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Abstract

In this paper we address the problem of matching two images wh
two di erent resolutions: a high-resolution image and a lowresolution
one. The di erence in resolution between the two images is ricknown
and without loss of generality one of the images is assumed toe the
high-resolution one. On the premise that changes in resolidn act as a
smoothing equivalent to changes in scale, a scale-space regentation
of the high-resolution image is produced. Hence the one-tore classi-
cal image matching paradigm becomes one-to-many becauseettow-
resolution image is compared with all the scale-space rementations
of the high-resolution one. Key to the success of such a prag®is the
proper representation of the features to be matched in scalgpace. We
show how to represent and extract interest points at variabé scales and
we devise a method allowing the comparison of two images at twdif-
ferent resolutions. The method comprises the use of photortréc- and
rotation-invariant descriptors, a geometric model mappirg the high-
resolution image onto a low-resolution image region, and ammage
matching strategy based on local constraints and on the robst esti-
mation of this geometric model. Extensive experiments showhat our
matching method can be used for scale changes up to a factor 6f

Keywords image matching, scale-space, points of interest, matchimgn-
straints, rotation-invariant descriptors.
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Figure 1. An example of an image pair with di erent resolutios: low-
resolution (left) and high-resolution (right).

1 Introduction

The problem of matching two images has been an active topic t#search
in computer vision for the last two decades. The vast majogtof existing
methods consider two views of the same scene where the vieinsodi er
by small o sets in position, orientation and viewing parameers such as focal
length. Under such conditions, the image features asso@dtwith the two
views have comparative resolutions and hence they encapdal scene fea-
tures which appear in the two images at approximatively theane scale. In
this paper we address a somehow di erent problem that has r=wed little
attention in the past. We consider the problem of matching tw images with
very di erent resolutions.

Obviously, the resolution with which a 3-D object is obserwkin an image
mainly depends on two factors: the distancd from camera to object and the
focal lengthf associated with the camera lens. Image resolution increase
with f and decreases withd. Therefore,r = f=d is a good, rst-order
approximation, measure of image resolution. We are intettesl in developing
matching techniques which take as input an image pair whosesolutions are
quite dierent, r; << r ,. In practice we will describe an image-matching
technique which takes as input a low-resolution image (imag#l) and a
high-resolution one (image #2). It will be shown that, usingthe approach
advocated below, it is possible to match two images satisifig r,=r; = 6.

As an example we consider the image pair in Figure 1. Both imeg were
taken with a camera placed at 11 kilometers (6.9 miles) awayoim the top
of the mountain. For the rst image (left) we used a focal lenth equal to
12mm while for the second one (right) we used a focal lengthued to 72mm.
Notice that the high-resolution image corresponds to a smaiegion of the
low-resolution one and it is quite di cult to nd the exact po sition and size

2



of this region. Moreover, the low-resolution image (left) avers in practice
a wide range of resolutions because scene objects appearaatous depths
values.

Therefore, the search space associated with the featurefemture match-
ing of two such images is larger and more complex than the onssaciated
with the classical stereo matching paradigm. The classicapproach to image
matching proceeds as follows: (i) extract interesting poirfeatures from each
image, (ii) match them based on cross-correlation, (iii) copute the epipo-
lar geometry through the robust estimation of the fundameratl matrix, and
(iv) establish many other matches once this matrix is knownFor a number
of reasons, this method cannot be applied to the problem at hd:

1. Point-feature extraction and matching are resolution-ependent pro-
cesses.

2. The high-resolution image corresponds to a small regioffi the low-
resolution one and hence the latter contains many featureshigh do
not have a match in the former.

3. It may be di cult to estimate the epipolar geometry becau® there is
not enough depth associated with both the high resolution iage and
its associated small area of the low-resolution image.

