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Abstract

The last few years have seen a burst of activity in

motion planning for vehicles with rolling constraints

such as cars and trucks with trailers. Our under-

standing of such nonholonomic constraints has in-

creased significantly and it is now possible to quickly

plan complex parking and trailer-backing manoeuvres

for these practically important systems. However the

techniques used are highly mathematical and have not

been easily accessible to a broad robotics-oriented audi-

ence. This paper presents an intuitive, geometrical in-

troduction to the main mathematical definitions and

theorems and summarizes some of the key practical

approaches to nonholonomic vehicle planning.
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1 Introduction

There has recently been significant progress in

motion planning for car-like and articulated mo-

bile robots. Such vehicles have many potential

applications, but planning for them is difficult be-

cause they are subject to rolling constraints that

limit the possible directions of motion: they can

not move sideways directly, but must move for-

wards or backwards in order to turn. Hence, com-

plicated manoeuvres may be required to move

from one configuration to another nearby one,

even in the absence of obstacles. Rudder steered
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vehicles like ships and aeroplanes are subject to

similar constraints. Such constraints, that limit

the possible directions of motion at a point but

can be ‘undone’ by local manoeuvring, are called

nonholonomic.

During the last 5 years, several workers have

combined conventional robot planning techniques

with mathematical results on nonholonomic con-

trol obtained over the last few decades, to pro-

duce effective planners for nonholonomic vehicles

[29]. These are likely to see practical application

soon, in systems for AGV parking and docking and

controllers for backing articulated vehicles. They

are also one step along the road from ‘simple’ ‘pi-

ano movers’ or ‘sliding polygon’ algorithms to full

kinodynamic planners capable of dealing optim-

ally with complex combinations of kinematic, dy-

namic and scheduling constraints.

There are several other applications of non-

holonomy to robotics, which have been very im-

portant in the development of the theory. Murray

and Sastry [31] have developed an elegant theory

of manipulation with rolling constraints and ap-

plied it to multifingered grasping. Nonholonomic

algebra also applies to the angular momentum

manipulations used to control the orientation of

freely falling bodies such as space robots and fall-

ing cats [15, 34].

In a broader context, the notion of nonholonomy

is deeply entwined with the mathematics of non-

commutative symmetries such as the 3D rotation

group and the ‘gauge’ symmetries of general re-

lativity and elementary particle theory. In fact

a physical theory is ‘gauged’ precisely by allow-

ing its local nonholonomy (‘gauge curvature’) to

become a non-trivial, dynamic quantity. Much of

the strong development of the theory is a direct

consequence of these close ties with fundamental

mathematics and physics.

This paper presents a simple, geometric, tu-

torial introduction to some of the key defini-

tions and theorems of nonholonomy, followed by

short descriptions of several recent nonholonomic

vehicle planners. Most technical details and

mathematical niceties will be ignored, although

they are often indispensable to a deeper under-

standing of the subject. The book by Li and Canny

[29] is a good starting place for further reading.

o
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Figure 1: System dynamics is described by a vec-

tor field in state space.

2 Dynamical Systems

2.1 State Space and Vector Fields

This section summarizes some standard dynam-

ical systems terminology. We will work in a state

space X that specifies the vehicle configuration

and enough velocities, accelerations, and so forth

to give first order dynamical equations:_x = f (x)
for the state-trajectory x � x(t) of the system.

When dynamical quantities can be ignored (for

example if we are planning feasible paths rather

than optimal trajectories), the state space will of-

ten be configuration space. Otherwise it will usu-

ally contain velocity as well as configuration di-

mensions.

Robot state spaces are typically differentiable

manifolds with boundaries, but for most of our

purposes they can be pictured as pieces of Rn for

some n. Differentiable manifolds have tangent

spaces: at each point x there is a linear space

TxX of tangent vectors or possible directions of

motion in the manifold. A dynamical function

f specifies a vector field on state space, i.e. a

smooth choice of a tangent vector f (x) at each

point of X. The dynamical law _x = f (x) fixes the

state velocity _x to be the vector f (x) at each point.

2



A vector field can be pictured as a field of arrows,

one attached to each point of the manifold (fig. 1).

Any vector field f on X can be integrated to

give a flow x(t; x0) : R � X ! X. For each x0 in

X this specifies the trajectory x(t; x0) through x0

satisfying: _x(t; x0) = f (x(t; x0))
x(0; x0) = x0

The existence theorems for first order ordinary

differential equations (ODE’s) show that flows al-

ways exist locally for smooth enough f .

Vector fields can be viewed as operators that

generate infinitesimal displacements, in which

case integration formally corresponds to oper-

ator exponentiation (defined by an operator power

series as for matrix exponentiation: etf �P1n=0
(tf )nn! ). Two realisations of this idea are im-

portant for a vector field f on a space X:

1. f generates infinitesimal mappings x ! x +tf of X onto itself (t � 1). The exponentialetf : X ! X represents the operation of moving

along (the integral curves of) f for time t:etf � x0 = x(t; x0)
d

dtetf � x = f (etf � x)
We will often use this exponential notation to

denote the application of a dynamical law to

the system for a finite interval of time.

2. f generates infinitesimal translations of the

smooth functions on X by �(x) ! �(x + tf ) ��(x)+ tf � d
dx
�(x). Then etf � etf � d

dx pulls back� from x(t; x0) to x0: (etf � �)(x0) = �(x(t; x0)).
2.2 Control Laws

Now assume the system has some controls u

(steering, accelerator,: : : ) which alter the dynam-

ics: _x = f (x;u)
Each setting of the controls gives a different vec-

tor field or dynamical law f (�;u). We can ‘drive’

the system to different regions of state space by

manipulating u. For example a feedback con-

trol law u = u(t; x) tells the vehicle controller

how to respond at each time at each point of

state space. Such laws generate an implicit closed

loop dynamics _x = ~f (t; x), and may be chosen to

achieve some given task such as path following or

parking.

