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Abstract 

In  this paper, we show how relative 3D reconstruction from multiple 
uncali brated images can be achieved through reference points. The 
original contributions with respect to other related works in the field 
are mainly a direct non linear method for relative 3D reconstruction, a 
geometrical method to select the set of reference points among all image 
points and a geometrical interpretation of the linear reconstruction 
method. Experimental results from both simulated and real image 
sequences are presented. 

1 Relative positioning 

From a single image, no depth can be computed without a priori informa- 
tion. Even more, no invariant can be computed from a general set of points 
[3]. This problem becomes feasible using multiple images. The process is 
composed of two major steps. First image features are matched in the dif- 
ferent images. Then, from such a correspondence, depth is easily computed 
using standard triangulation. This kind of classical technique needs careful 
calibration of the imaging system and usually it is performed by computing 
each camera parameters in  an  aboslute reference frame. 

This approach suffers from several drawbacks: firstly the calibration pro- 
cess is a n  error sensitive process, secondly it cannot always be performed 
off line, particularly when the imaging system is obtained by a dynamic 



system with zooming, focusing and moving. Similarly stereo vision with a 
moving camera is impossible as the  standard tool for locating the position 
of a camera with translation and rotation does not reach the required pre- 
cision for calibrating such a multistereo system. Introducing in each image 
beacons with exact known position may overcome these drawbacks: calibra- 
tion and reconstruction are then solved in the same process [2, 11. But for 
many problems it is impossible t o  provide such carefully positioned reference 
points. 

The  alternative approach is to use points in the scene as reference frame 
without knowing their coordinates nor the camera parameters. This has 
been investigated by several researchers these past few years. It is also the  
goal of this paper. 

Using parallel projection for the  imaging system, Kcenderink and van 
Doorn [lo] were able t o  choose 4 points as  a n  affine reference frame in the 
scene and reconstruct ail other points seen in a t  least two images. Using also 
parallel projection but with a very different approach, Tomasi and Kanade 
[17] were able t o  reconstruct a scene from images. Dealing with real images, 
their results were satisfactory as the  imaging system was equipped with a 
long focal lens. Their contribution is also a nice way t o  deal with erroneous 
d a t a  using SVD1 for filtering noise from information. 

Approaching the  problem for real perspective projection implies t o  leave 
the  affine geometry for the projective geometry. Two major orientations 
were developed these two last years. Sparr [16, 151 developed a n  affine shape 
descriptor; such a descriptor contains the affine information of the relative 
position of this group of points; it is related to its perspective projection 
by a major theorem which allows t o  recover relative depth or shape. This 
approach is particularly well suited when affine information can be used like 
observing parallelograms, of when the imaging system has a known affine 
reference frame. 

Using the more standard tool of projective geometry, we proposed t o  
generalize the Koenderink and Doorn's method with additional reference 
points [ l l ,  131. The right way t o  approach the problem was first described 
by Faugeras [4]. This  paper is largely inspired by his paper and uses the  
epipolar geometry reconstruction method he provides. 

The  origina.1 contributions of this paper are a geometrical way to  choose 
among the set of points those which can be selected as reference points, 
a geometrical interpretatiori of the  reconstruction, a direct solution of the . . 
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system of equations and a discussion around experimental results. 

First the paper describes how reference points in the scene provide us a 
way t o  reconstruct the  scene, and why this solution can only be defined up 
to  a projective transformation, i.e. a collineation. Then Faugeras' met hod 
for computing the epipolar geometry is presented. From the epipolar geom- 
etry it is shown how to solve the  basic equations. Section 3 provides basic 
results on the  location of the projection of coplanar points. This result d- 
lows t o  provide a geometrical interpretation of the relative reconstruction, as 
Kcenderink [lo] did it in the affine case. I t  allows also to  derive a computa- 
tional way t o  choose among the points present in the scene, those which can 
be selected for the reference frame. Finally we describe a n  implementation 
which allows t o  solve the  problem in presence of noise using redundant data.  
This is done by an implementation of the parameters estimation theory us- 
ing Levenberg-Marquardt algorithm. Robustness of this implementation is 
discussed from the results obtained on both synthetic and real data.  