The solution suggested in this paper consists of considegia scale-space
representation of the high-resolution image and of matchinthe low-resolution
image against the scale-space descriptions of the highaletion one. A scale-
space representation may be obtained by smoothing an imagéwGaussian
kernels of increasing standard deviations. Therefore, thegh-resolution im-
age will be described by a discrete set of images at variougsles. On the
premise that decreasing the resolution can be modeled as geasmoothing
which is equivalent to a scale change, the one-to-one imagatshing problem
at hand becomes a one-to-many image matching problem [4].

In this paper we describe such a matching method. Key to its scess are
the following characteristics:

The scale-space representation of image point features {jaterest points)
together with their associated descriptors;

A geometric model describing the mapping from the high-refion
image to a region of the low-resolution one.

An image-matching strategy combining point-to-point asginments with
a robust estimation of the geometric mapping between imagegions.
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Several authors addressed the problem of matching two imaggathered
from two very di erent viewpoints [6, 20, 24, 25] but they didnot consider a
large change in resolution. The use of scale-space in comjtion with stereo
matching has been restricted to hierarchical matching: coespondences ob-
tained at low resolution constrain the search space at higheesolutions
[7, 21, 14]. Scale-space properties are thoroughly studied[15] and the
same author attempted to characterize the best scale at whi@an image fea-
ture should be represented [16]. A similar idea is presented[17] to detect
stable points in scale space.

Our work is closely related to [9] who attempts to match two irages of
the same object gathered with two di erent zoom settings. Hat-to-point
correspondences are characterized in scale space by cati@h traces. The
method is able to recover the scale factor for which two imagmints are the
most similar but it cannot deal with camera motions.

Local descriptors that are invariant with respect to ane grey value
changes, image rotations, and image translations were stad theoretically
in [13] and were used in the context of image matching in [2ZThese descrip-
tors are based on convolutions with Gaussian kernels and thelerivatives.
Therefore they are consistent with scale-space represditas. They are
best applied at image locations found by interest points and recent study
showed that the Harris corner detector [10] is the most relde interest point
detector [23]. However, these local descriptors are not Bs@nvariant and,
in spite of good theoretical models for scale-space invaria [12, 15], it is
more judicious, from a practical point of view, to compute loal descriptors
at various scales in a discrete scale-space [22].

The main contributions of this paper are the followings. Wettoroughly
study the behaviour of the Harris interest point detector uder a similarity
transformation. This detector comprises convolutions wit two Gaussian ker-
nels, one for weigthing and one for computing grey-level deatives. We show
under which conditions the detector is invariant to rotatioys and translations
in the image plane. Based on this we derive a scale-space esgntation of
interest points. This representation allows to match poirg from images at
very di erent resolutions, which has never been performedhithe past up
to a factor of 6. In order to match points we describe a way to peesent
local collections of points and we seek similarities betwesuch local collec-
tions at di erent scales. Finally a one-to-many image matdng technique
(with scale adjustment) is described. Many examples with veous scenes,
camera con gurations and settings illustrate the method bih quantitatively
and qualitatively.



Paper organization The remainder of this paper is organized as follows.
Section 2 brie y outlines the geometric model associated thithe image pair.
Section 3 suggests a framework for adapting the detection ioferest points
to scale changes, image rotations, and image translationsSection 4 de-
scribes the high-resolution to low-resolution matching ahsection 5 presents
experimental results.

2 Geometric modeling

One of the key observations enabling the matching of two imag at two
di erent resolutions is that the high-resolution image caresponds to a small
region of the low-resolution one. Without loss of generajit it may be as-
sumed that the high-resolution image has homogeneous resmn because
the observed 3-D features are, approximatively at the saméstance. Clearly
this is not the case for the low resolution image which contas various fea-
tures at various ranges. The matching task therefore contssin nding a

small region in the low resolution image that can be assigned the whole
high resolution one.

One reasonable assumption is to consider that the mappingtbeen the
high resolution image and the corresponding low-resolutiaegion is a plane
projective transformation, i.e., the scene correspondirtg this region is pla-
nar. Such a homography may well be represented by a 3 homogeneous full
rank matrix H. Let m be a point in the high-resolution imagd and m°be
a point in the low-resolution imagel ®©. One can characterize a region in the
low-resolution image such that the pointsn®2 R within this region verify:

01

m°% Hm (1)

Similarly, points outside this region do not verify this eqation. In general,
image descriptors which are invariant to such a general plafto-plane pro-
jective transformation are di cult to compute and therefore it is di cult to
properly select potential candidate points satisfying eql).

