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Abstract

This paper describes initial work on a family of projective reconstruction tech-
niques that extract projection matrices directly and linearly from matching
tensors estimated from image data. The simplest methods use fundamental
matrices and epipoles, alternative ones use trilinear tensors. All of the data
is treated uniformly, and there is no reliance on ‘privileged’ images or to-
kens. The approach is based on ‘joint image closure relations’ — bilinear
constraints between the projection matrices and their matching tensors, that
express the fact that the latter derive from the former. The performance of
the new techniques is quantified and compared with that of several existing
methods.
Keywords: Multi-image Structure, Projective Reconstruction, Matching Ten-
sors.

1 Introduction

Most existing stereo systems use two carefully calibrated cameras and attempt to recon-
struct the scene from a single pair of static images. Recently, it has become clear that the
redundancy offered by multiple images can significantly increase the quality and stability
of visual reconstructions, as well as extending their coverage to previously unseen parts of
the scene. Moreover, a great deal of useful information — in fact the complete 3D scene
geometry modulo a single overall projective transformation — can be recovered without
any camera calibration [3, 5, 10]. These factors are especially relevant to applications such
as geometric reconstruction for virtual reality or robot navigation, where many images are
needed to cover the scene and precise calibration is difficult owing to uncertain camera
motions, changes in internal parameters (focus, zooming) or the use of several cameras.

In response to these needs, there has recently been a significant amount of theoretical
work on the structure of multi-image projection and reconstruction [8, 7, 14, 13, 17, 1, 16,
6, 11, 12, 23, 20, 21, 2]. The problem turns out to have a surprisingly rich mathematical
structure, and several complimentary approaches exist. The field is developing rapidly and
there is no space for a complete survey here, so I will only mention a few isolated results.
The epipolar constraint (the geometry of stereo pairs) has been understood for quite a while
(e.g. c.f. [4]). Shashua [16] and Hartley [8] developed the theory of the trivalent tensor
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(three view constraint). Faugeras and Mourrain [6] and I [21] systematically studied the
complete family of multi-image constraints (only one was unknown: a quadrilinear one).
As a means to this, I developed the ‘joint image’ picture and a tensorial approach to multi-
image projection: these nicely unify the geometric and algebraic aspects of the subject.
In retrospect, the joint image picture is closely related to Sparr’s ‘affine shape’ approach
[17, 11]. For this paper, all we will need are fundamental matrices, trivalent tensors, and
a some basic joint image notions.

Our research group MOVI has recently been developing several families of projec-
tive reconstruction methods based on the joint image approach. The first set of methods
[18, 22] used ‘projective depth recovery’ equations to recover a coherent set of projective
scale factors for the image points. This gives an implicit reconstruction, which can be con-
creteized by factorizing the matrix of image points into projection and structure matrices
by a process analogous to the Tomasi-Kanade-Poelman factorization for affine structure
[19, 15]. Factorization-based methods give an implicit least squares fit to all of the im-
age data. They are simple and extremely stable, but have the serious disadvantage that
they require each point to be visible in every image (modulo ‘hallucination’ [19]). This
is practically unrealistic when there are many images covering a wide range of viewing
positions.

This paper represents an attempt to overcome this problem. It describes a new fam-
ily of reconstruction methods that recover projection matrices directly and linearly from
estimated matching tensors, after which the scene structure can be recovered linearly by
back-projecting the image measurements. The projections are estimated using ‘joint im-
age closure relations’ — bilinear constraints between projections and their matching ten-
sors, analogous to the depth recovery equations used for projective factorization, but with
projection matrices replacing image points.

The closure based reconstruction methods treat all of the images uniformly, so they
have the potential to be significantly more stable than the commonly used approach of ini-
tially reconstructing from two images, and then reprojecting into the other ones to estimate
the remaining projection matrices. On the other hand, because they only use the image data
indirectly via the matching tensors, they are not as stable as factorization based methods.
The suggestion is that they will prove good replacements for the ‘stereo + reprojection’
methods — whose main application is probably to initialize more refined nonlinear least
squares iterations — but that when tokens are visible in every image factorization will still
be the best linear method.

The rest of the paper outlines the theory of the closure relations, describes the resulting
reconstruction algorithms and their implementation, reports on a comparative experimen-
tal study of their performance, and ends with a short discussion.

