S. Agarwal, A. Awan, and D. Roth, Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, pp.1475-1490, 2004.
DOI : 10.1109/TPAMI.2004.108

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, 1984.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 1991.

G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, ICML, pp.121-129, 1994.
DOI : 10.1016/B978-1-55860-335-6.50023-4

F. Jurie and W. Triggs, Creating efficient codebooks for visual recognition, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1
DOI : 10.1109/ICCV.2005.66

URL : https://hal.archives-ouvertes.fr/inria-00548511

B. Leibe and B. Schiele, Interleaved Object Categorization and Segmentation, Procedings of the British Machine Vision Conference 2003, 2003.
DOI : 10.5244/C.17.78

T. Leung and J. Malik, Representing and recognizing the visual appearance of materials using threedimensional textons, International Journal of Computer Vision, vol.43, issue.1, pp.29-44, 2001.
DOI : 10.1023/A:1011126920638

E. Haritaglu, M. Betke, and L. Davis, Multiple vehicle detection and tracking in hard real time, IEEE Intelligent Vehicles Symposium, 1996.

D. Mladenic and M. Grobelnik, Feature selection on hierarchy of web documents, Decision Support Systems, vol.35, issue.1, pp.45-87, 2003.
DOI : 10.1016/S0167-9236(02)00097-0

S. Rajan and J. Ghosh, An Empirical Comparison of Hierarchical vs. Two-Level Approaches to Multiclass Problems, 2004.
DOI : 10.1007/978-3-540-25966-4_28

A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing features: efficient boosting procedures for multiclass object detection, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.762-769, 2004.
DOI : 10.1109/CVPR.2004.1315241

V. Vapnik, Statistical Learning Theory, 1998.

V. N. Vapnik, The nature of statistical learning theory, 1995.

M. Vidal-naquet and S. Ullman, Object recognition with informative features and linear classification, Proceedings Ninth IEEE International Conference on Computer Vision, pp.281-288, 2003.
DOI : 10.1109/ICCV.2003.1238356

J. Willamowski, G. Arregui, C. R. Csurka, L. Dance, and . Fan, Categorizing nine visual classes using local appearance descriptors, International Workshop on Learning for Adaptable Visual Systems (LAVS04), 2004.

Y. Yang and J. O. Pedersen, A comparative study on feature selection in text categorization, ICML, pp.412-420, 1997.