We can further simplify the geometric model and consider a sticted
class of homographies, namely a rotation about the opticake by an angle ,
a translation in the image plane by a vectofa; b, and asimilitude factor h:

h cos hsin a
m°=8 hsin hcos bim (2)
0 0 1

Notice that the projective equality in eq. (1) is replaced byan equality. In
practice it will be useful to replace the 3-vectorsn and m°used above by
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2-vectorsx and x%such that:

0 1 0 1
0 x 0 X
mo= B vk = andm = B v X =
1 1
1 1
With this notation, eq. (2) becomes:
x%= hRx + t (3)

whereR is the 2 2 rotation matrix and t is the translation vector.

In order to match two images which di er by such a geometric tansfor-
mation, one has to de ne a measure of similarity. One possiity is to use
correlation. In this case, the similarity betweerx 2 | and x°2 1°can be
written as:

xp[l"(x0 09 1x P

where p and p°are shift vectors. With the substitution for x°above, i.e.,
eq. (3) and with p°= hR p we obtain:

X
p[IO(hR(x p+t) 1x  pJ (4)

Therefore, one must nd a scale factoh, a rotation matrix R, and a
translation vector t for which the expression above is minimized. The search
space associated with such a technique is very large and trssaciated non-
linear minimization procedure has to deal with a four-paraeter cost function

[8].

3 Interest point detection for image matching

Alternatively, one may use interest points. ldeally, one wdd like to charac-
terize such image points by descriptors invariant to imageotation, transla-

tion and scale. Unfortunately, scale-invariant image desgptors are hard to

compute in practice. Therefore, the matching strategy wilbuild a discrete
scale-space for the high-resolution image thus by-passithg scale-invariance
problem. The image matching problem at hand then becomes aeto-many
image matching technique.

The steps for image-to-image matching are:



(i) characterize these points such that point-to-point coparisons are made
possible, and

(iif) determine the largest set of such correspondences cpatible with a
similarity between the high-resolution image and a low-reution re-
gion.

The one-to-many matching algorithm uses this procedure artie image
pair with the highest matching score determines the approfate scale for
matching and allows to estimate the scale change. The advaie of this ap-
proach mainly resides in step (iii) above. Two point-to-pait correspondences
are su cient to estimate the similarity parameters descriked in eq. (2) (four
such correspondences are necessary for a full homographyd therefore the
largest set of point correspondences is found by an e cienbbust estimator.

3.1 Interest point detection under similarity

We use the interest point detector proposed in [10]. This opstor was studied
experimentally and it was shown to be robust to image rotatigs, translations
and illumination changes [23]. However, the Harris point dector is not
invariant to changes in scale. In this section and in the nexsection we
derive an exact formula for analyzing the behaviour of thisnterest-point
detector over changes in scale, rotation, and translation.

We consider as before two imagdgx) and |1 {x9 with x = (u;v)> and
x%=(u®v9>.

An interest point is detected in imagel (or in image |9 as follows:

1. Compute the image derivatives in theu and v directions, I, and I,,.

These computations are carried out by convolution with the icerential
of a Gaussian kernel of standard deviation:

lu(x; ) = 1(X)?Gu(x; )
lv(x; ) = 1(xX)?Gu(x; )
Lalv(Xs ) = Tu(x; ) Iu(x; )

2. Form the auto-correlation matrix M (x; ; ~). This matrix sums up
derivatives in a window around a pointx with a Gaussian kernel
G(x; ~) being used for weighting:

GO~ 21206 ) GG 2ulu(x; )

MOCEI= Gea 2 ) szt ) O



3. X is an interest point if the matrix M has two signi cant eigenvalues,
that is, if the determinant and trace of this matrix verify a measure of
cornerness :

C(x) = det( M (x)) trace (M (x))? (6)

where is a xed parameter. An interest point is detected at image
location x if C(x) >t, wheret is a threshold.

