Building Roadmaps of Minima and Transitions in Visual Models

Cristian Sminchisescu 1 Bill Triggs 2
2 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.
Type de document :
Article dans une revue
International Journal of Computer Vision, Springer Verlag, 2005, 61 (1), pp.81--101. 〈http://www.springerlink.com/content/hq1w42m67066334m/〉. 〈10.1023/B:VISI.0000042935.43630.46〉
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548527
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 09:09:09
Dernière modification le : mercredi 10 octobre 2018 - 21:28:02
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:45:21

Fichier

Sminchisescu-ijcv05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IMAG | INRIA | UGA

Citation

Cristian Sminchisescu, Bill Triggs. Building Roadmaps of Minima and Transitions in Visual Models. International Journal of Computer Vision, Springer Verlag, 2005, 61 (1), pp.81--101. 〈http://www.springerlink.com/content/hq1w42m67066334m/〉. 〈10.1023/B:VISI.0000042935.43630.46〉. 〈inria-00548527〉

Partager

Métriques

Consultations de la notice

407

Téléchargements de fichiers

196