Sometimes, controls can be defined so that the

system is linear in u:_x = f0(x) +Xi fi(x)ui
In fact, all of the systems we will consider can be

made control-linear and drift free f0 � 0. The

fi are called control vector fields. For a linear

system the possible directions of motion at a point

are linear combinations of the control fields, so

the state velocity is implicitly constrained to lie

in Spanffig.
Even if the system is not linear, by rapidly al-

ternating between several different control vec-

tors we can effectively apply any convex linear

combination of them, so there is still a kind of

residual linearity in u. In fact it turns out that

many aspects of non-linear control are well cap-

tured by the linear theory [38].

3 Types of Constraint

Several types of constraint are important for

vehicles. Planners that consider a wider range

of constraints can usually produce better plans,

but there is often a high cost in computational

and code complexity.

Configuration constraints restrict the pos-

sible static configurations of the vehicle by delim-

iting forbidden regions of state or configuration

space called configuration space obstacles

(CSO’s). The main types are workspace

obstacles (physical objects the vehicle could col-

lide with) and joint limits (eg bounds on steering

lock or possible tractor-trailer angles).

Dynamical constraints restrict the values of

differential quantities such as velocity, accelera-

tion and path curvature. If the vehicle state con-

tains the relevant velocity, : : : , components they

translate into forbidden regions of state space.

Otherwise they limit the allowable state space ve-

locities and control laws. Dynamical bounds

are inequalities, for example on the maximum

permissible speed or path curvature. Differen-

tial constraints are equalities which restrict the

velocity to a submanifold of the possible state

space directions, for example railway tracks and

rolling constraints. The main classes of
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Figure 2: Some examples of holonomic and nonholonomic systems.
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differential constraints are holonomic or integ-

rable and nonholonomic or nonintegrable con-

straints.

Integral constraints do not translate dir-

ectly into local state space quantities, but limit

the values of integrals such as execution time

and resource consumption over an entire task.

Scheduling constraints are particularly signi-

ficant, especially when there are interactions such

as moving objects in the environment that the

vehicle must avoid.

Optimal plannersminimize the value of some

integral cost function subject to combinations of

the above constraints, while heuristic planners

‘merely’ produce some constraint-satisfying plan.

4 Some Simple Examples

Figure 2 shows some simple examples of holo-

nomic and nonholonomic vehicles. Note that all of

them can be expressed as control-linear drift-free

systems, so that their possible motions are linear

combinations of several control vector fields (the

columns of the matrices).

5 Small Manoeuvres and Lie

Brackets

How can we characterize the effects of small man-

oeuvres?

Consider a car trying to parallel park. It can

not move sideways directly, but a small local man-

oeuvre can produce the required sideways motion

(fig. 3). Move straight forwards for a distances, turn outwards for a distance t with curvaturec (turn radius 1=c), reverse straight backwards

for s, and reverse and turn for t. By elementary

geometry the result is a second order sideways

displacement c s t+O(s2t; st2).
This is an example of a general scenario. Sup-

pose we have a system with at least two distinct

‘forward’ control settings and the corresponding

‘reverses’, giving dynamical laws or state space

vector fields f , �f , g, �g, : : : . Now apply a ‘closed

sequence of infinitesimal controls’, i.e. a sequence

of controls, each applied for an infinitesimal time,

which is balanced in the sense that there is ex-

actly the same amount of f as �f , g as �g, and so

on. For example, e�tg �e�sf �etg �esf is the simplest

non-trivial closed sequence (fig. 4). Although this

c s t  +  . . .

-c t 1 / c

c t
1 / c

t

-s

-t

s

Figure 3: Backwards and forwards motions can

produce a sideways displacement that parallel

parks a car.

is a ‘closed path in control space’ in the sense that

the total integrated control signal is zero, it does

not in general produce a closed path in state space.

A careful calculation shows that the residual is a

second order motion:e�tg � e�sf � etg � esf = est[f ;g]+���
where [f ;g]a �Pb(f b d

dxb )ga � (gb d
dxb )f a , ie:[f ;g] � (f � r)g� (g � r)f

Given any two vector fields f and g, the quantity[f ;g] is called the Lie Bracket1 of f and g. It

is a geometric (coordinate system independent),

skew symmetric, bilinear, differential product on

the space of all vector fields, which tells how one

vector field changes as you move along the other

one. [f ;g] = �[g; f ] skew symmetry[f ; sg + th] = s[f ;g] + t[f ;h] linearity[f ; [g;h]]+ [g; [h; f ]] + [h; [f ;g]] = 0 Jacobi identityesf � etg = esf+tg� 1
2
st[f ;g]+ ���e�tg � e�sf � etg � esf = est[f ;g]+ ���

Campbell-Hausdorff-Baker-Dynkin identities

1After the great Norwegian mathematician Sophus Lie

(pronounced ‘lee’) 1842-99, the father of the theory of con-

tinuous symmetry groups.
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Figure 4: ‘Closed’ controls can produce a net dis-

placement in state space.

Returning to our manoeuvring car example, we

see that the Lie bracket of the two control vector

fields is:2640B@ cos �
sin �c 1CA ;0B@ cos �

sin �
0

1CA375= �
cos � � d

dx + sin � � d
dy + c � d

d��0B@ cos �
sin �

0

1CA� �cos � � d
dx + sin � � d

dy + 0 � d
d��0B@ cos �

sin �c 1CA= c �0B@ � sin �
cos �

0

1CA
So again we find that there is a sideways displace-

ment by c s t+O(st2; s2t).
6 Integrability and Non-

holonomy

Suppose we have a differential constraint restrict-

ing the allowed state velocities to a linear sub-

space of the possible tangent directions. When

are there small manoeuvres which ‘undo’ this con-

straint, and in which directions can we move?

6.1 The Frobenius Theorem

The idea of a linear differential constraint can be

formalized as follows:

A k-plane distribution2 � on a manifold X is a

smoothly varying choice of a k dimensional linear

subspace �x of the tangent space at each x in X.

A trajectory or vector field f is said to be in �
whenever f (x) is in �x at each point.