In order to study the behaviour of this operator to changes irscale,
rotation, and translation, let us introduce the following rotation:

M(x;; ~)= G(x;~)?Q(x; ) (7)
with:
IIZ(X') ||(X')# I |
R O S -t R P

Under the assumption that the two images are properly normiaed, the
condition that must be satis ed is the equality of the two image intensities
at two pixels:

19x9 = 1(x) (9)
This allows us to build a relationship that must hold betweerthe autocorre-
lation matrices associated with two matching points in thewo images and
between cornerness measuremer@sand C° associated with the autocorrela-
tion matrix. The following proposition establishes thesealationships:

Proposition 1  The auto-correlation matrices at locationsx (in image 1)
and x° (in image 19 are related by the following formula provided that the
standard deviation of the smoothing Gaussian kernels arecosen such that
~0= h~
' 1

MAXE S~ = SRM (G 5 R’ (10)
The equivalent relationship between the two cornerness m@@ments is given
by the formula:

o= h—14c: (11)

Proof: Noticing that the trace and determinant of a matrix are invairant
with respect to a similarity transformation, i.e.,A ! B 'AB, itis straight-
forward to derive eq. (11) from egs. (10) and (6).

In order to show that eq. (10) holds, let us derive both sidesf @q. (9)
with respect tou and v:



r O @l 0 gl !
| @u @u |
|u :%} :%} 2: l%
v @l aF v
@v @v

The relationship between the pixel coordinatez®= hRx + t combined with
the chain rule of derivation allows us to otbain:

! 2 g0 a0 3 ! !
|0 du du | 00 S | 00
B =5 %I% =hR> Y
v du®  dv® Vo vo
dv dv

The formulae above allow us to express a relationship betwethe quadratic
forms Q(x; ) and QYx% 9, i.e., eq. (8):

Q(x; )= hR7QYx5 IR (12)

Finally, using the properties of convolution applied to eq(7) we obtain
the formula given by eq. (10) (see appendix A for a formal destion).

3.2 Interest point detection and scale-space

We consider now the scale-space associated with the higlsatition imagel .
The scale-space is obtained by convolving the initial imageith a Gaussian
kernel whose standard deviation is increasing monotonibal say s with
s > 1. At scale s we have the following image derivatives that allow the
estimation of interest points:

I (X)?Gu(X;s )
I (x) ?Gy(X;s )

lu(x;s )
lv(X;s )

If the task consists of matching a high-resolution imagé with a low-
resolution onel ¢ it is crucial to select the scale of at which this matching
has to be performed. The scale parameter must absorb the similarity
factor h such that interest points that are detected in imagé at scales best
correspond to interest points detected in image® Since the resolution of
decreases with increasing one needs to set:

1
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The scale-space interest-point detector is then de ned asliows. From
eg. (10) and with the relationship betweers and h we obtain the autocorre-
lation matrix:

4
2 . .
M(X;s;s~) = s°G(x;s~) ? ILLIJE)&;SS)) Irlz\(,)((x 'SS)) (13)

The cornerness measure becomes:

G(x) = s* det(M ¢(x)) trace (M 5(x))?
The following proposition is straightforward:

Proposition 2 If the interest points of an imagel are detected with the
cornerness measurement and with a thresholdt such thatC > t, then at
scales the interest points are detected witls*C >t .

In order to illustrate the results obtained with this scalespace interest-
point detector, we applied it to the high-resolution image bFigure 1 (right).
Figure 2 shows these results with = 1 and ~ = 2. The left side of this
gure shows the interest points detected in the low-resolitn image. The
image region corresponding to the high resolution image isamed out by
a factor of 5:3 which is the true scale factor between the two images. The
right side of this gure shows the high-resolution image wit interest points
detected at four di erent scales, 1, 3, 5, and 7. The best mdimg scale is
shown, side by side, with the zoomed-out low-resolution rieg. This is clear
evidence that the scale-space representation and deteatiof interest points
facilitates the matching task.

