Understanding Positioning from Multiple Images

Roger Mohr 1, 2 Boubakeur Boufama 2 Pascal Brand 2
1 MOVI - Modeling, localization, recognition and interpretation in computer vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : It is possible to recover the three-dimensional structure of a scene using only correspondences between images taken with uncalibrated cameras (faugeras 1992). The reconstruction obtained this way is only defined up to a projective transformation of the 3D space. However, this kind of structure allows some spatial reasoning such as finding a path. In order to perform more specific reasoning, or to perform work with a robot moving in Euclidean space, Euclidean or affine constraints have to be added to the camera observations. Such constraints arise from the knowledge of the scene: location of points, geometrical constraints on lines, etc. First, this paper presents a reconstruction method for the scene, then it discusses how the framework of projective geometry allows symbolic or numerical information about positions to be derived, and how knowledge about the scene can be used for computing symbolic or numerical relationships. Implementation issues and experimental results are discussed.
Type de document :
Article dans une revue
Artificial Intelligence, Elsevier, 1995, 78 (1-2), pp.213--238. 〈10.1016/0004-3702(95)00035-6〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00548397
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 08:44:22
Dernière modification le : jeudi 11 janvier 2018 - 06:20:04

Lien texte intégral

Identifiants

Collections

IMAG | INRIA | UGA

Citation

Roger Mohr, Boubakeur Boufama, Pascal Brand. Understanding Positioning from Multiple Images. Artificial Intelligence, Elsevier, 1995, 78 (1-2), pp.213--238. 〈10.1016/0004-3702(95)00035-6〉. 〈inria-00548397〉

Partager

Métriques

Consultations de la notice

93