2 Theory

This section sketches the theoretical background of multi-image reconstruction, and dis-
cusses the ‘joint image closure relations’ on which the new reconstruction methods are
based. The theory is not difficult, but when more than two images are involved the equa-
tions are hard to express without using tensorial notation. We will only use this for a few
identities involving the trivalent tensor, so you should be able to follow the paper without
it. An appendix provides an extremely brief sketch — see [21, 20] for more details.
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We will work in homogeneous coordinates. Consider the image projection equations�ixi = PiX. The 3 � 4 homogeneous projection matrices Pi, i = 1; : : : ;m, project
a homogeneous world point X to its m homogeneous images xi, up to unknown scale
factors �i. A useful way to view this process is to stack the projections into a big 3m� 4
‘joint projection matrix’ P and treat the rescaled image points as a 3m-component ‘joint
image space’ vectorP � 0B@ P1

...Pm 1CA PX = 0B@ �1x1
...�mxm 1CA

The joint projection can be viewed as a projective injection mapping the 3D world to a
3D projective subspace of the joint image space called the ‘joint image’ [21, 20]. The
joint image is a faithful projective copy of the world expressed entirely in image coordi-
nates. Projection from it into the individual images is a trivial forgetting of coordinates and
scale factors. Projective reconstruction reduces to recovering the missing scales (‘projec-
tive depths’), and is a canonical process up to the single overall choice of scales for the
projectionsPi. The four columns of the joint projection matrix form a spanning basis for
the joint image. The coordinates of a rescaled joint image point with respect to this basis
are also the reconstructed point’s homogeneous world coordinates. But neither the basis
nor the world coordinates are canonical: only the geometric position of the point in the
joint image is recoverable from the image data.

The above joint image geometry can be converted directly to algebra. The set of all 4�4 minors (submatrix determinants) of the joint projection encode the location of the joint
image — and hence the projective camera geometry — in a well-defined algebraic sense:
they are its ‘Grassmann-Plücker coordinates’. In fact, the minors turn out to be just the
components of the matching tensors between the images. These generate the multilinear
constraints that tokens in different images must satisfy if they are to be the projections
of a single world token, and they can also be used to transfer tokens between images, for
comparison or image synthesis. There are four basic types of matching tensors: epipoles,
fundamental matrices, trivalent tensors and quadrivalent tensors. These are formed
from minors with respectively 3+1, 2+2, 2+1+1, and 1+1+1+1 rows from 2, 2, 3 and 4
images [16, 6, 21].

The ‘joint image closure relations’ that underlie the new reconstruction methods are
bilinear constraints between projection matrices and the corresponding matching tensors.
They basically guarantee that the projections are coherent with the joint image subspace
defined by the matching tensors. Alternatively, they are an algebraic expression of the
four-dimensionality of the joint image. The simplest way to derive them is to append any
column of the 3m�4 joint projection matrix to the existing matrix, to form a rank deficient3m � 5 matrix. The 5 � 5 minors of this matrix vanish. Choose a minor and expand it
by cofactors in the appended column: the coefficients are 4 � 4 minors of the original
joint projection matrix, or equivalently matching tensor components. The result is a 5 term
bilinear tensorial relation between the entries of one column of the joint projection matrix
and the corresponding matching tensors. Closer examination reveals five basic types of
relation. We will only use the simplest two here:F21 P1 + [e12]�P2 = 0 F-e closure (1)GB2A1C3 PB2a + eA12 PC3a �PA1a eC32 = 0 e-G-e closure (2)
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These relations provide constraints between matching tensors (which can be estimated
from the image data) and columns of the joint projection matrix. Equation (1) contains
3 constraints of which 2 are linearly independent, while (2) contains 3�3 = 9 constraints
of which 3 are linearly independent. By accumulating enough of these constraints, we can
solve linearly for the four joint projection columns, up to an overall 4� 4 linear transfor-
mation which amounts to a homography of the reconstructed world space. In other words,
the constraints give the position of joint image — the 4D space spanned by the columns of
the joint projection. Given the projections, the scene reconstruction can be completed by
linearly back-projecting image structure into the world space, which amounts to solving
the linear equations xip ^ (PiXp) = 0 (3)

for the world pointsXp in terms of their images xip and the projection matrices Pi.
A large number of closure constraints is available — relating the projections from any

selection of 2-5 images — but these are highly redundant and only a small sample of them
need be applied in practice. This paper considers only the simplest possible methods, based
on minimal sets of constraints for the first two types of closure relation.

Note that the ‘projective depth recovery’ equations used for projective factorization
[18, 22, 20] follow directly from the closure relations. Attaching a world point to each
projection gives bilinear relations between matching tensors and correctly scaled image
points: F21 (�1x1) + e12 ^ (�2x2) = 0 (4)GB2A1C3 (�2xB2)� (�1xA1) eC32 + eA12 (�3xC3) = 0 (5)

Given the matching tensors and image points, the correct scale factors (projective depths)
can be recovered using these relations.