The importance of adapting the scale for interest point desption and
detection is shown on Figure 3. This gure shows a comparisdretween the
standard Harris detector and the scale-space interest poidetector. The
scale factor varies from 1 to 6. The scale-space version uses known
scale factor between test images to adapt the interest poinketection. The
measure used in order to evaluate the performance is the repability rate
introduced and thoroughly investigated in [23]. This mease takes into
account the number of points repeated between the refereniceage and the
scaled image with respect to the total number of points. One ay clearly
see that the scale-space detector shows very good perforec@nin the case
of the standard detector the results are insu cient above a cale factor of 2
(less than 40% of the points are repeated).
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Figure 2: Interest points detected at 4 scales (left) and thpoints detected
in the corresponding low-resolution image (right).
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Figure 3: Comparison of the standard Harris detectorStandard or bottom
curve) and the scale-space versio\dapted or top curve). The comparison
criteria is the repeatability rate which is displayed as a faction of the scale
factor.
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4 Robust image matching

The scale-space extraction and representation of interegbints will enable
us to devise an image matching method. The main idea is to coamne the
low-resolution image at one scale with the high-resolutionmage at many
scales. The scale at which the matching performs the best oesponds to
the largest set of point-to-point assignments between a lemsolution image
region and the high-resolution image.

Without loss of generality, while the low-resolution imagéCis represented
at one scale, the high-resolution imagk is represented at 8 di erent scales
,2,...,8 with =1. At each scales;, interest points are extracted
using eq. (13). Furthermore, each interest point (in both irages and at all
scales) is characterized by a description-vector whoseratnts are di erential
invariants. These invariants were introduced by Koenderket al. [13] and
were adapted for image matching by Schmid & Mohr [22].

Following Schmid & Mohr [22] two points of interest match if he Ma-
halanobis distance between their associated descriptoss small. LetV
be a description-vector associated with pointn. The distance between two
points, m and m° writes:

dv (m; m() = ) Vm Vm)” (Vm Vo) (14)

This distance selects potentially good matches but is not perful enough
because it does not take into account neither local con gutians of image
points nor the global geometric transformation between th&vo images.

4.1 Matching based on local collections of points

One way to disambiguate point matches is to consider colléohs of interest
points in a small image region and to try to match mutually corpatible sets of
points rather than individual points. Here compatibility is understood both
in the sense of topology and geometry. The concept of mutualtompatible
feature matches stems from earlier work in 2-D object recogjon [1], 3-D
object recognition [2], [5], and stereo matching [11].

Here we are interested in considering a matofim m9, a neighbour-
hood N (m) around point m, and a neighbourhoodN (m% around m°% We
seek to establish whether there are other point matches withthese two
neighbourhoods which are topologically, photometricallyand geometrically
compatible. Letk be the number of point matches based on the Mahalanobis
distance: (my mY), ...(m; m?d), ...(my my), such thatm; 2 N(m),
m; 6 mandm? 2 N(m9, m?6 m°forallj,1 j k.
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These point-to-point matches allow to compute a similaritytransforma-
tion between the two regions along the following lines:

1. select two matches (the central match plus an additionalne),

2. compute the parameters of the associated similarity trafiormation,
e.g. eq. (2),

3. verify how many other matches in the neighbourhood are csistent
with these parameters,

4. etc.

This matching method is implemented as a depth- rst tree seah. A nal
test based on eq. (4) allows to assess the match. The di erenbetween
matching points without local support and with local suppot is illustrated
on gures 4 and 5. The image shown onto the left is the low-relsion
image. The image shown onto the right is the high resolutiommage which is
represented here at scal®&3 the true scale factor between the two images.
Figure 4 shows point matches established based on the Mahadais distance
while Figure 5 shows the result of matching using the method$t described.