Two basic assumptions are made here. First we assume tha t  the reader is 
familiar with elementary projective geometry, as it can be found in the  first 
chapters of [14] (see also [5]). We also assume throughout this paper tha t  
the imaging system is a perfect perspective projection, i.e. the  camera is a 
perfect pinhole. However this point will be discussed with the  interpretation 
of the experimental results. 

2 Using scene references points 

This section provides the  basic equations of 3D reconstruction problem, to- 
gether with the self calibration problem. This derivation was developed 
independently from these recently published by Faugeras in [4]. The  basic 
starting point is similar to this work, however the way t o  solve it was in- 
fluenced by the way photogrametrists simutaneously calibrate their camera 
and reconstruct the scene, by using carefully located beacons (cf. [I]). 

We consider rn views of a scene (m  2 2); it is assumed tha t  n points have 
been matched in all the images, thus providing n x rn image points. The 
assumption tha t  the scene points appear in all the images is not essential 
but simplifies the explanation here. 

{ M ; ,  i = 1, .  . . , n}  is the (unknown) set of 3D points projected in each 
image, represented by a column vector of its four yet unknown homogeneous 
coordinates. 



2.1 The basic equations 

For each image j ,  the  point Mi,  represented by a column vector of i ts homo- 
geneous coordinates (xi, y;, z;, or its U S U ~  non homogeneous coordinates 
(Xi,  Yi, z ; ) ~  = (?, g, z ) ~ ,  is projected as the  point m;j, represented by a 

column vector of its three homogeneous coordinates (uij, uij, w ~ ~ ) ~  or its 
usual non homogeneous coordinates (xi;, yij)T- Let Pj be the  3 x 4 projec- 
tion matrix of the j t h  camera. 

We have for homogeneous coordinates 

where pij is an  unknown scaling factor (different for each image point). 
Equation 1 is usually written in the following way, hiding the scaling 

factor, using the non homogeneous coordinates of the image points: 

These equations express nothing else than the  collinearity of the  space 
pojn ts  and their corresponding projection points. 

As we have n points and m images, this leads us to  2 x n x rn equations. 
The  unknowns are 1 l x rn for the  P, which are defined up t o  a scaling factor, 
plus 3 x n for the Mi. So if rn and n are  large enough we have a redondant 
set of equations. 

I t  is easy to  understand tha t  the solution for the equation 1 is not unique. 
For instance, if the origin is translated, all the coordinates will be translated 
and this will induce new matrices Pj satisfying 1. More generally, let A be 
a spatial collineation represented by its 4 x 4 invertible matrix. If Pj? j = 
1,. . . , rn and Mi, i = 1, .  . ., n are a solution t o  1, so are obviously PjA-' 
and AM; ,  as 

Therefore is esta.blis11ed the first result : 
Theorem: the solution of the system 1 can only be defined u p  to a 

cot lineation. 



As a consequence of this result, a basis for any 3D collineation can be 
arbitraryly chosen in the 3D space. For a projective space P3, 5 algebraically 
free points form a basis, that  is a set of 5 points, no four of them coplanar. 
We will come back t o  how t o  choose for such a basis later in 3.1. For 
convenience, we assume here that the  first five points Mi can be chosen t o  
form such a basis; their coordinates can be assigned t o  the canonical ones: 

The  remaining par t  of this section is devoted to the problem of building 
from these now fixed reference points an explicit solution. 

2.2 Direct non h e a r  reconstruction 

From the above section, the most direct way is to try t o  solve this system of 
non linear equations. As the projective coordinates of the spatial points are  
defined up t o  a constant, so for each point, the  constraint X ? - + - ~ ? + Z ? + ~ ?  = 1 
can be added. Since the system is an overdetermined one, we can hope to 
solve it by standard lea.st squares technique. The  problem can be formulated 
as minimizing over 

( j  1 ( ~ ; , i / i , z ; , t ~ , m , ~  ,... ~ 1 2 5 ) )  for i = 1 ,.-., n ~ ,  j = I , .  . . , n ;  

where fk(-) is either 

(i) ( j )  (3)  . ( j )  
3?221 Xi + 77222 Yi + m2-3 zt + mZ4 t i  

Y i j  - b') 
( j  (i) 

