Rodent behavior annotation from video

Abstract : In this report we describe the models with which we experimented to predict rodent behavior from video recordings. Automatic recognition of rodent behavior from video is a desirable tool in behavioral studies since it can significantly reduce the required human effort and simultaneously reduce the dependence of results on particular human observers. In our research we considered several variants of Hidden Markov Models and compared results against a simple logistic discriminant classifier that ignores the correlation of behaviors between successive frames. For a selection of four behaviors a correct classification rate around 75% is obtained.
Type de document :
Rapport
[Technical Report] IAS-UVA-05-02, University of Amsterdam. 2005, pp.18
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00548500
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 09:06:27
Dernière modification le : mercredi 29 novembre 2017 - 14:49:45
Document(s) archivé(s) le : lundi 21 mars 2011 - 03:03:40

Fichiers

verbeek05tr2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00548500, version 1

Collections

Citation

Jakob Verbeek. Rodent behavior annotation from video. [Technical Report] IAS-UVA-05-02, University of Amsterdam. 2005, pp.18. 〈inria-00548500〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

273