4.2 Matching at di erent scales

The matching algorithm considers, one by one, the scale-ggarepresenta-
tions of the high resolution image and attempts to nd which oe of these
images best matches a region in the low resolution image. &nthere is a
strong relationship between scale and resolution, one magsame that the
scale of the best match roughly corresponds to the resolutioatio between
the two images. The nal exact transformation between imagand region is
found by estimating the associated similarity.

Once an approximate scale has been selected using this st a robust
estimator takes as input the potential one-to-one point aggments, com-
putes the best transformation between the two images, andlgp the point
assignments into two sets: (1) inliers, i.e., points lying ithin the small region
corresponding to the similartity mapping of the high resoltion image onto
the low resolution one and (2) outliers, i.e., points that a either outside
this region or mismatched points inside the region.

Commonly used robust estimators include M-estimators, leemedian-
squares (LMedS), and RANdom SAmple Consensus (RANSAC). lmiocase,
the number of outliers may be quite large. This occurs in padular when the
two images have very di erent resolutions and hence only 208 less of the
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low-resolution image corresponds to the high resolution en Therefore, we
ruled out M-estimators because they tolerate only a few ougrs. Among the
two remaining techniques, we preferred RANSAC because il@hs the user
to de ne in advance the number of potential outliers throughthe selection
of a threshold. Hence, this threshold can be chosen as a fuootof the scale
factor. Details concerning threshold selection can be fodinn [3].

5 Experiments

The matching strategy just described was applied and testeover a large
number of image pairs where the resolution factor betweendhwo images
varied from 2 to 6. Let us explain in detail how this type of regslt is obtained
for another example, e.g., Table 1 and Figures 7, 8, and 9. émest points are
rst extracted from the low-resolution image at one scaleq = 1) and from
the high-resolution image at 8 di erent scalesXto 8). Therefore, eight image
matchings are performed. Figure 7 shows the results of theipBto-point
matching based on the Mahalanobis distance at four di erenscales: 1, 3, 5,
and 8. These results correspond to the column named Initiain Table 1.
Obviously, scales 3 and 5 have the best matches associatethwihem and
scale 5 is a better candidate. Therefore, it would have beeun cent to run
the remainder of the matching algorithm at scale 5 only. In @ctice we run
the latter algorithm at all scales.

These initial matches are used for enforcing the local conaints and for
the robust estimation of the similarity transformation. Figure 8 shows the
results of applying both these two stages of the algorithm. Re results are
summarized in Table 1 in the column Inliers. One may verifythat the
best match is obtained ats = 5. Out of 25 points detected at this scale, 23
among them have a potential assignment in the low-resolutiomage and 16
among them are nally selected by the robust matching techgue. The latter
rejected 30% of the matches. Notice that the resolution faat computed from
the homography is correct fors=4, s=5 and s = 6. Finally the image-to-
region transformation thus obtained was applied to the highesolution image
and this image is reproduced on top of the low-resolution orfef. Figure 9).

5.1 Further examples
So far we have been concerned with matching based on the hyipesis that
there is a similarity transformation between one image and eegion in the

other image. This is a relatively restrictive hypothesis. Te following ex-
amples show that the matching method described in this papenay well
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Figure 8: Inliers after applying the local constraints andhe robust estimator
to the previous results.
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+15

Figure 9: The nal result obtained for the example in Figure 7 All of the
16 matches are correct. The high-resolution image is mappedto the low-
resolution one using the homography consistent with the 16 atches. The
estimated rotation angle is 34 degrees and the estimated o&gion change
5.

Scale factor || N° of points N° matches

S | estimated initial | inliers | outliers
1 1.3 329 8 - 100 %
2 0.7 126 64 4 94 %
3 1.8 64 41 4 90 %
4 5 31 26 10 62 %
5 5 25 23 16 30 %
6 5 18 17 12 29 %
7 1.1 14 14 - 100 %
8 0.4 5 5 - 100 %

Table 1: This table shows, at each scale, the computed residm factor,
the number of points in the high-resolution image, the numbreof potential
matches, the nal number of matches, and the percentage of thers. Notice
that scales 4, 5 and 6 yield very similar results.
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be applied (with some modi cations) to cases were the two inga&s di er by
a ne, projective, or epipolar transformations.

