The Tradeoff Between Generative and Discriminative Classifiers

Guillaume Bouchard 1 Bill Triggs 2
2 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate. We introduce a family of classifiers that interpolate the two approaches, thus providing a new way to compare them and giving an estimation procedure whose classification performance is well balanced between the bias of generative classifiers and the variance of discriminative ones. We show that an intermediate trade-off between the two strategies is often preferable, both theoretically and in experiments on real data.
Type de document :
Communication dans un congrès
16th IASC International Symposium on Computational Statistics (COMPSTAT '04), Aug 2004, Prague, Czech Republic. pp.721--728, 2004
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548546
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 09:09:34
Dernière modification le : mercredi 11 avril 2018 - 01:53:05
Document(s) archivé(s) le : lundi 21 mars 2011 - 03:14:02

Fichier

Bouchard-compstat04.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00548546, version 1

Collections

IMAG | INRIA | UGA

Citation

Guillaume Bouchard, Bill Triggs. The Tradeoff Between Generative and Discriminative Classifiers. 16th IASC International Symposium on Computational Statistics (COMPSTAT '04), Aug 2004, Prague, Czech Republic. pp.721--728, 2004. 〈inria-00548546〉

Partager

Métriques

Consultations de la notice

819

Téléchargements de fichiers

796