In31 X i  + m3, pi + m,, zi + mg)ti 



at is the standard deviation of each image measure, xij or yij. On the 
other hand, it can also be considered as the weight for each function. So 
the problem is a general weighted least squares estimation. The only known 
measures are the image points ( z i j ,  yij)  All others are unknown parameters 
to estimate. In addition, as each projection matrix is equally defined up to 

0 a constant , we can for example impose m,, = 1. 
This can be solved by the standard nonlinear least squares algorithm 

due to Levenberg-Marquardt [12]. It has t o  be mentioned that this system 
leads to rn + 2 x n x rn equations in 11 x n + 4 x n unknowns, which is quite 
large. More technical discussions about it will be found in section 4. 

2.3 Linear reconstruction by Faugeras 

Faugeras presented in [5] an elegant linear reconstruction method with the 
tricky use of the epipolar geometry. The basic idea is that he first tries 
to determine the projection matrix up to a collineation. Once five general 
points are selected as the reference points and are assigned the standard 
basis projective coordinates, this is equivalent to have 5 image points and 
space points matches. Thus in each projection matrix remains only one 
unknown parameter. Now the author supposes that the epipolar geometry 
has been established, for example by the matching of a t  least 8 points. 
Since the epipoles are intrinsically related to  the projection matrix, thanks 
to the known epipoles, each projection matrix is entirely determined up to  
a collineation (or determined projectively). Once each projection matrix 
is known, the reconstruction becomes straightforward resolution of a linear 
equations set. 

We can note that Faugeras still performs a planar collineation to obtain 
the projection matrix in a simpler form. This basis change in image plane is 
not essential. I t  only makes the projective matrix to be simpler. And also 
it is important to note that this linear reconstruction is essentially based on 
the previous establishment of epipolar geometry, in the absence of which the 
linear reconstruction is not possible. We will have a more detailed discussion 
below. 

2.4 Solving t h e  epipolar geometry 

The epipolar geometry plays the most fundamental role for motion analysis. 
Knowing this geometry is equivalent t o  knowing the relative orientation of 
two cameras. This consideration has been largely discussed in [7] .  With 



Sturm7s algorithm, the epipolar geometry is determined with seven points, 
the solutions are  obtained from the intersection points of cubics curves. This 
approach becomes quickly prohibitive when real image points are concerned. 
However, recently, Faugeras et al. pointed out tha t  this geometry can be 
computed in a Linear way when at least 8 point matches between the two 
images are available. The  equation is formally the same as tha t  has been 
proposed by Longuet-Higgins a few years ago, well known as 8-point algo- 
rithm, but this equation admits a nice projective iuterpretation. So this 
section is largely inspired from (41. We will get the  same equation. We 
rephrase the demonstration here, but with some highlights on  geometrical 
and algebraic interpretation of the equations. 

Let m = (x, y ,  t )  be a point in the first image and let e = (u, v, w) be the  
epipole point with respect to image 2. The  three homogeneous coordinates 
( a ,  b , c )  of the epipo1a.r line 1 going through e and m are m x e where x 
denotes the cross product: obviously 1 mT = 1. eT = 0. T h e  mapping 
m ---* m x e is linear and cam be represented by a. skew symmetric matrix 
C of rank 2: 

The mapping of ea.ch epipolar line 1 from image 1 t o  its corresponding epipo- 
lar line 1' in image 2 is a collineation defined in the dual space of lines in 
P2. Let A be one such collineation: ljT = ~ 1 ~ .  

It is defined by the correspondence of 3 distinct epipolar lines. T h e  first 
two correspondences provide four constraints as the degree of freedom of a 
1 is 2 As the third line i n  correspondence belongs t o  the  pencil defined by 
the two first ones, the third correspondence only adds one more constraint. 
So A only has five constraints for eight degrees of freedom. 

Let E = AC. Using (5) we get 

As A has rank 3 and C has r ank  2, E has rank 2. As the kernel of C is 
obviously Xe =- e ,  the epipole is the kernel of E. 

