
The Oxford Robot World ModelBill Triggs and Stephen CameronProgramming Research Group, Oxford University,11 Keble Rd, Oxford OX1 3QD, U.K.fbill,stepheng@robots.oxford.ac.ukABSTRACTAfter reviewing the advantages of supplying a robot with a geometric model of its surroundings,we discuss the design of a modular object-oriented database to support such a model, which is beingimplemented as part of the Oxford Autonomous Guided Vehicle project.1. Model Based RoboticsThe Oxford Autonomous Guided Vehicle [1, 2] is a mobile robot truck or forklift designedto operate with a degree of autonomy in a structured and fairly well known factory-like environment. It has a number of advanced sensor systems for navigation, obstacleavoidance and pallet acquisition, and a corresponding set of task and path planningstrategies, but at the heart of the software is a model-based representation of the vehicleand its environment, supported by a purpose-built geometric database.There are several good reasons for providing a robot with such a world model:(i) It provides an e�ective, easy to use, high level interface to the robot: task levelbehaviour such as `pick up the pallet at x and carry it to y' is natural to a robotwhich `understands' its surroundings.(ii) It encourages a correspondently clean internal architecture in which independent ve-hicle subsystems such as sensing and data fusion, vehicle controlling, and path andtask planning modules communicate with one another mostly via the world model.(Albeit there are usually a few time or safety critical mechanisms such as basic vehi-cle reexes which must bypass the model). This modular, inherently parallelisable,model-based, data-driven architecture simpli�es the introduction of new subsystemsby providing a uniform inter-module interface; in particular it allows vehicle capa-bilities to be extended by the addition of more or less generic `expertise modules'which need only interface with the relatively simple and vehicle-independent modeldatabase.(iii) It decouples essentially robot-independent environmental information from the robot-speci�c software, allowing it to be handled by e�cient specialist code such as thespatial database and shared between a number of robot and control processes. Theresult is an integrated model of the whole environment which is immediately exten-sible to large multi-robot systems and provides a solid foundation on which to buildinteracting-robot and factory-wide controllers.NATO ASI Expert Systems and Robotics, Corfu, Aug 1990.

central coordinator

model updates

. . . .

added expert
modules

path
planners

task
plannercontroller

hardware
vehicle

vehicle

sensorsensor

sensor
fusion

central supervisor

Central Database

disk backup

interface
end user

and scheduler

tasks
status

vehicle

Local Database

modeller
geometric

and processes
other vehicles

Figure 1: A modular architecture for a world-model based multi-robot system.Fig. 1 illustrates the model-based architecture we are developing for the agv project.Before discussing this in detail we shall briey list some of the `expert modules' beingdeveloped by other contributors to the project, which will eventually be interfaced to theworld model:(i) The Constructive Solid Geometry engine robmod [3, 4], which was co-written byone of us, is being used for all of the solid modelling on the project. It provides arange of geometric expertise to its clients, including spatial bounds on objects for theindexing system, lists of visible edges for model-based vision, and very e�cient threedimensional object interference detection for use by the path planning modules.(ii) A range of model-based sensor systems are being developed, including a promisingKalman-�lter-based sonar system [6], infra-red range and time-of-ight scanners,and single and multiple camera vision systems [7].(iii) A number of di�erent path planners are being evaluated, including generate-and-

& process states
tasks, schedulesWORLD MODEL

features
cache of sensor

path plans
cache of local

and routemaps
factory layoutand 3D models

object positionsFigure 2: Types of information stored in the robot world model.test, potential �eld and con�guration space algorithms and several heuristics forcommon vehicle manoeuvres, with a view to incorporating some or all of them ina `path planning expert' capable of choosing and invoking a suitable (combinationof) method(s) for any given problem [5]. This will probably take the form of a rulebase driving a battery of hard-coded planning algorithms.(iv) An `expert palletiser' is being developed to plan the task of clearing a region clutteredwith pallets and obstacles. This requires the integration of the above path planner, arule-based system enhanced with several graph-based heuristics to select a suitableorder for clearing the pallets, and a docking manoeuvre planner to supervise thevehicle as it approaches and picks up pallets.It is hoped to make all of these modules su�ciently exible to be used with other vehiclesor systems.A useful robot world model must contain a wide variety of information, for example(see �g. 2):(i) Representations of the physical layout of the environment and the objects within itsuch as walls, pillars, pallets and robot vehicles.(ii) More detailed descriptions of objects such as three dimensional solid or boundarymodels.(iii) Maps of features important to model-based sensor systems, such as visible edges andsonar-reecting walls and corners.(iv) A decomposition of the workspace into functional regions such as roadways, pro-cessing sites and stores, and a corresponding route-map graph for large scale routeplanning.(v) Caches of reusable local or temporary data such as details of paths planned aroundlocal obstacles and partial feature maps of unidenti�ed objects.(vi) State, task, and scheduling information for the modelled robots and manufacturingprocesses.The critical component in this model-based architecture is the database which un-derlies the world model: it must be able to store and access at least the above types ofinformation; it must be particularly e�cient for the common geometrically or spatially