For our systems �x will be the span of the con-

trol vector fields at x (i.e., the possible motion dir-

ections at x). In fact, any k vector fields or n � k
linear constraint equations define a k-plane dis-

tribution, so long as they are linearly independent

at each point. However distributions are geomet-

ric objects that may exist without reference to any

particular choice of vector fields or constraints.

The key theorem for distributions is the

Frobenius theorem3:

The constraint � can be ‘integrated’ so that X

is filled (‘foliated’) by an n � k dimensional fam-

ily of k dimensional submanifolds with tangent

planes in � if and only if � is closed under the Lie

bracket (i.e., for all f ;g in �, [f ;g] is in �). The

idea is that locally we can try to join up the tan-

gent planes �x into pieces of submanifold, but the

pieces will fail to ‘mesh’ if small manoeuvres pro-

duce new displacements that lie outside �x, since

going around an infinitesimal loop would allow us

to move out of the surface. So the obstruction to

forming a submanifold is precisely the extent to

which [�;�] is not contained in �.

Notes:

1. The Frobenius theorem is always true for 1

dimensional (line) distributions, which are es-

sentially ODE’s without a choice of time scal-

ing.

2. For practical calculations it suffices to test for

the closure of � on any k independent vector

fields in �: check whether [fi; fj](x) is express-

ible as
Pl clij(x)fl(x) for some scalar functionsclij and all i; j = 1; : : : ; k.

3. The Lie bracket can also be used to tell whether

a set of independent vector fields f1; : : : ; fk
closed under [ ; ] define coordinate systems for

their submanifolds. Locally, by moving �1

along f1 then �2 along f2 then : : : then �k along

fk we can get to any nearby point of the sub-

manifold, so we might try to use (�1; : : : ; �k)
as local coordinates. But we would usually get

2This has nothing to do with functional distributions such

as the Dirac �-function.
3A reformulation of a theorem by the German group the-

orist Georg Frobenius, 1849-1917.
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Figure 5: Holonomic constraints mesh together

into integral submanifolds that the system can

not leave.

different �’s if we followed the f ’s in a differ-

ent order. It turns out that the integral curves

‘mesh’ to form a coordinate system if and only

if [fi; fj] � 0 for all i; j.

4. There is a very nice dual form of the Frobenius

theorem for differential forms that can be used

to test the integrability of distributions spe-

cified by n � k linear constraints h1; : : : ;hn�k
(where f is in � if and only if hi � f = 0 fori = 1; : : : ; n � k). Given constraint forms g(x)
and h(x) there are geometric operations called

the exterior product ^ and the exterior de-

rivative d that generalize the cross product

and curl operations on 3-vectors:(g ^ h)ab = 1

2
(gahb � gbha)(dg)ab � 1

2
( @gb@xa � @ga@xb )

Both produce skew symmetric matrices and

both generalize to all k-forms or completely

antisymmetric k-index tensor fields gab���d(x)
(where ga���b���c���d = �ga���c���b���d for all choices ofb and c). The Frobenius integrability condition

can then be written dhi(x) = Pj cij(x) ^ hj(x)
for some set of coefficient forms cija (x). In other

words the exterior derivative of each of the con-

straint forms must be expressible as a linear

combination (with form-valued coefficients) of

the other constraint forms. In a sense, the Lie

bracket is ‘dual’ to the exterior derivative d.

Figure 6: Nonholonomic constraints ‘twist out of

the constraint plane’ and fail to mesh into sub-

manifolds, so small manoeuvres can move the sys-

tem across the constraints.

6.2 Holonomic and Nonholonomic Con-
straints

If the Frobenius theorem holds, the state space

looks rather like an onion, with many distinct

‘skins’ or layers (fig. 5). The dynamical equations

force the system to stay in the layer it starts in, so

the rest of the space is essentially irrelevant to it.

In this case the state space can be ‘reduced’ (sep-

arated into disjoint submanifolds) and the con-

straints are ‘holonomic’.

If the constraint distribution � is not closed

under the Lie bracket the constraints are ‘non-

holonomic’. In this case the constraint spaces

‘twist up out of the plane like a fan blade’ and

fail to mesh to form submanifolds, so that small

manoeuvres can ‘undo’ the constraints (fig. 6).

Figure 7 shows a more detailed picture of the

constraint distribution for a car-like vehicle whose

state is specified by its location and orientation in

the plane. At each point the car must move in

the direction of its heading, but it can alter its

speed and rate of turn (the ‘horizontal’ and ‘ver-

tical’ components of state velocity in the diagram,

representing the two columns of the control field

matrix in fig. 2). A circular path appears as a

constant-pitch spiral in state space.
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Figure 7: The constraint distribution and some

possible configuration space paths for a car. Ori-

entation is plotted vertically.

7 Parking Isn’t Easy

Nonholonomic constraints can make it difficult to

correct small errors and perturbations. For ex-

ample, if you are parking your car in a garage and

think you are going to end upO(�) too close to the

side wall, you will need a forward distance O(p�)
to make the sideways correction at full steering

lock. The closer you are to the stopping point, the

harder it is to make adjustments.

Appendix A outlines a result by Brockett [8]

that formalizes this difficulty. It says roughly that

there is no continuous asymptotically stable con-

trol law u � u(x) that will park a nonholonomic

system at a point, so small perturbations can not

be asymptotically corrected by any choice of state-

dependent feedback.

Note that the theorem is only valid for parking

at a point. Stabilising feedback laws for nonholo-

nomic path following are certainly possible, and

Coron [12] has shown that even a point can be sta-

bilized with a time-varying (oscillatory) feedback

law u = u(t; x) for which side-slipping reversals

are possible.

8 Local Controllability

We have seen that small local manoeuvres can

‘undo’ a nonholonomic constraint to second order

along directions [f ;g]. Repeating the process for f

and [g;h] we can generate a third order displace-

ment along [f ; [g;h]], and so on. How far can we

go?

8.1 The Controllability Rank Condition

Given the distribution � spanned by the controls,

define the Control Lie Algebra LA(�) as the

closure of � under the Lie bracket, i.e.:�1 � ��k � �k�1 � [�;�k�1]LA(�) � [k �kLA(�)x contains all of the directions spanned

by all of the Lie products of vector fields in � at x.