Let now m' be the corresponding point of rn. Using 5 the epipolar 
constraint rntT 1' = 0 can be rewritten rnfT~rn = 0. So each matching 
between the two images provides a constraint on E, and as E is defined up 
t o  a scaling factor. T111is 8 independant constra.ints will allow us to compute 



linearly E and therefore t o  get the epipolar geometry. Notice tha t  E is 
determined by 7 parameters: C has 2 ( the  epipole position) and A has 5. 
But allowing a redondant set of constraints provides a unique solution which 
can be linearly computed. Faugeras et al. [6] has pointed out  tha t  for a n  
accurate estimation of E, a non linear technique has to be used. In fact, 
the epipolar geometry provides only one point to line transformation in P2. 
This is known as a correlation, also a linear transformation, which, instead 
of c o h e a t i o n  transforming points t o  points, systematically dualizes it. The  
equation derived above is just the concept of conjugacy of a pair of points 
with respect to  the correlation: a point p is said t o  be conjugate with respect 
t o  E to  a point p' if p' lies on the line 1' = Ep from the point p, thus we 
obtain the basic bilinear equation X ~ E X  = 0. Get transposed the  equation, 
we get the other linea-r transformation from the  second image plane t o  the  
first image plane which is the  transposed E. As in our case all transformed 
lines form a pencil going through the  epipole, so directly the  rank of this 
line space is at most 2 and i n  this case the kernel of this transformation is 
the epipole. 

This computation can be efficiently done via SVD. Firstly, using SVD, 
the  system of homogeneous equations can be solved in the least squares 
sense. As our way to  solve the system 4 does not require the epipolar 
geometry, we compute E linearly and efficiently. The solution obtained this 
way is less accurate than that  computed by Faugeras et al. [6]; i t  is however 
sufficient t o  get epipo1a.r lines for checking the matches. We just show in 
Figures 1 an  example of the  obtained epipolar geometry with the  tracked 
points (discussed later in section 4). 

3 Geometrical reconstruction 

In this section, we will show some very interesting geometric properties 
once the epipo1a.r geometry has been established. In particular, we can 
determine if any fourth point is coplanar with the plane defined by any three 
other points, of course only through operation in the image planes. T h a t  
leads to  an automatic selection of general reference points from image planes 
and point reconstruction in a geometric way, thus providing a geometric 
interpretation of the linear reconstruction method. We assume through this 
section tha t  the epipolar geometry has been established using for instance 
the method described in section 2.4. 



Figure 1: In this pair of images, the tracked points are marked by a cross 
and the epipolar line of each point is drawn by a dark line. 

3.1 The coplanarity test 

As we assume here tha t  the epipolar constraint is known, we know the  
essential matrix E which contains all this information 14, 91. E is a 3 x 3 
matrix such t h a t  from the point rn = (I, y, t)T in image 1, the corresponding 
epipolar line I' in image 2 has its coefficients satisfying 1' = (af ,  b', c ' ) ~  = Em. 

Now, consider figure 2. It displays two images of four 3D points A,  B, C, D, 
projected in the  two images. The dashed lines correspond t o  some of the  
epipolar lines going through each of the vertices of the quadrangles. The  
epipolar constraint specifies that the epipolar line corresponding t o  c passes 
through c', and conversely. 

If A ,  B,  C ,  D are coplanar, then the diagonals intersect in this 3D space 
plane in a point il.1 which is projected respectively as m and m'. Therefore 
m and mf have to satisfy the epipo1a.r constraint too, as it is displayed in 
Fig. 2. 

Conversely consider the case where A,  B,  C, D are not coplanar. The 
diagonals are no more in the same plane and therefore does not intersect in 
the space. So m is the image of two 3D points, M I  lying on (AC) ,  and N1 
lying on (LID) .  Similarly mf is the image of M2 and N 2 .  If the central point 
0' of the  second image is not in the plane defined by (ACO), nor in the  



Figure 2: Match of diagonal intersections with epipolar constraint 

plane ( B D O ) ,  then the 2 view lines ( O m )  and (O'nz') does not intersect, 
and therefore the  points m and n2' are not in epipolar correspondence. 