Now consider theF-e closure relations. In matrix form the complete set of constraints
betweenPi and Pj can be written� F>ij [eij ]�[eji]� Fij � � PiPj � = 0
However only two of these six constraint equations are linearly independent, so there is no
need to include the second set of three equations. To fully constrain the projections, each
image (except the first pair) must be related to two previous ones. Once this is done them image constraint matrix generically has rank 3m � 4: its four dimensional null space
is exactly the joint image (the 4D space spanned by the projection columns). Any basis
for this null space provides four 3m-component column vectors that can be regarded as
the columns of a reconstructed joint projection matrix. The freedom in the choice of basis
corresponds to a 4 � 4 nonsingular mixing of the four columns. This just amounts to a
projective transformation of the reconstructed world coordinates.

Numerically, there are several ways to calculate the null space. The experiments re-
ported here find the singular value decomposition of the coefficient matrix and take the
eigenvectors of the smallest four singular values. Forming normal equations and taking
the smallest four eigenvectors gives similar results. These methods are very stable and can
easily handle redundant constraints, but they are rather slow when there are many images.
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If a minimal set of constraints is used (as here), the projections can also be evaluated recur-
sively starting from two projections obtained by (say) SVD. This is essentially equivalent
to the full SVD-based method, but much faster.

As an alternative to fundamental matrix based reconstruction, the e-G-e closure re-
lation gives a trivalent tensor based reconstruction method. Each instance of this relation
gives nine linear constraints relating three image projections. Three of these are linearly
independent, so it is enough to connect each image to two previous ones via a single triva-
lent tensor. Once the constraint matrix has been built, null space estimation is done just as
for the fundamental matrix case.

The trivalent tensor based method is slower than the fundamental matrix based one, but
significantly more stable. In particular, for a camera moving in a straight line, the funda-
mental matrices and epipoles of different images coincide. This is a well-known singular
case for epipolar line based token transfer, and the fundamental matrix based reconstruc-
tion method fails here too. In contrast, trivalent tensor based transfer and reconstruction
are well behaved, as is reconstruction by fundamental matrix based factorization. Basi-
cally, some sort of information about position along epipolar lines is needed to stabilize
the reconstruction: this can be provided by trivalent transfer, or by anchoring onto explicit
image correspondences.

The closure based reconstruction methods implemented here connect each image to
exactly two previous ones in a chain. The following types of chain have been considered
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The serial F-e chain connects each image to the two immediately preceding ones, while
the parallelF-e chain connects each image to the first two (and hence uses images 1 and 2
as ‘key frames’). The serial e-G-e chain connects each image to the two preceding ones
using a trivalent tensor and two epipoles. The trivalent tensor used is the one based in (with
its covariant index in) the middle image of the triplet.

Finally, I have glossed over an important issue. The matching tensors have ‘natural’
scalings resulting from their definition as minors of projection matrices, but these can not
be recovered when the tensors are estimated from image data. The closure relations depend
critically on having a coherent relative scaling for the matching tensors, so at least part of
the missing scale information must be recovered.

This is not conceptually difficult, but the implementation details are a little messy. Ba-
sically there is one scale consistency constraint for each closed loop in the above chains.
There are two possible lines of attack: (i) use the bilinear Grassmann relations between the
matching tensors [20]; or (ii) enforce consistent projective depths using image measure-
ments. I have preferred the second approach. It is simpler, and on general grounds it ought
to be more stable as it is lower order, closer to the image data, and has built in redundancy.
The basic idea is to use the depth recovery equations (4) or (5) to propagate the projec-
tive depths of image points around each closed loop, and then to adjust the scale factor of
(one of) the matching tensors in the loop so that the closed-loop gain is unity (as it must
be for self-consistency). The relative scales of each fundamental matrix and its epipoles
must also be internally self-consistent, but this can be enforced by simple normalizationjeij jjejij = 1, jFij j2 = 2 (with a suitable choice of signs).
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3 Implementation

Now we summarize the reconstruction algorithms, and discuss a few important implemen-
tation details. The F-e closure based algorithm has the following steps:
0) Extract and match features between images.
1) Standardize the image coordinates (see below).
2) Estimate fundamental matrices and epipoles connecting each image to at least two pre-
vious ones.
3) Correct the scales of the fundamental matrices and epipoles using (4), as discussed in
section 2.
4) Build the matrix of equations (1) and use SVD to find its 4D null space.
5) Extract the projection matrices from the null space column vectors.
6) Back-project and solve for 3D structure using (3).
7) Unstandardize the projection matrices (see below).

