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Abstract

We introduce a method for object class detection and
localization which combines regions generated by image
segmentation with local patches. Region-based descriptors
can model and match regular textures reliably, but fail on
parts of the object which are textureless. They also can-
not repeatably identify interest points on their boundaries.
By incorporating information from patch-based descriptors
near the regions into a new feature, the Region-based Con-
text Feature (RCF), we can address these issues. We ap-
ply Region-based Context Features in a semi-supervised
learning framework for object detection and localization.
This framework produces object-background segmentation
masks of deformable objects. Numerical results are pre-
sented for pixel-level performance.

1. Introduction

Object class detection and localization has been a fre-
quently studied problem in the computer vision literature.
Although the general problem involves detecting and ex-
actly localizing all parts of an object, in many cases the
problem is interpreted as a search for a bounding box sur-
rounding the object, with the box generally axis-aligned [1,
22, 24]. Bounding boxes, however, are somewhat unsat-
isfactory as a �nal result because they do not capture the
true shape of the object. This is especially problematic
for deformable objects, wiry objects and objects with oc-
clusions, whose bounding boxes may contain a majority of
non-object pixels, such as those in the �rst row of Fig.1. A
bounding-box based system also has dif�culty searching for
multiple objects in the same image. Once the system �nds
one object, it has only two choices in searching for addi-
tional objects: ignore pixels within the �rst bounding box,
thereby missing objects which are in different scene layers,
or re-process all of the pixels in the bounding box, wasting

� Part of this research was performed under the Intelligent Robotics De-
velopment Program, a 21st Century Frontier R&D Program funded by the
Korean Ministry of Commerce, Industry and Energy. Caroline Pantofaru
was partially supported by a grant from the European Community under
the Marie-Curie Visitor project.

time and risking classifying the same pixels as belonging
to multiple objects. Bounding box-based systems are also
often fully supervised, with training objects completely lo-
calized using either a segmentation mask or a bounding box.

With this motivation in mind, this paper works towards
addressing the problem of pixelwise object class localiza-
tion. Pixelwise detection and localization involves assign-
ing each pixel in an image to a class label without a prede-
termined rigid shape assumption on the spatial support of
each label. Some such label masks are given in the second
row of Fig. 1. We pose this problem in a semi-supervised
framework, where only image-level object occurrence la-
bels are available for the training data.

How can an image be represented to facilitate pixelwise
labeling? Many popular object recognition methods repre-
sent an image with sparse points extracted using an interest
point operator [6, 12, 13, 16] and then represent these points
using some descriptor such as the SIFT descriptor [13]. Al-
though these sparse detections may be accurate and repeat-
able, they do not give information about the other pixels
on the object which may lie in textureless neighborhoods.
Thus the only options for creating a pixel-level mask using
sparse points are either to resort to bounding boxes (or some
other rigid structure surrounding the interest points) which
include background pixels, or to miss most of the object by
simply labeling the points themselves. Another popular ap-
proach for representing an image is to use patches with pre-
determined shapes, such as rectangles, and describe their
contents as a vector of grayscale values [1]. These repre-
sentations generally have a larger spatial support, however
their predetermined shape can only make inexact estimates
of the object extent, generally a set of rectangles covering
the object such as in [8]. If these patches are extracted in
a sparse manner, they will also exclude parts of the object
with low texture.

One approach to remedy the above situation is to use a
dense set of pixels [5] instead of those found using an inter-
est point detector. Although a dense set of points can create
an accurate object mask, labeling each pixel separately will
be noisy and an elaborate smoothing process will be neces-
sary. Instead, we choose to represent an image as a set of re-
gions extracted by unsupervised image segmentation which
are homogeneous in color and texture space. This is similar
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to the concept of Superpixels [20]. The spatial support for
each region is data-dependent, thus a subset of the regions
can model the object support precisely. In addition, if the
pixels in a region are all given the same label, we remove
the pixel-level noise inherent in dense representations.