The  condition tha t  0' does not lie in the plane (OAC) is equivalent 
t o  the  condition tha t  the epipole in the first image does not lay on (ac),  
which is therefore checked easily. Notice that  in such a case, we can choose 
as diagonals (AB) and ( C D )  instead of ( A C )  and (BD). Therefore the 
only condition we rea,ch for applying this method is t o  have none of the 
projections a ,  b, c ,  d being the epipole. 

So we proved tha t  
Theorem: If neihter a ,  b, c,  nor d are the epipole point of image 2 with 

respect of image 1, then it exists a t  least one diagonal intersection m such 
that nz and its corresponding intersection rn' satisfy the epipolar constraint 
if and only if A, B ,  C ,  D are coplanar. 

We only had a look on the geometrical problem here. Technical problems 
like finding the points which are as less coplanar as possible and widely 
spread in the field of view are not a.ddressed here, but can be easily deduced 
from the geometrical results. 

In fact this theorem leads t o  a usefull and straighforward construction 
technique. Observing three points and a line in an image, it is possible to 
reconstruct the  intersection of this line with the plane defined by the three 
points. 

Let n,b,c be the projections of A , B , C  in image 1, and let 1 be the 
projection of the  line L. Let d be a point on 1; the image coordinates 
of d depend linearly on a single parameter t and will be denoted as d ( t ) .  
Its corresponding projection in  image 2, dl(t), is the intersection of l1 and 



Figure 3: Four non coplanar points in space 

the  epipolar line associated with d. So d f ( t )  also depends linearly on t .  
Finding rn and m' as intersection of the diagonals provides coordinates of 
these t w o  points still expressed linearly with respect of t .  Stating now tha t  
r n ~ r n ' ~  = 0 then leads to  a second degree equation in t .  Obviously one 
solution is tha t  I and I' are epipolar line, so the only non trivial remaining 
solution is the one we are seeking for: t he  value of t for which d ( t )  is the 
image of the  intersection of L with  the plane ( A ,  B,  C). 

This leads t o  
Corollary : the intersection of a line with a plane defined b y  three points 
can be algebraically computed from the image of these data,  provided the 
essential matrix. 

Such a technical result is particularly useful for computing construction 
directly in the  image without going through the 3D reconstruction. It allows 
for instance t o  compute several invariants for stereo images ( c f .  [8]) .  

3.2 Search for a 5 point basis 

The above result. can be directly applied to automatically select the necessary 
reference points from image points for projective reconstruction without 
any a priori spatial knowledge. Basically, we will be able to get rid of the 
coplanar reference points i n  the step 3 with the previous section's results. 



Such a greedy algorithm could be: 

1. choose any point for M1 and M2 

2. choose for M3 a n y  point not aligned with M I  M 2  

3. choose for M4 any point such that  it is not coplanar with M1 M2M3 

4. choose for M5 any point such tha t  it is not coplanar with any face of 
the tetrahedron MI, M 2 ,  M3, M4 

This algorithm will give us a mathematically correct reference points 
set. In practice, reference points selection h a s  also to take into account the 
precision of the measure in the image. It's better to take reference points 
as far as possible from each other. In this case, one improved version of the 
algorithm ca,n be 

1. choose for M I  and A& the farthest points pair in one of the image. 

2. choose for M3 the farthest point from A12. 

3. sort the other points according t o  the distances t o  the plane deter- 
mined by the triangle Ml M2M3,  choose for Mq the one which has the 
maximum distance. The distance is not the orthogonal distance from 
the  point t o  the plane as we expect (not possible a t  this step), i t  is the 
projection on the second image of the distance from the point t o  the 
plane along the first viewing line of that  point (see Figure 4). 

4 .  Sort the remaining points according t o  the maximum distance t o  any 
face of the tetrahedron MI : ill2, A&, M4, choose for Ms the point which 
has the maximum dista.nce. 

This improved version of reference points selection will provide us with 
a reasonably scattered points set. 