Local manoeuvres of high enough order can move

the system along any of these directions at x.

W. L. Chow’s ‘local controllability rank con-

dition’ [11] tells us when we can move a small

but finite distance in any direction:

If LA(�)x has maximum rank (dim(X)) at x in X,

there is an open neighbourhood N of x in which

each point is reachable from x by a local man-

oeuvre lying entirely in N . If Rank(LA(�)x) =
dim(X) almost everywhere the system is said to

be globally controllable. In this case Chow’s

theorem shows that a path exists for the nonholo-

nomic system if and only if one exists for the cor-

responding unconstrained holonomic system. In

fact any unconstrained path can be followed ar-

bitrarily closely by the nonholonomic system: you

can drive your car sideways if you want to! – The

catch is that many many small see-sawing man-

oeuvres are required to approximate a sideways

path closely, so you have to work very hard to do

it.

8.2 Testing for Controllability

Testing for local controllability is not easy in gen-

eral, although all of the vehicles we will consider

turn out to be locally controllable almost every-

where, including cars and tractors with arbitrary

numbers of trailers [25].

There is heavy algebraic machinery to enumer-

ate all of the possible Lie brackets at a given or-

der (taking skew symmetry and the Jacobi iden-

tity into account) and generate ‘Philip Hall bases’
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for LA(�)x [7, 26]. But the algorithm is expo-

nential in the power of [ ; ] and arbitrarily high

powers may be required to generate LA(�)x at

some points. Globally things are even more com-

plicated as � typically has ‘singular’ hypersur-

faces where the control fields are linearly depend-

ent, and LA(�)x may fail to have full rank on

these and other hypersurfaces.

9 Synthesising Local Paths

Even when a system is known to be locally control-

lable, explicit formulas for manoeuvres to gener-

ate particular displacements can be hard to find.

So the first step in global nonholonomic planning

is working out how to move locally.

There are a number of algebraic methods for

local path synthesis in special cases, but trans-

forming the system so that they can be applied is

something of an art form. The general strategy is

to ‘fix’ successively higher powers of [ ; ] in turn,

but this rather ad hoc approach precludes any

form of optimality. Explicit formulas for locally

optimal paths are available only for the simplest

systems and cost functions. (For example the min-

imal length paths for limited-steering-lock cars

are known: see x13).

9.1 Sinusoidal Controls

We have seen that repetitive see-sawing motions

can move a car sideways. To produce these an ‘os-

cillatory’ time-varying control is required. Mur-

ray and Sastry [32, 33] show how to use piecewise

sinusoidal control signals to synthesize paths for

any system of the ‘triangular’ form:

d

dt 0BBBB@ x1

x2
...

xp 1CCCCA = 0BBBB@ 1

f2(x1)
...

fp(x1; : : : ; xp) 1CCCCA � u
The method applies a series of p sinusoidal con-

trols that zero each xi in turn. The frequencies

and amplitudes must be carefully chosen to con-

trol the current xi while leaving the previous xj ’s
undisturbed.

Any locally controllable system can implicitly

be written in triangular form by an appropriate

change of coordinates. The transformation can

be made explicit for cars and cars with arbitrary

numbers of trailers [33].

Figure 8: Some ‘parking’ manoeuvres for a car

planned using Lafferriere and Sussmann’s tech-

nique (from [22]).

9.2 Series Expansion in Lie Bracket

Small closed manoeuvres generate displacements

along Lie bracket directions, with corrections at

higher orders. If we can express a desired dis-

placement as a sum of known Lie brackets, it

can be approximately synthesized by applying the

manoeuvres that generate the Lie brackets in se-

quence. However complex higher order correction

terms must be accounted for if this is to be made

rigorous.

Lafferriere and Sussmann [22] show how to

handle these corrections when all the Lie brackets

above order k vanish (i.e. [f1; [f2; : : : [fk; fk+1] : : :]] �
0 for all f1; : : : ; fk+1). Such systems are ‘nilpotent

of order k’. For other systems the method gener-

ates a rapidly convergent sequence of approxim-

ate solutions as k is increased.

A rough impressionist sketch of the procedure

is as follows:

Choose a set of control fields and brackets f1; : : : ; fr
spanning the state space and express the desired

displacement in terms of them, as ePri=1
�ifi . Re-

write sums of terms and compound brackets as

products, for example:esf+tg ! e� 1
2
st[f ;g]+��� � esf � etges[f ;g] ! ecorrections � e�psg � e�psf � epsg � epsf

Deal with low order terms first, ignore terms of or-

9



Figure 9: The configurations within 1 unit of path

length from the origin for a car (from [27]).

der> k, and always be careful to push the remain-

ing corrections towards the end of the product.

The result is a finite series of realisable con-

trols which terminates at order k by nilpotency.

Lafferriere and Sussmann [22] also show that

cars and cars with trailers can be expressed as

nilpotent systems by ‘feedback nilpotentisation’

(a nonlinear, state dependent redefinition of the

controls u), and present some examples of expli-

cit path calculations. Figure 8 shows some man-

oeuvres for a front wheel drive car generated by

their methods.

10 Path Based Metrics

It is often convenient to have a measure of the

cost of travelling between points of state space

to provide an estimate of path quality. Non-

holonomic systems may require a considerable

amount of manoeuvring to travel between nearby

configurations, so such cost functions do not cor-

respond well with ‘Euclidean distance in state

space’ (whatever that means). However any pos-

itive definite cost function potentially defines a

metric and an associated topological structure on

state space.

The length of the shortest path between two

points is the most obvious choice of cost function.

For nonholonomic systems, the balls of this met-

ric (the sets of points within a fixed distance of

a given centre) can be very distorted. As their

radius shrinks they become ever more squashed

and twisted and their surfaces become cusped and

fold back on themselves [27, 26] (fig. 9).