Performing an initial image segmentation allows us to
take advantage of features such as color which are consis-
tent among the member pixels of an object in one image but
not between images. These features are unavailable to ap-
proaches which seek to cluster pixels in single images and
across multiple images at once. By performing segmenta-
tion at multiple image scales and grouping pixels in region
intersections, we can create a multi-scale environment in
which the image is likely to be over-segmented and object
pixels are unlikely to be grouped with background pixels.

One way to describe regions is by the mode of their con-
stituent pixels’ textures. A score re�ecting how well each
texture predicts the object class can be learned and used to
classify new regions. This works well for objects with dis-
tinctive textures, such as the cheetah in the �rst column of
Fig. 1. We run into problems, however, in trying to classify
regions which do not have regular textures which can dis-
criminate between the class and the background. The bicy-
cle’s frame has no texture at all and is better encoded by its
angles, while the texture on the cheetah’s face is not regular
and will be broken into different regions. Clearly we need to
encapsulate more than the information internal to each re-
gion. One possible approach is to use the information from
neighboring regions, but this leaves us with two important
problems. First, for some objects, key features occur only
at the borders between regions, such as the corner of an eye.
Second, region shapes (and hence spatial relationships be-
tween them) are notoriously unstable. This is where de-
scriptors de�ned on predetermined pixel supports (patches)
are useful; they can �nd and encode non-repetitive features
and their spatial extent is reliable. Thus the major contribu-
tion of this work is the incorporation of local patch-based
features into a region-based approach through the creation
of Region-based Context Features (RCF), and their combi-
nation with more common texture-based features.

At a high level, a Region-based Context Feature is a
histogram of the (quantized) local descriptors near a re-
gion, with proximity de�ned by the scale of the local de-
scriptor patches. In this manner we can remain within a
region-based framework but take advantage of the extra fea-
tures found by patches, with their location and scale sta-
bility. By combining Region-based Context Features with
texture-based features in a framework which allows data-
dependent feature selection, we can model an object class
by the set of features which describe it best, and provide
the desired pixel-level object mask. Since explicit angle
relationships between regions and points are not modeled,
we can �nd objects which are extremely deformable. By
presenting our method in a semi-supervised learning frame-
work in which only image-level labels are necessary, we

Figure 1. The �rst row shows deformable objects, wiry objects and
objects with occlusions which are not satisfactorily delineated by
bounding boxes. The second row shows pixel-level masks of these
same objects, which capture their exact shape.

decrease the amount of work needed for training.
There have been a limited number of attempts to use seg-

mentation for detection or to combine segmentation with
other cues. Tuet al. [23] combine segmentation with
features (such as splines) based on object speci�c knowl-
edge to detect faces and text segments on natural im-
ages. Their DDMCMC-based (Data-Driven Markov Chain
Monte Carlo) framework is computationally expensive,
however, and requires prior knowledge. Maliket al. [14]
use local information such as edges to help direct segmen-
tation, but did not perform object detection. On the other
hand, the Blobworld system [2] employs segmentation in-
formation to retrieve images from a database, however, they
do not use local pixel information, nor identify the objects.
Opeltet al. [19] use interest points [16], similarity measure
segmentation, and mean shift segmentation together in an
Adaboost framework. They performed object recognition
and veri�ed the center of the object by a relatively weak
criterion. Many of the described localization methods use
fully supervised data [1, 22, 24], sometimes including full
segmentation masks [10] or textureless backgrounds [11].
Yu and Shi [26] localize only known and previously seen
objects and do not generalize to object classes. Localiza-
tion is usually evaluated by bounding boxes, or the loca-
tion of the center. The above methods either did not pro-
vide pixel-level localization masks, or did not quantify the
masks’ accuracy. Kumaret al. [7] perform detection and
segmentation using pictorial structures and MRFs, however
they cannot cope with occlusion or alternate viewpoints.

