Tumor Segmentation from Magnetic Resonance Imaging by Learning via one-class support vector machine

Abstract : In image segmentation, one challenge is how to deal with the nonlinearity of real data distribution, which often makes segmentation methods need more human interactions and make unsatisfied segmentation results. In this paper, we formulate this research issue as a one-class learning problem from both theoretical and practical viewpoints with application on medical image segmentation. For that, a novel and user-friendly tumor segmentation method is proposed by exploring one-class support vector machine (SVM), which has the ability of learning the nonlinear distribution of the tumor data without using any prior knowledge. Extensive experimental results obtained from real patients' medical images clearly show that the proposed unsupervised one-class SVM segmentation method outperforms supervised two-class SVM segmentation method in terms of segmentation accuracy, speed and with less human intervention.
Type de document :
Communication dans un congrès
International Workshop on Advanced Image Technology (IWAIT '04), Jan 2004, Singapore, Singapore. pp.207--211, 2004
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548532
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 09:09:25
Dernière modification le : vendredi 7 janvier 2011 - 16:42:08
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:45:22

Fichier

ZMEC04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00548532, version 1

Citation

Jianguo Zhang, Kai-Kuang Ma, Meng-Hwa Er, Vincent Chong. Tumor Segmentation from Magnetic Resonance Imaging by Learning via one-class support vector machine. International Workshop on Advanced Image Technology (IWAIT '04), Jan 2004, Singapore, Singapore. pp.207--211, 2004. 〈inria-00548532〉

Partager

Métriques

Consultations de la notice

742

Téléchargements de fichiers

472