However the controllability rank condition

(x8.1) implies that the shortest path metric is

always topologically equivalent to the Euclidean

one at points with full rank. This is comforting:

if the topologies were different it might turn out

that small perturbations could not be corrected

or that apparently well-behaved paths were not

in fact continuous. It would certainly mean that

many of our basic geometric intuitions about the

situation would have to be reconsidered.

11 Optimal and Bang-Bang Con-

trol

The above methods generate heuristic paths. It

is also possible to plan paths that are in some

sense ‘optimal’. This section gives an extremely

brief introduction to optimal planning in general,

and the rest of the paper concentrates on minimal

length paths for car-like vehicles, for which closed-

form results are available.

A broad class of optimal planning problems can

be formulated as follows:

Find a control u(t) for _x = f (t; x;u) which min-

imizes the cost
R x1

x0
c(t; x;u) dt of travelling from

x0 to x1, subject to the constraint u(t) 2 U for

some set of permitted control values U . The key

to such optimal control problems is thePontry-

aginMaximumPrinciple [35]. This is reviewed

in appendix B. It reformulates the problem as a

Hamiltonian system in an extended state space

and uses techniques from classical mechanics to

find a useful implicit form for the solutions. The

implicit form is sometimes strong enough to allow

explicit optimal solutions to be derived, but this

usually only happens for fairly simple systems.

The main practical conclusion of the Maximum

Principle is that optimal controls are typically

hard limited and piecewise continuous, i.e. u(t)
is usually hard against the constraint boundaries

and switches abruptly between limits at certain

critical points. Such controls are called bang-

10



bang controls.

For example, to cycle from Oxford to Cambridge

in the shortest possible time you have to: (i) ac-

celerate as hard as possible until you reach max-

imum speed; (ii) keep pedalling as fast as possible

for as long as you can; (iii) brake as hard as pos-

sible just in time to stop at the Cambridge. Notice

that:� The ‘bangs’ divide the problem into natural

subtasks.� The optimal solution is also locally optimal in

the sense that at each moment you have to do

as well as you can for the subtask in hand.� At each point the optimal control can depend

on everything between the current state and

the goal, but it is completely independent of

the path from the initial state to the current

one. So the scheduling of subtasks requires ex-

act foreknowledge but no past knowledge: you

have to start braking at exactly the right point

no matter how you got there. This potential

need for unbounded look ahead makes optimal

planning difficult and is one reason why only

implicit solutions are easily available.� Optimal paths are fragile. The controls are at

their limits so there is no margin for error: if

you fail to brake in time you will overshoot, if

you fail to turn as hard as possible you will hit

the wall, and so on.

12 Kinodynamic Planning

Kinodynamic planning [9, 13] is the branch of

planning dealing with optimal control under com-

plex cost functions and complex kinematic and

dynamic constraints. This is a rather broad um-

brella, but one common strategy is to discretize

time and search either forwards or backwards

over all possible sequences of ‘bangs’ (i.e. con-

trols that are hard against the constraints and

constant on each time interval). Since an op-

timal control schedule typically consists of piece-

wise continuous hard-limited controls with ab-

rupt transitions, it can usually be well approx-

imated by such a sequence.

Barraquand and Latombe [4] have developed a

planner for cars with multiple trailers which uses

this technique and A� search in an n-dimensional

bitmap representing the configuration space. The

Figure 10: Paths for a car (left) and an articu-

lated vehicle (right) planned by the Barraquand-

Latombe algorithm (from [4]).

number of reversals is used as an evaluation func-

tion, perhaps combined with the path length. The

method is relatively simple and resolution com-

plete, and it can handle fairly complex environ-

ments. It has time complexity O(rn(r + n log r))
at resolution r. This makes it impractical for

vehicles with more than one trailer, but it runs

quite quickly for cars and cars with one trailer.

Figure 10 shows some paths planned by the

method.

13 Shortest Paths for Cars

Most nonholonomic systems and cost functions

are too complex to allow the derivation of expli-

cit formulae for optimal paths, however analytic

forms do exist for the minimum length paths of

cars with limited steering lock moving between

arbitrary configurations in the empty plane.

If the vehicle must always move forwards the

shortest paths are known as Dubins’ curves

[14], and if reversals are allowed they are called

Reeds-Shepp curves [36]. These results form

the basis of several effective planners for the prac-

tically important case of car-like vehicles. They

also shed light on the form of path-length-based

metrics and the probable structure of optimal

paths for more complex systems. The formulae

are complicated but they have the expected bang-

bang form, which in this case means that the

11



paths are made up of straight line segments and

maximally curved arcs. Figures 11 and 12 show

some examples.

Before proceeding, it is important to under-

stand the limitations of the minimum length cri-

terion:� As with other classes of optimal plans, shortest

paths tend to be ‘brittle’: they often skim the

edges of obstacles and there is no margin for

execution error as the constraints are kept at

their limits (eg, steering is always applied at

maximum lock).� The length-based cost function ignores vehicle

dynamics. The shortest paths usually have

abrupt curvature discontinuities and direction

reversals that require infinitely fast steering

and acceleration to track at finite speeds. If ac-

celeration times can not be ignored the shortest

paths are not usually time optimal. Neither

are they optimal under other cost metrics such

as efficiency, safety, etc. So what measure of

cost do we really want to optimize anyway?� The form of the optimal paths depends crit-

ically on the exact nature of the constraints.

For a car-like vehicle with limited speed

and steering lock and rapid acceleration the

above arc-line form applies. For a vehicle

such as the common RoboSoft platform, with

two independent drive wheels and independ-

ent speed and acceleration limits on each,

the shortest paths are combinations of lines,

circles, clothoids (Euler or Cornu spirals —

curvature is an affine function of arc-length)

and anti-clothoids (involutes of circles) [28,

16]. For a car-like vehicle with limited ac-

celeration and steering slew rate, the steering

wheel angle is an affine function of arc-length.

For small steering angles this again produces

approximately clothoidal path sections.