2. Segmentation and Texture Descriptors

The foundation for our object localization procedure is
unsupervised image segmentation. To de�ne the regions in
an image, we use mean shift-based image segmentation [3]
on position, color and texture descriptors. The texture de-



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. Example segmentations at three image sizes for images
from the positive and negative Spotted Cats dataset. Images (a)
and (e) are the original images, (b) and (f) are the segmentations
of the smallest image size (rescaled to the original size), (c) and
(g) are of the middle image size, and (d) and (h) are of the largest
image size. Segmentation parameters are kept constant through-
out.

scriptors are textons [14], have a feature length of 30 and
are extracted using the publicly available implementation
from the Berkeley segmentation database website [15]. The
color features are computed in the L*u*v* space, and are
smoothed over the same 15x15 window used to compute
the texton features. In total, we perform segmentation in a
35-dimensional space.

We chose mean shift-based segmentation since it does
not require as input the total number of regions, nor does it
necessarily create regions of equal size. The only parame-
ters are the kernel bandwidths (radii) for the pixel position,
the color, and the texture. A multi-scale representation is
achieved by performing image segmentation at three image
scales, assigning three different regions to each pixel.

Notice that this procedure extracts regions regardless of
their rotation, position, or spatial relationships, and there-
fore forms possible object regions without a low-level spa-
tial model. Examples of mean shift segmentations on posi-
tive and negative images from the Spotted Cats dataset are
presented in Fig.2.

Once an image is segmented at one scale, each region is
described by the texture part of its mode, a 30-dimensional
vectort. We perform k-means clustering on the texture de-
scriptors from all of the training images at all (3) scales to
derive a vocabulary of texture wordsT = { Ti }

N T
i =1 , and as-

sign each region to its nearest neighbor texture word.

3. Region-based Context Features (RCF)

There has been a signi�cant amount of work done on
the inclusion of shape (geometric), spatial and context in-
formation into object models. Shape information relates
the various parts of the object to each other, and has been
explored through the concepts of Shape Context [17] and
geometric relations in part-based models [25]. Spatial and
context models may also relate the object to the other parts
of the scene, be they local or global, for example [18]. In
our problem, the objects may be highly deformable or seen
from highly varying angles, so it is bene�cial not to limit the

model to strict shape or spatial relationships which enforce
a topology among the parts. However, it is useful to model
a notion of proximity among object features. This allows
us to identify regions which may not have a discriminative
texture themselves, but which have close proximity to ob-
ject features, such as those in Fig.5. These regions do not
have a discriminative texture (in fact they have no texture at
all), but they do lie near the dots which line the edge of the
butter�y’s wing. For this purpose we introduce the concept
of Region-based Context Features (RCF).

Consider the segmentation-derived regions in an image.
We would like to model the relationships between each re-
gion and its surroundings. Although the regions do contain
a homogeneous set of pixels (in color and texture space),
their shape and size is not repeatable across instances of the
same class. In fact, fairly minor variations in lighting or
pose can change the shape of the regions, so we wish to
rely as little as possible on their shape. This can be accom-
plished by ignoring the relationships between the regions
directly, and instead relying on region-based histograms of
local descriptors computed from independent locations and
scales in the image.

For our local descriptor we use the 128-dimensional
SIFT descriptor [13]. The locations where the descriptors
are computed may be sparse, as determined by a local inter-
est point operator and scale selection, or densely arranged
over the image and in scale space. Let the set of points in
one image beP = { pi }

N P
i =1 , with scales{ � i } and local de-

scriptors{ di } . Clustering the set of descriptors from all of
the training images produces a vocabulary of local descrip-
tor wordsW of sizeNW . Let wi be the nearest neighbor
word to descriptordi . We use the scales{ � i } of the points
to de�ne proximity to regions. The idea is to create a his-
togram for each region of the local words which are at most
k� i pixels away. These histograms are appended, weighted
inversely proportionally to theirk values, to create a set of
Region-based Context Histograms (RCH).

