rotating the camera around its optical
axis. The recognition rate obtained is 100% for different
rotations equally distributed over a circle. This experiment
shows that the characterisation is completely invariant to
image rotation.

Scale change Experiments were conducted on zoomed
images. Using a multi-scale approach, the recognition rate
attains a score of 100% up to a scale change of 2. At
present, this factor seems to be the limit for our method.
However, this limit is not due to our invariant characteri-
sation but rather to the stability of the interest point de-
tector. The repeatability of this detector decreases rapidly
when the scale change is greater than 1.6.

Viewpoint variation Test images are taken at angles dif-
ferent from the images stored in the base. Each aerial im-
age has been taken from 4 different viewpoints. Viewpoint
number one is stored in the base. For images taken from
different viewpoints, the recognition rate is 99%. The only
image which is not recognised correctly is part of the har-
bour and contains only water on which no reliable interest
points can be identified.

For 3D objects, test images have been taken at 20 degrees
difference in viewing angle. The viewing angles of the test
images lie in between two images stored in the base. The
recognition rate is 99.86%. It is interesting to consider only
the Columbia database which serves as a benchmark for
object recognition. On this base a 100% recognition rate
has been obtained in [15] as well as in [17]. Experiments
show that our method attains the same recognition rate.

Partial visibility Parts of different size are extracted ran-
domly from painting images. The relative size varies be-
tween 10% and 100%. For parts of relative size greater
than or equal to 30%, the recognition rate is 100%. For



a relative size of 20%, a 95% rate is obtained ; and for a
relative size of 10%, a 90% rate. Considering the size of
our database, this can be explained by the fact that points
are very discriminating and thus only a few points are nec-
essary to recognise an image. It is thus possible to retrieve
an image even if only part of this image is given. However,
very small parts do not contain enough points, so the num-
ber of votes is limited. In this case, the robust algorithm
can not overcome the statistical uncertainty.

VI. CONCLUSION

This paper has shown that the differential greylevel in-
variants introduced by Kcenderink efficiently characterise
points. These invariants describe the image locally. As
automatically detected interest points are characteristics
of patterns, invariants calculated at interest points can be
used for indexing 2D greylevel patterns. A voting algo-
rithm and multi-dimensional indexing make image retrieval
possible. However, blindly voting on individual invariants
is not sufficient to guarantee the correctness of the answer
in database indexing. It is then crucial to introduce a
semi-local coherence between these identifications. This
increases the recognition rate. Experiments conducted on
a database containing 1020 images have shown very good
results. Even small parts of images can be recognised cor-
rectly. This is due to the fact that the proposed character-
isation is very discriminating.

Finally, different extensions are possible. The voting al-
gorithm can be improved by taking into account the statis-
tical distributions of the invariants; some of the invariants
are more discriminating than others. In addition, compu-
tation of a confidence value is then possible.

Using global consistency checking for local matches or a
global constraint such as the epipolar geometry is another
possible extension. Such additional constraints further in-
crease the recognition rate and make detection of several
objects possible.
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