13.1 Dubins’ Curves

Dubins’ Theorem [14]: For a car with minimum

turning radius R moving forwards in an empty

plane, the shortest path between any two config-

urations is a sequence of straight line segments

(S) and circular arcs of radius R (C) of the formCSC, CCC, or a subsequence of one of these. In

more detail there are exactly 6 possibilities to

check: LSL, LSR, RSL, RSR, LRL, RLR, whereL = left turn, R = right turn.

R

C S C

C C C

R R

R

R

Figure 11: Some examples of Dubins’ curves.

13.2 Reeds-Shepp Curves

Reeds-Shepp Theorem [36]: If the car is also

allowed to reverse there is a shortest path which

has the form (a subset of) CjCSCjC, where j indic-

ates an optional reversal (cusp). In detail there

are 68 possibilities to check. The shortest paths

are no longer unique, there may be continuous

families of them.

Sketch of proof:� Use ‘elementary’ calculus and explicit length

estimates to derive path-shortening rewrite

rules that convert SCS, SCC and CCCC to

Dubins’ form and remove cusps from CjS, : : : ,CjCjCjC.� Use the rules to rewrite an arbitrary arc-line

path in Reeds-Shepp form by repeatedly redu-

cing sections between cusps to Dubins’ form

and applying the cusp eliminating rules.� Given an arbitrary path, uniformly approxim-

ate it with a sequence of arc-line paths and

reduce each member of the sequence to Reeds-

Shepp form. By a compactness argument there

is an accumulation point of Reeds-Shepp form.

This is the desired shortest path.� Both results also follow from the Pontryagin

Maximum Principle and some analytic calcu-

lations [39, 6].

12



Figure 12: Some possible Reeds-Shepp curves for

reversal in place and parallel parking.

14 Optimal Planning for Point-

like Cars

Jacobs and Canny [19, 20, 21] have adapted clas-

sical configuration space construction techniques

to Dubins’ curves to produce a pair of planners

that find approximate minimum length paths for

a point-like, limited-steering-lock car moving for-

ward in the plane with open polygonal obstacles.

The methods differ in the configuration space ap-

proximation method they use and in the robust-

ness of the paths they produce.

The main results proved by Jacobs and Canny

[19, 20, 21] are as follows:

1. If any path exists for the vehicle there is a min-

imum length path consisting of a finite number

of smoothly joined Dubins’ sections ending on

obstacle edges or vertices, the start point or the

goal.

2. There is a grid-based line sweep algorithm us-

ing Dijkstra search that finds a path withinO(�)% of the minimum length path in timeO(n3� log n+ n2�2 log n2� ).
3. There is a quadtree-based plane sweep al-

gorithm that finds an ‘O(�)-robust’ path withinO(�)% of the minimum length �-robust path in

time O(n4 log n + n2�2 ). Here, �-robust means

D

A

C

E

B

Figure 13: Events generating configuration space

boundaries for a CSC Dubins’ curve.

that perturbations of obstacles or endpoints ofO(�) can not destroy the path.

Both planners are based on the construction of

configuration spaces for the Dubins’ curves. Since

the segments of the optimal path always end on

obstacle edges or vertices, each segment has only

one degree of freedom at each end: along an edge

the location can vary but the tangent direction

is fixed, while at a vertex the orientation is free

but the location is fixed. So for each pair of en-

vironment features (edges or vertices) and each

class of Dubins’ curve there is a two dimensional

space of Dubins’ segments between the features,

whose ‘points’ are labelled by the location (along

an edge) or orientation (at a vertex) of the start

and end points. Some of these curves may inter-

sect obstacles or fail to be realisable, but we can

map out the ‘configuration space obstacle’ (CSO)

corresponding to these forbidden regions of the

segments’ ‘configuration space’.

Figure 13 illustrates some of these ideas. The

configuration space for this CSC curve is swept

out as the initial point slides along its edge and

the final orientation pivots around its vertex.

As this happens the initial and final curvature

centres move along a line and an arc respectively,

and the straight segment is tangent to the result-

ing circles. At certain points arcs or lines of the

path cross vertices or edges of the environment

(A,B,C) or arc or line endpoints collide with one

another (D,E). These transition points represent

potential CSO boundaries.

In a tour de force of arc-line geometry, Jac-

obs and Canny prove a series of theorems on the

structure and construction of Dubins’ configura-

tion spaces. As an example, here is their ‘four

type theorem’ for type-CSC curves [21]:
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Figure 14: The configuration space of a CSC Du-

bins’ curve constructed by the Jacobs-Canny al-

gorithm (from [21]).

Four types of constraint produce CSO boundaries

for CSC curves:

1. An arc of the curve can hit an obstacle edge or

vertex.

2. The straight section of the curve can hit an

obstacle vertex.

3. An arc section can vanish (subtended angle !
0, jumping to 2�).

4. The straight section can vanish (length ! 0).

If a given path is to be feasible, each of its seg-

ments must lie in the ‘free space’ region of the ap-

propriate Dubins’ configuration space. The search

for an optimal path can now be formulated as a

tree search over nodes corresponding to environ-

ment features labelled by the terminal location or

orientation of the path on that feature. Every fea-

ture is connected to each of the others by each of

the possible types of Dubins’ curve and the search

is pruned at curves that fail to travel through free

‘windows’ of configuration space.

A Dijkstra search of this graph is sufficient to

find the minimal path, but to make this scheme

concrete a suitable discretisation of the path

spaces is required. Dividing the length of each

edge and the orientation at each vertex into a

fixed number of subdivisions produces a discret-

isation corresponding to a rectangular grid in the

segments’ configuration spaces.

The line sweep version of the planner constructs

the quantized configuration space obstacle dir-

ectly, by moving along each grid line classifying

each point in turn. For speed it maintains a run-

ning tally of the CSO boundaries crossed along the

Figure 15: Some optimal paths for a forward mov-

ing point-like car produced by the Jacobs-Canny

algorithm (from [21]).

line, so that each point (Dubins’ segment) does not

have to be tested against the raw geometry.