More speci�cally, letR be a region in the image, with
member pixels{ r j } N R

j =1 . Let hk be thek-histogram for the
regionR with NW bins, one for each word. We build the
histograms as follows:

hk (w) = |{ wi |

w= wi , (kŠ 1)� i < minr j { d(r j , pi )} � k� i }| .
(1)

whered(� , � ) is the Euclidean distance between the pixel
locations. In our implementation,k � { 1, 2} and the his-
togram fork = 1 includes the points with distancek = 0
(points which are within the region itself). Eachhk is then
normalized. For largerk, the histogram contains points
which are farther away from, and less related to, the region,
and accumulates them over an area which grows quadrati-
cally (while k grows linearly). So thehk are weighted in-
versely proportionally tok. For our experiments, we use
weights of0.5k . The (weighted){ hk } are concatenated to
get a �nal featureH = [ h1, h2, . . . , hK ]. The method for



Figure 3. Example of a Region-based Context Histogram (RCH).
The top �gure is the image, with the black blob representing one
region from the segmentation. The red circles represent points
pi in the image that are within1� i of the region, and the green
concentric circles represent points within2� i . The numbers in the
circles are the local descriptor words for each point. The bottom
�gure is the resulting RCH. The left half represents the points that
are within1� i of the region, and the right half2� i . Each entry in
the histogram corresponds to a (w,k) pair, wherew is a word and
k is the multiple of� . In practice, eachk-section of the histogram
is normalized and weighted inversely tok.

building an RCH is summarized in Fig.3.
A vocabulary is created by clustering (using k-means)

the RCHs from all of the training images at all the image
scales. The Region-based Context Features (RCFs) are the
cluster centers, and regions are assigned the RCF which is
the nearest-neighbor to their RCH.

4. Computing feature scores

Certain features in the texture and RCF vocabularies will
be able to discriminate between an object class and its back-
ground. Each feature’s discriminative score can be evalu-
ated under a semi-supervised learning model in which im-
ages are labeled as positive if they contain the object class,
or negative otherwise. No object localization or con�gura-
tion information is given. LetP(Fi |O) be the conditional
probability that a descriptor from an object image is as-
signed to feature clusteri , and de�neP(Fi |Ō) similarly
for non-object images. Combining the texture features and
RCFs into one large set, and given the positive and negative
labels on the training images, we compute the discrimina-
tive power of a given featureFi as:

R̃(Fi ) =
P(Fi |O)

P(Fi |O) + P(Fi |Ō)

Figure 4. Examples of image regions within discriminative texture
clusters. The feature on the left is one of the top (best ranked)
Spotted Cat texture features, while the one on the right is one of
the top Machaon Butter�y texture features.

Figure 5. Examples of image regions within a discriminative RCF
cluster for black swallowtail butter�ies. The red and white out-
lines denote the regions. Note that these regions would not be
discriminative based on texture alone.

This score ranks the features in the same order as the likeli-
hood ratio:

R(Fi ) =
P(Fi |O)
P(Fi |Ō)

which is the likelihood criterion presented in [4, 21] to
select discriminative interest point clusters. Examples of
some discriminative feature clusters are given in Fig.4 and
Fig. 5. Notice that the discriminative scores of the texture
features and the RCFs are directly comparable.

We can now assign two scores to each region corre-
sponding to the discriminative values of its texture feature
and RCF, hence we are ready to localize objects in test im-
ages. Note that this entire learning scheme can also be ap-
plied in a fully supervised setting by simply replacing posi-
tive and negative images with positive and negative regions.

5. One-vs-all ClassiÞcation

For each new image, we perform unsupervised segmen-
tation and local patch extraction as described above, and
compute the nearest neighbors in the texture,Ti , and RCF,
RCFi , vocabularies for each resulting region. We can then
determine two values for the regioñR(RCFi ) andR̃(Ti ).
Since these values are on the same scale, we can combine
them to get one region scoreSi = R̃(RCFi )R̃(Ti ). In this
formulation, if the texture features cannot discriminate be-
tween a certain class and its background, they will all be
near 0.5 and will have little to no affect on the region score
ordering imposed by the RCFs, and vice versa. If, on the
other hand, both texture features and RCFs have a wide
range of scores, they can reinforce each other when both



agree or cancel each other out when they disagree. Thus
both feature sets can co-exist in one model.