The matching strategy remains the same up to the robust estitor.
The latter uses either an a ne transformation, a plane homotaphy, or the
fundamental matrix to con rm matches and to reject outliers Figure 10
shows an aerial view (left) as well as a detail (right). An a ne transformation
was hypothesized and correctly estimated. A second examgleigure 11)
shows a mock-up, a planar detail, and the correct matches ogi a plane
homography.

Figure 12 displays a stereo pair of a complex 3-D scene. Theotimages
are taken from very di erent viewpoints with di erent zoom settings: Clas-
sical stereo matching methods fail to nd the epipolar geonte. In spite
of some mismatches along epipolar lines, the epipolar geampeas correctly
estimated by the matching method described in this paper.

+1
+2
45 +4++36
+7
18
+9
+1~Q|_ 1

Figure 10: Example for a 2D scene. All of the 11 matches are cmt. The
estimated rotation angle is 65 degrees and the estimated okgion change
3.7.

6 Conclusions

We presented a new method for matching images with two very drent

resolutions. We showed that it is enough to represent the Higresolution
image in scale-space and we described a one-to-many robustge matching
strategy. Key to the success of this method is the scale-spa@presentation
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+1 i)
a1 +3

6,7

Figure 11: Example for the 3D scene tunnel. All of the 7 matwes are cor-
rect. The estimated rotation angle is 77 degrees and the emtted resolution
change is 3.2.

|

/W
; 3 M

w\/w//

\.45 //

Figure 12: This gure shows the epipolar geometry as computewith the
matching and estimation method described in this paper. Nate the large
discrepancy in the viewpoints associated with the two image The matcher
seems to give advantage to collections of coplanar points.
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of interest points and their descriptors. We thoroughly inestigated the simi-
larity invariance of the Harris interest point detector as well as its scale-space
behaviour. Recently this work was extended to characterizee most signi -
cant scale of an interest point and to devise a matching anddexing method
that encapsulates scale changes [18]. The extension to a4mvariant local
image descriptors is also on its way [19].

In spite of a huge number of publications in the image-matchg domain,
it seems to us that none of the existing methods is able to deaith large
changes in resolution. Here we have been able to match imagésch di er
by a resolution factor up to 6. In practice the images shown ithis paper
were gathered by varying the focal length using the zoom-Ierof a digital
camcorder. The advent of digital photography opens new eklof applica-
tions and we believe that our matching technique will allowhe simultaneous
exploitation of multiple viewpoints and variable resolutons.

A Interest point detection under similarity

In order to prove eq. (10) we consider the convolution of thedris operator
with a Gaussian kernel, i.e., eq. (7):

Z Z
M(X;; =)= G(X;~)?Q(x; )= ! VQ(U;V)G(U u;V o v;~)dudv

Using eq. (12) we obtain:
Z Z
G(x;~)?2Q(x; )= h?R”QYU%VIYRG(U v;V v;~)dudVv
u Vv

The similarity transformation x°= hRx + t applied to vectors(U V)~ and
(uv)” yields:
du%Vv°= h*dudv
and
(U2 ud?+(V® vh%2=h3 (U u)?+(V Vv)?)

Using the latter, the Gaussian kernelG(U u;V v;~) becomes:
|

1 y (U u)2+(V v)?

GU uyVvV v~ = > — exp 522
|
0 2 0 2°
- R 1 exp (U% u92+ (VO 9
2 (h~)? 2(h~)?

h’G(U° u®Vv?® Vv%h-~)
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By substitution we get:

Z Z
G(~)?Q(x; )= h’R” QYU VIHGU°® ulVv® Vv®:h~)dudv® R
UO VO

By taking ~°= h~ we obtain:
G(~) ?Q(x; )= h’R” G(-9?2Q%x% IR

which proves the formula given by eq. (10).
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