Figure 14 shows a CSC Dubins’ configuration

space constructed by the Jacobs-Canny line sweep

algorithm. The horizontal and vertical boundar-

ies represent collisions of the initial and final arcs

with obstacles, some of the wave-like boundaries

correspond to the vanishing of arc sections, and

all the other boundaries arise from collisions of

the straight section with obstacle vertices. Fig-

ure 15 shows some optimal paths generated by

the method.

The quadtree version of the planner sweeps a

line across the plane maintaining an ordered list

of the positions of active CSO boundaries on the

line. This allows it to generate a quadtree repres-

enting the completely free (i.e. neither occupied

nor mixed) cells of the grid. The resulting half-

cell-width of free space around each grid point

(cell centre) is enough to derive �-robustness.
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Figure 16: The stages of planning a parallel park-

ing manoeuvre in the Jacobs-Laumond scheme

(from [26]).

15 The Jacobs-Laumond and

Latombe Planners

The Jacobs-Canny planner produces optimal

(minimum length) paths, but works only for a

point-like car moving forwards among polygonal

obstacles. Jacobs and Laumond [18, 27] have in-

troduced a remarkable stochastic planner that

uses an underlying holonomic planner, Reeds-

Shepp curves, and randomized search to produce

qualitatively good heuristic paths for a polygonal

car moving forwards and backwards among poly-

gonal obstacles. Latombe’s modification of this

[23, 10] is probably the best existing method for

planning manoeuvres of realistic cars in realistic

environments.

15.1 The Jacobs-Laumond Strategy

The Jacobs-Laumond and Latombe algorithms

are examples of the following general strategy,

which applies to any nonholonomic system for

which local paths can be generated in the absence

of obstacles (see fig. 16):

1. Choose any set of ‘canonical’ nonholonomic

paths that connect arbitrary nearby system

configurations without moving too far from

either of them, and implement a collision

checking routine for these paths. For a car

the Reeds-Shepp curves are a good choice be-

cause they are guaranteed to be short and col-

lision checking is easier for arc-line paths, but

any similar family would do (e.g. spline-based

paths or those generated in x9).

2. Ignore the nonholonomic constraints. Use any

suitable planner to generate a path for a freely

translating and rotating ‘hovercraft’ the shape

of the vehicle. The path should clear all of

the obstacles by some margin �. If the planner

produces obstacle-skimming paths, an obstacle

growing or path relaxation stage is required

to move the path away from the obstacles it

touches.

3. Replace this infeasible holonomic path with a

feasible nonholonomic one. If a canonical curve

between the endpoints exists and is collision-

free, replace the entire holonomic path seg-

ment with it. If not, recursively subdivide the

segment and try again. This recursion is guar-

anteed to terminate because the endpoint sep-

aration eventually becomes much smaller than

(any continuous function of) the clearance �.

4. The resulting path is probably very jagged. At-

tempt to simplify it by repeatedly joining ran-

domly generated pairs of intermediate config-

urations with collision-free canonical curves.

For Reeds-Shepp curves this step shortens the

path as well as simplifying it.

Although this strategy is clearly heuristic (i.e.

the output is not ‘optimal’), it is complete (guar-

anteed to find a path if one exists) whenever the

underlying holonomic planner is guaranteed to

find a path with non-zero clearance if one exists.

For a car the subdivision step produces a path

of length O(l=�) with O(l=�2) sections, where l is

the length of the initial path. For example, to

move sideways into a parallel park with forward

clearance �, a car may have to make repeated see-

sawing manoeuvres of length O(�), each of which

produces a sideways displacement of only O(�2).
More generally, it seems likely that for a (suffi-

ciently regular) nonholonomic system of degreek (i.e. Lie brackets of up to k controls are re-

quired to span the state space directions) the res-

ulting paths will have length O(l=�k�1) and con-
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Figure 17: Some paths produced by Latombe’s

version of the Jacobs-Laumond scheme (from

[23]).

tain O(l=�k) manoeuvres [26]. Clearly, the ini-

tial planner should produce paths with as large a

clearance as possible.

The original Jacobs-Laumond planner [18, 27]

used a complete classical ‘piano-movers’ planner

for the first step. As this produced obstacle-

skimming paths, a heuristic perturbation method

was developed to move the holonomic path away

from the obstacles it touched. The resulting non-

holonomic paths were quite usable, but some-

times more complex than necessary owing to the

poor use of the available free space.

15.2 Latombe’s Implementation

Latombe’s version of the planner [23] uses the

Barraquand-Latombe randomized planner [5, 24]

for the first stage. This produces a heuristic po-

tential field with relatively few local minima from

a bitmap representation of the environment. It

then follows the potential gradient in the usual

way and uses an innovative randomized search

technique to escape from any local minima it falls

into. The potential is calculated by propagat-

ing wavefronts from the obstacle boundaries to

produce an approximate free space Voronoi dia-

gram, then propagating distances back from the

goal along the Voronoi spines to produce the ‘back-

bone’ of the potential. To allow vehicle orientation

to be controlled, potentials are calculated separ-

ately for several control points on the vehicle and

combined heuristically.

The resulting ‘holonomic’ algorithm is probabil-

istically resolution complete and very fast in prac-

tice, and the paths it produces have almost max-

imal clearance since they roughly follow the Voro-

noi diagram. This simplifies the task of the sub-

sequent stages of the scheme, so that the resulting

planner can very quickly produce good paths, even

in quite complex environments. Figure 17 shows

some paths planned by Latombe’s algorithm.

16 Summary

It is now possible to plan complex paths and man-

oeuvres for vehicles subject to nonholonomic con-

straints such as cars and trucks with arbitrary

numbers of trailers. We have seen how to formu-

late the control laws and differential constraints

for such systems in state space. Nonholonomic

constraints are ones that fail to ‘mesh’ into integ-

ral surfaces, so that small local manoeuvres can

‘undo’ the constraint. The essence of this is cap-

tured by the Lie bracket, a kind of derivative op-

eration acting on the control laws or constraints.

By iterating the Lie bracket one can find all of

the displacements that can be produced by local

manoeuvring. When any local displacement can

be so generated, the nonholonomic system can fol-

low arbitrary paths arbitrarily closely by ener-

getic manoeuvring, so nonholonomic paths exist

if and only if robust unconstrained paths exist.