The trivalent tensor based algorithm follows the same pattern, except that: (i) both
point and line features can be used to estimate the trivalent tensors; (ii) equation 5 is used
to correct the trivalent scaling, and equation (2) to build the constraint matrix.

The current implementation uses linear methods to estimate fundamental matrices [9]
and trivalent tensors. With properly standardized coordinates these turn out to be very sta-
ble and surprisingly accurate. Using a nonlinear least squares iteration to refine the esti-
mates marginally improves the stability of (for example) the long serial chains of the F-e
method, but not enough to change the basic conclusions. The linear method forF includes
a final 3� 3 SVD to enforce det(F) = 0 and calculate the epipoles. The epipoles for thee-G-emethod are found fromGB2A1C3 and the image data by using the e-G-e depth re-
covery relation 5, taking the vector product with xA1 to kill one of the three terms, and
factorizing. (The epipoles can also be found bilinearly from G alone, but for maximum
stability I prefer to use a linear method based on the image data).

3.1 Image Standardization

To get accurate results from the above reconstruction algorithms, it is essential to work
in a well-adapted coordinate system. This is standard practice for numerical methods, but
it is particularly important when there are implicit least-squares trade-offs between redun-
dant constraints, as here. If some components of the input vectors are typically much larger
than others — for example when homogeneous pixel coordinates (x; y; z) � (102; 102; 1)
are used — some constraints have a much higher implicit weight than others and this sig-
nificantly distorts the estimated solution. Hartley has underlined the importance of this
for fundamental matrix estimation [9], and it is equally true for reconstruction. Figure 1
shows the effect of standardization: pixel coordinates (scale � 256) give reconstructions
hundreds of times worse than well standardized ones (scale � 1). The error also rises
rapidly at scales below 10�1, owing to (32 bit) floating point truncation error.

There are many possible standardization schemes, but in practice it makes little dif-
ference which is used. Here, the homogeneous pixel coordinates [0; 512]� [0; 512]� [1]
are scaled uniformly into the unit square [�1; 1] � [�1; 1] � [1], and then the resulting
3-component vectors are normalized to norm 1. This is easy to apply, independent of the
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Figure 1: Mean reprojection and reconstruction error vs. image coordinate standardization.

image, and works equally well for visible points, line vectors and points (e.g. epipoles) at
infinity.

4 Experiments

To quantify the performance of the algorithms, I have run a series of simulations using
synthetic data. The algorithms have also been run successfully on hand-matched points
extracted from real images. An implementation on ‘live’ images is in progress.

The simulations reported here are based on trial scenes consisting of random 3D points
in the unit cube. These are viewed by identical perspective cameras spaced evenly along a90� arc of radius 2, looking directly at the centre of the scene. (These are ideal conditions
for accurate reconstruction, but many other configurations have also been tested, including
infinitesimal viewing angles and distant scenes with negligible perspective). When cam-
eras are added, their spacing is decreased so that the total range of viewing angles remains
the same. To model uncertainty, the positions of the projected image points are perturbed
by uniform random noise. Mean-square (and median and maximum) 2D reprojection and
3D reconstruction errors are accumulated over 50 trials. The 3D error is the residual after
projective alignment of the reconstruction with the scene. Unless otherwise stated, default
values of 10 views, 50 points and �1 pixel noise are used.

The new techniques under test are the serial and parallel chainF-e closure, and the se-
rial chain e-G-e closure based methods. For comparison, several existing techniques are
also shown. The ‘stereo + reprojection’ method simply reconstructs the scene from the
first two images, and then reprojects to estimate the projection matrices for the remain-
ing images. This can be very inaccurate, but it is often used in the literature to initial-
ize more refined reconstruction techniques (e.g. c.f. [14, 7]). The other techniques shown
are SVD-based projective factorization [18, 22] and a Levenberg-Marquardt-like nonlin-
ear least squares algorithm initialized from this.

Figure 2 summarizes the results. All of the methods scale linearly with noise level
and improve as more points are added. The simple ‘stereo + reprojection’ method rapidly
worsens as images are added, while the others initially improve. But only the factorization-
based methods continue to perform well for 50 or more images. The serial chain F-e
method can only handle about 10 images, the parallel chain one 20, and the serial chain
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Figure 2: Mean reprojection and reconstruction error vs. noise, number of points and number of
views.

trivalent method about 30-40. The trivalent method is significantly better than the fun-
damental matrix ones, and parallel methods are consistently more stable than serial ones.
This suggests that the instabilities arising from solving long chains of equations are far
greater than any biases introduced by working from a few ‘key’ images.

