A Fully Projective Error Model for Visual Reconstruction

Bill Triggs 1
1 MOVI - Modeling, localization, recognition and interpretation in computer vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Measurement uncertainty is a recurrent concern in visual reconstruction. Image formation and 3D structure recovery are essentially projective processes that do not quite fit into the classical framework of affine least squares, so intrinsically projective error models must be developed. This paper describes initial theoretical work on a fully projective generalization of affine least squares. The result is simple and projectively natural and works for a wide variety of projective objects (points, lines, hyperplanes, and so on). The affine theory is contained as a special case, and there is also a canonical probabilistic interpretation along the lines of the classical leastsquares/ Gaussian/approximate log-likelihood connection. Standard linear algebra often suffices for practical calculations.
Type de document :
Autre publication
Submitted to ICCV'95 Workshop on Representations of Visual Scenes. 1995
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548381
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 08:44:08
Dernière modification le : jeudi 11 janvier 2018 - 06:20:04
Document(s) archivé(s) le : lundi 21 mars 2011 - 02:59:42

Fichiers

Triggs-scenerep95.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00548381, version 1

Collections

IMAG | INRIA | UGA

Citation

Bill Triggs. A Fully Projective Error Model for Visual Reconstruction. Submitted to ICCV'95 Workshop on Representations of Visual Scenes. 1995. 〈inria-00548381〉

Partager

Métriques

Consultations de la notice

94

Téléchargements de fichiers

110