organised data; it must interface easily both with the end user and with a potentially widerange of robot subsystems; and it must be su�ciently exible to deal with unexpectedtypes of information and subsystem as neither of these are known perfectly in advance.Moreover, even for a single robot system such as the agv we feel that the modeldatabase should be capable of supporting a distributed multi-robot multi-process worldmodel because:(i) This allows the robot software to be simply partitioned into a number of independentmodules, each with access to the database, as above.(ii) Even a robot as autonomous as our agv must exchange a considerable amount oftask, state and environmental information with a land-based supervising computerover a (low-bandwidth radio) link, so that both vehicle and supervisor world modelsof some sort are required, together with a reasonably e�cient data-exchange proto-col. It seems sensible to use the same format for both model databases and organisethe communications around database records, in other words to build a primitivedistributed database system: this distribution may as well be built in to the databaseat the outset.(iii) A robot designed around a multi-robot database is more easily adapted to an in-tegrated multi-robot environment. Such integrated systems are interesting in theirown right and are likely to be of very considerable practical importance in the future.The support of such a multi-process system requires some sophistication of the database,in particular the consistency of multiple distributed copies of database records must bemaintained in real-time, preferably without undue complication to either the user interfaceor the implementation.2. The Oxford Robot Database: DesignSince we are not aware of any existing database which meets the above requirements, weare developing our own modular object-oriented database system speci�cally for robotmodelling in a distributed environment.In this system generic header structures known as `Objects' are attached to all dataitems; for the most part the database uses only these header �elds, however one such�eld describes the type of data contained in the Object and if necessary the database canmanipulate this private data with the type-speci�c Object routines supplied with eachtype. The Object header is intended to provide a succinct description of the enclosed datasuitable for use with a range of indexing systems, however it actually contains enoughinformation to describe simple physical objects in its own right (see �g. 3). Fields areprovided for an object name string and a unique system-wide object serial number, fora vector of user-de�ned binary `object attributes' and a time-of-last-modi�cation of theobject, and most importantly for a spatial con�guration (position and orientation) and adescription of the spatial region occupied by the object. The main types of index currentlysupported correspond to these �elds | in particular it is possible to access an object byname or serial number and by two or three dimensional spatial position | however newtypes of index are very easily added.The spatial parts of the system are `two and a half dimensional': all positions arethree dimensional but coordinate transformations always preserve the vertical axis so thatobject orientation is given by a single angle. The spatial extent of an object is speci�ed

bounding polygon

housekeeping

timestamp

spatial model tag

bounding box

spatial configuration

attributes

serial number

name

private data

OBJECT

Figure 3: The Object header structure.by a three dimensional bounding box (aligned with the current coordinate system) and anoptional two dimensional inscribed polygon; these allow the database to perform fast butfairly crude object localisation and interference detection, and e�cient spatial indexing.The database kernel deliberately does not have solid modelling expertise, since if full threedimensional shape descriptions or interference tests are required (for example for visibleedge prediction or path planning in a cluttered region) a specialist geometric modellercan easily be run as a database subprocess. (There is a tag in the Object header for amodeller-based shape description). At present this role of `system geometry expert' is�lled by the Constructive Solid Geometry modeller robmod [3, 4], however the modelleris not tightly coupled to the database and could easily be changed or omitted if required.In operation, the database kernel attempts to maintain appropriate multiple copies ofobjects and all indices without user intervention, so that when an object is locally created,modi�ed or destroyed the changes are automatically propagated to all database processeswhich have expressed an interest in objects of that class, and are reected in all indices,local or remote, which contain or should contain the object. Thus, each client processcan behave as if its own copy of an object was the only one and use a variety of indexingsystems without explicitly having to maintain them. This process, illustrated in �g. 4, isachieved as follows:All indices present a uniform interface to the user with primitives such as objectinsertion and deletion and a generalised search which performs a user-de�ned action onevery object in the index which �ts a user-supplied `Object Template'. Object Templatesare data structures designed to act as `Object �lters' and are used uniformly throughoutthe system to select interesting classes of objects, in particular every index has a privateTemplate which determines which objects it will accept. Moreover, all indices within thesystem are actually Objects in their own right and may themselves be stored in systemindices. This allows local indices to be maintained by keeping an index of indices andsearching it for the indices which should be updated when a particular object is altered.