The factorization method is notable for being linear yet close to optimal. It is based onF-e depth recovery (4) — essentially the same equations as theF-e closure based method,
but applied directly to the image points rather than to the projections. Clearly, the direct
use of image data gives a significant improvement in accuracy. Unfortunately, the factor-
ization method is practically rather limited as it requires every token to be visible in every
image: this is why the closure-based methods were developed.
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TheF-e closure based techniques fail when all of the camera centres lie on a line, while
the e-G-e closure method seems to be stable whenever the camera centres are distinct.
However, all of the techniques (but especially the fundamental matrix based ones) give
very poor results for points near the axis of fronto-parallel motion, since there is no stereo
baseline on which to base reconstruction there.

5 Discussion

The closure relation based projective reconstruction techniques work reasonably well in
practice. They are more accurate than the common ‘reconstruct from 2 images and repro-
ject for the other projections’ paradigm, but can not compete with projective factorization
when that is feasible. However they do not require features to be tracked over all the im-
ages. They do not need to single out ‘privileged’ features or images. However, short chains
of closure relations turn out to be significantly more stable than long ones, so in practice
it is probably sensible to relate all of the images to a few ‘key’ ones. Trivalent techniques
are significantly more stable than fundamental matrix based ones, but somewhat slower.

Future investigation will include the implementation of the methods on ‘live’ image
data with fast recursive solutions of the reconstruction equations, and study the stabilizing
effect of including redundant constraints.

Appendix: Tensors

Tensors are just multidimensional arrays of components, direct analogues of vectors (1D
arrays) and matrices (2D arrays). For multi-index objects it is easiest to write out the in-
dices explicitly, rather than eliding them as in the usual matrix-vector notation. Indices
can belong to different spaces: world-space indices are denoted a; b; c : : : and image i in-
dices Ai; Bi; Ci : : : A basic operation is ‘contraction’ — summing a corresponding pair
of indices over all their values. Contractions are so common that we omit the summa-
tion sign: any repeated indices in a term are implicitly summed over. In projective space
each index comes in two varieties — covariant (subscript) and contravariant (superscript).
These have opposite transformation laws under changes of coordinates, and only contrac-
tions over a covariant-contravariant pair are meaningful (coordinate invariant). World and
image points have contravariant indices — xa and xAi . Image projections are 3� 4 ma-
trices PAia . The epipole of camera 1 in image 2 is denoted eA21 . The fundamental matrix
between images 1 and 2 is FA1B2 , and the trivalent tensor between images 2 and 3 based
in image 1 is GA1B2C3 .

References

[1] S. Carlsson. Multiple image invariance using the double algebra. In J. Mundy, A. Zissermann,
and D. Forsyth, editors, Applications of Invariance in Computer Vision, volume 825 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[2] S. Carlsson. Duality of reconstruction and positioning from projective views. In P. Anandan,
editor, IEEE Workshop on Representation of Visual Scenes. IEEE Press, 1995.

[3] O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In
G. Sandini, editor, European Conf. Computer Vision, Santa Margherita Ligure, Italy, May
1992. Springer-Verlag.

9



[4] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press, 1993.

[5] O. Faugeras, Q.-T. Luong, and S. J. Maybank. Camera self calibration: Theory and experi-
ments. In G. Sandini, editor, European Conf. Computer Vision, Santa Margherita Ligure, Italy,
May 1992. Springer-Verlag.

[6] O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line correspon-
dences between n images. In E. Grimson, editor, IEEE Int. Conf. Computer Vision, pages
951–6, Cambridge, MA, June 1995.

[7] R. Hartley. Euclidean reconstruction from multiple views. In 2nd Europe-U.S. Workshop on
Invariance, pages 237–56, Ponta Delgada, Azores, October 1993.

[8] R. Hartley. Lines and points in three views – an integrated approach. In Image Understanding
Workshop, Monterey, California, November 1994.

[9] R. Hartley. In defence of the 8-point algorithm. In E. Grimson, editor, IEEE Int. Conf. Com-
puter Vision, pages 1064–70, Cambridge, MA, June 1995.

[10] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In IEEE Conf. Com-
puter Vision & Pattern Recognition, pages 761–4, Urbana-Champaign, Illinois, 1992.

[11] A. Heyden. Reconstruction from image sequences by means of relative depths. In E. Grimson,
editor, IEEE Int. Conf. Computer Vision, pages 1058–63, Cambridge, MA, June 1995.
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