In this case, sequences of finite manoeuvres to

drive the system between any two nearby config-

urations can be synthesized using several algeb-

raic techniques.

In theory, optimal paths can be planned for gen-

eral nonholonomic systems under the path-length

or any other cost function, but this is can quickly

become computationally intractable as the num-

ber of degrees of freedom is increased. For car-

like vehicles the shortest paths are available in a

simple closed form and this has resulted in several

efficient, practical motion planning algorithms for

cars under the shortest-path cost function.
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17 Further Reading

Straightforward introductions to calculus on

manifolds are available in a number of places. For

the basic material on vector fields and differential

forms a good starting point might be Arnold’s ex-

cellent course on classical mechanics [3], followed

by Abraham, Marsden and Ratiu [2]. For a more

exhaustive treatment see Spivak [37]. Abraham

and Marsden [1] is a comprehensive survey of cal-

culus on manifolds, dynamical systems and non-

linear mechanics from a modern, geometric, syn-

thetic point of view. (N.B. The first edition is more

concrete and somewhat easier to read).

Macki and Strauss [30] is an accessible intro-

duction to optimal control theory. Isidori [17] is a

somewhat more advanced text on geometric con-

trol.

For a general introduction to motion planning

read Latombe’s monograph [24]. The collection by

Li and Canny [29] is a good survey of current re-

search in nonholonomic planning. In particular,

the chapter by Laumond [26] provides many ref-

erences and covers some aspects of nonholonomic

planning more thoroughly than the current paper.
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A Brockett’s Theorem

A system _x = f (x) is asymptotically stable at x0

in X if the forward image of each neighbourhoodN
of x0 always stays inside N after some time t0(N )
and finally converges to x0: etf � N � N for allt � t0(N ) and limt!1 etf � N = fx0g. Asymptotic

stability is extremely important in the theory of

general dynamical systems. The rough idea is

that after youthful wanderings the system must

settle down and tend to a limit in a well behaved

way.

Brockett’s theorem says the following [8]:

Suppose that we want to find a continuously dif-

ferentiable feedback law u � u(x) that ‘parks’ a

continuously differentiable system _x = f (x;u) at

a state x0 with f (x0; 0) = 0, and also makes x0

asymptotically stable so that small perturbations

of the parking trajectory will be ‘absorbed’. For

such a control law to exist the following condi-

tions must hold:

1. There must be a neighbourhoodN of x0 within

which each point x has some control sequence

ux(t) steering it to x0 as t!1.

2. The linearized system at x0 must have no un-

controllable unstable modes. There must be

controls that can manipulate and stabilize any

modes whose eigenvalues have positive real

parts.

3. The mapping f : (x;u) ! f (x;u) must be

onto an open neighbourhood at 0. This means

roughly that all the state space directions must

be spanned by possible controlled motions near

x0.

The third condition implies that no system

with differential constraints can be stabilized to

a point with a continuously differentiable feed-

back law, since the constrained controls can not

span Tx0
X. The proof of the theorem is topolo-

gical and provides little insight into the obstruc-

tion to stability, but the general idea is that ‘side-

ways’ displacements (those not in Span( df
dui )) have

to be corrected by ‘forwards’ or ‘backwards’ man-

oeuvres (in the Span( df
dui ) directions). But small

shuffling manoeuvres require cusp-like reversals

for which there is no continuously differentiable

control law, while manoeuvres without reversals

must ‘go around in a loop and come back for an-

other try’ and can not be interpolated smoothly to

zero as the start point is moved towards the fixed

point x0.

B The Maximum Principle

Pontryagin’s Maximum Principle for time inde-

pendent dynamics can be briefly stated as follows

[35]:

1. Given dynamics _xa = fa(x;u) and initial and

final states x0 and x1, designate the cost func-

tion by f0(x;u) and prepend a component x0

to x to contain the running cost total: _x0 =f0(x;u) � c(x;u) so that x0(t) = R t c(x;u)dt.
2. Introduce ‘momentum’ variables pa dual to the

extended x vector and define a Hamiltonian

H(p; x;u) � Pa pafa(x;u). For any given u(t)
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and initial conditions p(t0); x(t0) we can integ-

rate the Hamiltonian equations of motion:_x = @H(p; x;u)@p_p = �@H(p; x;u)@x

The first equation gives the system dynamics

and is independent of p. The second tells how

the momentum changes with time and can be

integrated once x(t) is known. Note that p0

is conserved (constant with time) because the

Hamiltonian is independent of the cost x0, and

the Hamiltonian dynamics itself guarantees

that the ‘energy’ H(p; x;u) is conserved.

3. Now start from x0 and an arbitrary initial

momentum p(t0), and at each time step ap-

ply the control which maximizes H: u �
arg maxu2U H(p(t); x(t);u). Update x and p

with Hamilton’s equations as usual, and con-

tinue.

4. Eventually, the path will miss x1. Adjust p(t0)
and repeat the process until the path passes

through x1. Since H is homogeneous in p

it is sufficient to fix p0(t0) = �1. Do not

bother to consider values of p(t0) for which

maxu H(p(t0); x0;u) is nonzero as they can not

be optimal.

5. If the previous step succeeds, Pontryagin’s

main result [35] is that the resulting path is

locally optimal and may be globally optimal

(i.e., the above conditions are necessary but

not sufficient for optimality). In practice the

chances are high that the best candidate tra-

jectory passing through x1 is in fact the optimal

one, but in general this is a delicate mathem-

atical question.

6. There are usually certain critical values of x

and p at which the maximising control sud-

denly jumps from one point of U to another. For

bounded controls these points tend to be on the

boundaries of U. So the optimal control sched-

ule typically consists of a piecewise continuous

sequence of hard-limited controls, with abrupt

jumps between constraint boundaries at crit-

ical times: ‘bang-bang’ controls. The momentapa are called switching functions. The key

information encoded in the implicit initial con-

dition p(t0) is the switching schedule for the

solution.
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