Let ms be the likelihood map for an image at scales in
which each pixel is assigned its corresponding region’sSi .
Then the �nal one-vs-all pixel map of object class mem-
bership likelihood isM =

� N s
s=1 ms. In our experiments

the number of scales isNs = 3 . Note that if{ r s} is a set of
regions, one region at each scale, then the pixels in the inter-
section of the regions,p �

� N s
s=1 r s, all have the same �nal

score. This is reasonable because pixels in the same region
at all scales have a common texture and color at all scales.
By assigning them the same score we achieve our original
goal of classifying similar pixels in a consistent manner and
avoiding pixel-level noise.

We have described a method for creating one-vs-all clas-
si�ers for a dataset. We can extend this to a multi-class clas-
si�er by running each of our one-vs-all classi�ers over an
image and assigning to each pixel the class corresponding
to its maximum score, thresholding the responses to identify
the background.

6. Experiments

6.1. Spotted Cats

Our �rst set of experiments uses data from the Corel
Image Database, with the folder ‘Cheetahs, Leopards and
Jaguars’ as a positive class and ‘Backyard Wildlife’ as a
negative class. In this paper, this dataset is refered to as the
‘Spotted Cats’ dataset. Each folder contains 100 images; for
training we used 51 positive images (evenly divided among
the 3 types of cats) and 50 negative images, with the remain-
der for testing. All of the images are 640x480 pixels, in ei-
ther portrait or landscape orientations. However, the size of
the actual cats varies considerably, as does the pose, level
of occlusion, background and lighting. Many of the im-
ages contain multiple cats. All experiments were done using
semi-supervised training only. Local patch features were
extracted densely, using a regular grid with points spaced 8
pixels apart, and scales of 2, 4, and 8 at each point.

Fig. 6 gives example images and results for this dataset.
The �rst column contains the original images with hand-
drawn ground truth for reference (although it was not used
for training). The second column contains results obtained
using texture-based region features only, in other words
Si = R̃(Ti ). The third column contains results obtained
using RCFs only such thatSi = R̃(RCFi ). Finally, the
fourth column contains the results of combining the feature
sets,Si = R̃(RCFi )R̃(Ti ). For display purposes, detec-
tion thresholds were chosen to give equal error rates on the
images. Notice that in the �rst and third rows, the texture-
only classi�cation misses parts of the cats’ heads, while in
the second example it misses the shadowed section under
the chin. These are all low-texture regions. The RCF-only
classi�cation is able to properly label these regions, but has
trouble with the tails which are mainly surrounded by back-

(a) (b) (c) (d)
Figure 6. Sample results for the Spotted Cats dataset. Column
(a) contains the original images, column (b) contains results from
texture-only classi�cation, column (c) contains results from RCF-
only classi�cation, and column (d) contains results from combined
texture and RCF classi�cation. The �rst three rows show good re-
sults, while the fourth result is poor. The white outlines are ground
truth.

ground. The combined results manage to capture most of
the cat silhouettes, and reduce the amount of background
noise present. The fourth row shows a poor result where
background texture is too dominant and a large part of the
object is too shadowed for proper classi�cation.

Fig. 7(a) plots recall-precision results for pixel-level
classi�cation on the Spotted Cats dataset. Notice that each
of the baseline texture-only and RCF-only methods have
strengths and weakness. The texture-only method performs
poorly at low recall values, however its performance de-
grades slowly as the recall increases. On the other hand,
the RCF-only method has excellent precision at low recall,
but the curve drops quickly as the recall increases. By com-
bining the two feature sets we produce a curve which has
both high precision at low recall rates, and drops off slowly.
Our results include all of the pixels in the image, including
those near the borders of the image and the object outline.
Due to inevitable inaccuracies in the hand-labeled data, ob-
taining perfect recall and precision is impossible. Note that
previous publications have given only example images as
results, they have not given pixel-level numerical results.