3.3 Geometrical solution for point position 

In this section, we  are providing a geometric solution for relative projec- 
tive s h p e  reconstruction. To get the direct geometric reconstruction of 
the  projective coordinates representing the projective shape, we s tar t  from 
the  geometric definition of projective coordinates (cf. Figure 5). Take four 
reference points MI,  A&, A& and M4 as the vertices of the tetrahedron of 



Figure 4: The distance is defined as tl1a.t between m' and nz". 

reference, and the fifth point A& as t,he unit point. For any point P whose 
homogeneous coordinates are (x,  y, z ?  t I T ,  we have one of the non homoge- 
neous coordina.tes defined as 

B and R are the intersection points of M3A and M3Q with the line 
M I M z  and in their turn A and Q are the intersection points of M4M5 and 
M 4 P  with the  face MI A&M3 of the  tetrahedron of reference. :, f and all 
other ratios representing non homogeneous projective coordinates can be 
defined in the same way. 

From this geometric definition, t o  reconstruct the projective coordinates 
of any matched pair of points is t o  be able t o  perform the basic geometric 
operation of intersecting a line with a plane only through image operations. 
This is possible once tlre epipolar geometry has been established. 

Firstly, note that  the viewing plane of the M4 M5 with respect t o  the 
first image intersects the plane MlM2A13 in the line L tha t  goes through 
the point A.  The projection I of L in the first image is confused with tha t  
of M4M5 in the first image plane but not in the second. In addition its 
projection in the second image can be reconstructed. If we note that  N 4  
(resp. N s )  is tlre intersection point of the viewing line of the  M4 (resp. 
M 5 )  with respect to the first image and the plane M l M Z M 3 .  The line L is 
determined by Nq and N 5 .  124 and n~ are confused with rn4  and ms in the 
first image, and n; and n; can be reconstructed in the second image with 
the help of the epipolar geometry. T h u s  1' = n'4 x rnr5 and the projection 



Figure 5: The geometric definition of projective coordinates. 

a' of A in the second image is the intersection of I' and Z i 5  with li5 is the 
I I line going through mi and mi: = m 4 x n 5 .  

Therefore the projection b' of B in the second image is the  intersection 
point of the line atmi and the line mimi. In the same way as for Ms,  we can 
deal with P t o  get the projection r' of R in the second image, the cross ratio 
of mi, m;, b', TI  defines one of the non homogeneous projective coordinates 
of P ,  since we a1wa.y~ have 

I 
{ ?  n ;  T }  r {MI, M2; B,  R}.  

4 Practical reconstruction 

For direct solution of the system 4 by non linear optimisation, as we have 
mentioned above, Levenberg-Marquardt's method is used. Practical experi- 
men t ation shows that  the algorithm works very well. The  convergence does 
not depend too much on the initial starting points, it converges with almost 
any initialisation although we have n o  mean to formally prove its conver- 
gence. 



To have some intuitive ideas of different shape representation, we will 
first show some reconstruction on a simulated cubic grid and a simulated 
glass (from the Gnuplot demonstration da ta )  data. A projective shape is 
defined up t o  a collineation, no metric information is present, only projec- 
tive properties are preserved. For example, aligned points remain aligned, 
coplanar points remain coplanar and conics are transformed into conics, a 
circle may be represented by an  hyperpole . . . Such a pure projective shape 
can be displayed by its non homogeneous coordinates (cf. Figure 6, Figure 7, 
and Figure 8). 

Figure 6: A top view of the projec- Figure 7:  Another view of the pro- 
tive "cubic grid". jective "cubic grid". 

Next, a pure project.ive shape can be transformed into its affine or Eu- 
clidean representation. However t o  do this, supplementary af ine  and Eu- 
clidean information shoud be incorporated. That  is, we should determine a 
collineation A which brings the  canonical basis e;, i = 1,. . . , 5  t o  any five 
points 

If these five points are affinely known, that  is 4 of them can be assigned 
the standard af ine  coordinates, the fifth point should have its affine coor- 
dinates with respect to these 4 points, that  is the  5 points can have the 



Figure 8: A projective pla.ne. 

following coordinat-es 

Figure 9: .4n affine reconstruction of 
a. glass 

T h a t  is, to get the  affine representation, affine knowledge ( a ,  /3,7) have 
t o  be available. Then by solving t h e  linear equations system 7: we obtain the  
collineation which transforms a pure projective shape into an affine shape. 