.

. . . .

. . . .

. . . .

. . . .

Local Database

local Objects

local indices

. . . .

Database
Remote

Remote
Database

Database
Remotedatadata datadata

Index of Indices

‘Remote Indices’

Network
Communications

. . . .

Figure 4: Architecture of the model database.Similarly, a remote process with an interest in a class of objects lodges a `Remote Index'in the local index of indices; this acts as a gateway to the remote process, transmittingappropriate classes of changes across a communications network to its parent. In bothcases Object Templates are used for object selection and index search pruning.We have not yet addressed the di�cult problems of inconsistency or deadlock whicharise when several processes simultaneously attempt to modify an object, however theseare not expected to be severe in our domain as the few parts of the database which arefrequently changed (such as robot states and positions) tend to be under the control of asingle process.3. The Oxford Robot Database: ImplementationAt present the system is con�gured as a central database serving a number of sensor,controller and planning processes, each with embedded local database code. It is writtenin c and runs on (a network of) sun workstations under unix, using sun's RemoteProcedure Call and External Data Representation mechanisms for network (internet)communications in a machine-independent data format. The present implementation isonly a prototype and the following changes are being considered: switching to an object-oriented language such as c++ would simplify the code considerably and allow a richerobject hierarchy, although the loss of portability may be a problem; unix responds tooslowly for realistic robot control and parts of the system will have to be ported to adi�erent operating system, probably parallel c or occam as our vehicle controller isTransputer-based; and the Remote Procedure Call mechanism is not well adapted to ourpurposes and may have to be replaced with a lower level network protocol.

. . . .

. . . .

Y-tree

X-tree

Object

Z-tree

Object list

Data

Spatial Index

Figure 5: Spatial indices have a layered binary tree structure.All of the basic types of indices are implemented using binary trees. The name andserial number indices are con�gured forms of a general purpose binary-tree index (withadditional tree-balancing code) and the two and three dimensional spatial indices have alayered binary tree structure as follows:Recall that spatial indices, being Objects, are provided with spatial con�gurations andbounding boxes; all indexing calculations are performed in index-con�guration-alignedcoordinates so that spatial indices with arbitrary spatial alignment are possible. For anobject to be stored, its bounding box (in aligned coordinates) must overlap the alignedbounding box of the spatial index. If this is so, the index box is repeatedly bisected in the

Figure 6: A two dimensional spatial index in action.x-direction, the half containing the object being retained, until the object box is cut by abisection rectangle; this rectangle is then bisected in the y-direction until the object boxis cut by a bisection line; and the line is bisected in the z-direction until a bisection pointfalls within the object box; the object is then stored in a list of the objects associatedwith this bisection point. Thus, a three dimensional spatial index is a binary (x{) tree ofbinary (y{) trees of binary (z{) trees of lists of objects, as illustrated in �g. 5. Similarly,a two dimensional index is an x-tree of y-trees of object lists.As is often the case with bisection-based spatial indices, each tree node is associatedwith a unique bounding box (the box which is bisected at the node), a unique spatial point(the centroid of the node box), and a unique set of three binary fractions (the coordinatesof the node centre in the system normalising the index box to [0; 1]� [0; 1]� [0; 1]), whichcan conveniently be used for node identi�cation and tree traversal. Objects are stored atthe node corresponding to the smallest node box containing the object and the �rst nodecentre to fall inside the object box.Fig. 6 illustrates a two dimensional spatial index in operation. The polygons and