To have the  usual Euclidean shape representation, the  Euclidean coor- 
dinates should be known for the  5 points, that. should be like 

then,  solve for the corresponding collineation which transforms a pure 
projective shape into an  usual Euclidean shape. 

Figure 9 shows an affine shape of the  glass. 
We  h a v e  also experimented on  real da ta .  AH our experiences a re  con- 

ducted with a Pulnis 765 camera, a lens of 18mm and FGlSO Imaging 
technology g rab  board. The  camera is assumed to be a perfect pin-hole 
one, distorsion was not compensated. The first d a t a  set is obtained from 
the  s tandard calibration pattern.  Since t h e  geometry of t h e  pattern is reg- 
ular, it makes possible the  matching of t h e  points, and  the 3D measures are  



available to  verify the reconstruction results. Since only one planar pattern 
is available, we create a Yransparent" pattern, tha t  is, once the camera is 
fixed in  a position, the pattern plane is then translated. This is equivalent 
t o  have several transparent calibration pattern. In our experimentation, we 
used 3 transparent planes and 3 positions (cf. Figure 10 and Figure 11). 
The  contour points are obtained by a standard gradient based edge detec- 
tor. Then follows the edge linking to obtain the  least squares fitted lines. 
The  image points are computed as the intersection points of the lines. 

Figure 10: A top view of the recon- Figure 11: A side view of the  recon- 
structed transparent calibration pat- structed transparent calibration pat- 
tern tern 

Another da ta  set is obtained from a paper house. About 90 images are 
taken around the house. Then the curvature maxima are tracked by corre- 
lation operator. About 40 points are tracked over the total sequence. Then, 
five images of the total sequence are selected t o  perform the reconstruction. 

In Figure 12 ant1 13, the first and the last images of the  sequence are 
displayed. 

Figures 14, 15 and 16 show the reconstructed house by the direct non 
linear method. Notice in these figures the quality of the  reconstruction: 
windows are allnost perfectly aligned with the wall. The  boundary of the 
windows look like not lined u p  each other, they are really not in practice! 

To estimate the confidence limits of the reconstructed points, we get the 



Figure 12: The first image of the  se- Figure 13: The last image of the se- 
quence quence 

Figure 13: A top view of the reconstructed house by the direct method 



Figure 15: A side view of the reconstructed house by the direct method 

Figure 16: A f ron t  view of the reconstructed house by t h e  direct method 



covariance matrix from Levenberg-Marquard t's algorithm and we draw the 
confidence region ellipsoid related t o  each point as illustrated by the figures 
17, 18 in which each associated ellipsoid is displayed by its corresponding 
bounding parallelepiped . 

Figure 17: A side view of the reconstruction with their confidence region. 

5 Discussion 

As concluding rernar ks, the relative reconstruction is of high quality, hav- 
ing very good numerical behavior, this kind of relative approach has many 
advantages over the tra.ditiona1 approaches both mathematically and exper- 
imentally. One of the most important key points of the approach is tha t  we 
have no need t o  calibrate cameras. Therefore zooming, focusing . . . of an  
active moving camera can be fully absorbed by this calibration free process. 
Multiple observation mesures are natually globally integrated in the estima- 



Figure 18: A front .  view of the  reconst.ruction with their confidence region 



tion process, though scene points should not necessaryly be present in all 
images, thus provides us with a more precise reconstruction. Moreover the 
mathematical formulation appears in an  extremely simple form thanks t o  
the elegant projective geometry. 

As for non linear least squares estimation, Leven berg-Marquardt's algo- 
rithm provides actually quite satisfactory results. The convergence does not 
depend on the  initial starting point and the  number of iterations necessary is 
reasonable. However specialied implementation of Levenberg-Marquardt for 
our problems will improve the  computing time, and also some more powerful 
numerical optimisation algorithm such as confidence region can be used to 
still improve the results. 

We are currently beginning on the studies of the precision of the  re- 
construction with a full st  a t  istical model following our first experiments 
illustrated in Figures 17 a n d  18. We are also comparing the method with 
the others dealing with the similar problems, especially the linear method 
of Faugeras 151: but it is too early for the time being to make conclusion on 
these compa.rative stndies. 
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