bounding boxes of the objects are shown, and the dotted lines are node bisectors; thus,`pallet1' is cut by the third layer of bisection on the x-axis (which also cuts `pallet2') andthe third layer bisection on the y-axis, and its fractional node coordinates are (:001; :011).To prevent very small or thin objects falling too deep in the tree a resolution cut o� isusually applied, objects being stored in the smallest remaining node box containing them.It is possible to alter the order of the node bisections without a�ecting the depth of anyobject in the tree.Note that the node boxes repeatedly overlap one another: this means that �nding theobjects overlapping a given box requires a search of all of the parents (containing nodes)and many of the children (contained nodes) of the box node; however the search is easilyimplemented by recursively eliminating nodes (and hence subtrees) which do not overlapthe given box and this requires only a single coordinate comparison at each node.There are of course many alternative ways of organising such a bisection-based spatialindex; in particular quad-tree or oct-tree based representations [8] (in which the node boxis divided into quadrants or octants at each level) might be thought to be the obviouschoice. The chosen bin-tree system has a number of advantages over these:(i) The bin-tree representation has node-boxes of arbitrarily high aspect ratio and istherefore extremely e�cient at circumscribing long thin objects such as walls, corri-dors and rows of storage racks, provided they are aligned with the index axes. Suchobjects are obviously very common in factory-like environments. By comparison,the quad{ and oct-tree structures (at least in their simplest forms) force all of thetree nodes to have the same aspect ratio as the original index-box and may thereforebe rather poor at object localisation, particularly if the region being indexed is farfrom square.(ii) The bin-tree representation leads to slightly simpler and more compact code and istrivial to adapt to indices of any dimensionality; in fact the two and three dimen-sional indices share the same code in our system.(iii) Although it is true that quad{ or oct-trees tend to be shallower than their binaryequivalents, it does not follow that they are much faster to traverse or more compact.Our experience is that access time depends more on the total amount of bisectionrequired than on the tree depth because most of the time is spent doing bisectionarithmetic, and that (at least in the robot modelling domain) the higher branchingratio trees are actually less compact because most of the node pointers are neverused. One caveat is that because the bin-tree system uses a larger number of smallernodes it is comparatively more dependent on the e�ciency of the memory allocatorfor nodes.In practice this layered binary tree system has proved to be highly e�cient at objectlocalisation, simple, fast and reasonably compact, despite the fact that quite deep treesare generated.4. SummaryMany robots would be signi�cantly more exible, powerful and easy to use if they were�tted with a geometric model of their surroundings, and this is particularly true of au-tonomous robot vehicles. When such a world model is supported by a properly designed

database the further advantages of a modular, data-driven, database-centred system ar-chitecture with a clean, consistent user interface are available, and if this database is alsoable to support distributed processes the resulting system forms the basis of a powerfulintegrated multi-robot environment. A particular advantage of this architecture is theease with which it can be extended as new expertise becomes available.Running such a model-based, data-driven system makes considerable demands of theunderlying database, however we feel that these will largely be met by the modular object-oriented robot database system which we are developing as part of the Oxford AutonomousGuided Vehicle project. AcknowledgementsThe AGV project is supported by the SERC ACME Directorate, grant GR/E62776, and is basedon a vehicle provided by GEC-FAST. Our accommodation at the ASI was supported by NATO.References[1] Michael Brady, Stephen Cameron, Hugh Durrant-Whyte, Margaret Fleck, David Forsyth,Alison Noble, and Ian Page. Progress towards a system that can acquire pallets and cleanwarehouses. In Fourth Int. Symp. Robotics Research, pages 359{374, Santa Cruz, August1987.[2] S. A. Cameron. A geometric database for the Oxford autonomous guided vehicle. InB. Ravani, editor, NATO ASI CAD Based Programming for Sensory Robots, pages 511{526, Castelvecchio Pascoli, July 1988. Springer-Verlag. Vol. F-50.[3] S. A. Cameron and J. C. Aylett. Robmod users guide. Software report, Department ofArti�cial Intelligence, University of Edinburgh (U.K.), 1987.[4] Stephen Cameron and Jon Aylett. Robmod: A geometry engine for robotics. In IEEE Int.Conf. Robotics and Automation, pages 880{885, Philadelphia, April 1988.[5] T. Hague and S. Cameron. Path planning for the Oxford AGV. In Proc. IEEE Int. Workshopon Intelligent Motion Control, Istanbul, August 1990.[6] John J. Leonard and Hugh F. Durrant-White. A uni�ed approach to mobile robot navigation.Technical report, Dept. Engineering Science, Oxford, UK, 1990.[7] Ian Reid, Michael Brady, Alan McIvor, S. Marshall, I. B. Knight, and R. C. Rixon. Rangevision and the Oxford AGV. In Image Processing 89, pages 51{72, Wembley, 1989. Onlinepublications.[8] Hanan Samet. The quadtree and related hierachial data structures. ACM Computing Sur-veys, 16(2):187{260, June 1984.