6.2. Graz02 Bikes

Our second set of experiments was run on the publicly
available ‘Graz02’ dataset used in Opelt et al [19]. We used
the ‘Bikes’ class as the positive class, and the ‘Background’
class as the negative class. The data was split in accordance
with the original paper, with the odd numbered images in
each class for training and the even numbered images for
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(a) (b)
Figure 7. Recall-Precision curves. Plot (a) shows results for
the Spotted Cats dataset, and plot (b) for the Graz02 Bikes vs
Background dataset. Both classi�ers were created using semi-
supervised training. The blue solid lines represents classifying
using region texture only, the red dashed lines using RCFs only,
and the green dash-dotted lines using the full region texture and
RCF model. Results are for pixel-level classi�cation.

testing. All of the images in this dataset are 640x480 pixels,
but the size of the objects varies drastically, as do the pose,
level of occlusion, background and lighting. Fig.7(b) shows
the pixel-level performance of the classi�cation. Notice that
the combination of texture features and RCFs performs bet-
ter than either method alone at almost all operating points.

Since our task of pixelwise classi�cation, and the result-
ing metric of pixelwise recall-precision, differ from pre-
vious work, we adjusted our algorithm to output object
centers and compared localization performance to Opelt et
al [19] using their framework. For the positive (bike) im-
ages, we used as our localization the center of the largest
connected component of values greater than 0.6 in the like-
lihood mapM . Setting this threshold is equivalent to setting
the number of clustersk in [19], which is also set by hand.
Since this form of localization is not the main focus of our
work, we did not perform a thorough search for the opti-
mal threshold. Using the comparison method from [1] used
by Opelt et al., a localization is considered correct if it falls
within the ellipse inscribed in the bounding box surround-
ing the ground truth. In the case of multiple ground truth
objects, �nding any one is considered correct. Within this
framework, we are able to localize 131/150 of the bikes,
compared to 115/150 for Opelt et al.

6.3. Butterßies

Our third set of experiments was run on the publicly
available ‘Butter�ies’ dataset used in [9]. The dataset
consists of 619 images of 7 classes of butter�ies: Zebra,
Machaon, Monarch (closed position), Monarch (open posi-
tion), Peacock, Black Swallowtail, and Admiral. The pic-
tures were collected from the internet and hence vary widely
in size, quality, focus, object size, object rotation, number
of butter�ies, lighting, etc. The �rst 26 images from each
butter�y class were used for training, and the remainder

for testing. Butter�ies themselves are not extremely de-
formable, however the variety in the images coupled with
the similarity between the different butter�y classes makes
this a very dif�cult dataset for pixel-level work. The one-
vs-all classi�ers in this dataset are required to discriminate
between butter�y classes, in addition to discriminating be-
tween butter�ies and backgrounds. Note that the Monarch
(closed position) and Monarch (open position) classes ac-
tually contain the same butter�y type, simply in different
poses. The Admiral and Peacock classes have minimal tex-
ture, making them especially dif�cult to learn.

Fig. 8 shows example results for each of the butter�y
types, classi�ed with one-vs-all classi�ers. The columns
represent, from left to right, the original images, classi�-
cation using only texture features, classi�cation using only
RCFs, and classi�cation using the combined texture and
RCF model. Notice that the texture features are able to ex-
tract most of the regular textures on the butter�ies, while
the RCFs are able to extract some of the nearby texture-less
regions. Also, the two models work together to lower back-
ground noise. The Zebra butter�y class (�rst row) presents
a fairly easy problem, with all of its body covered by a dis-
tinctive texture. The Peacock, Black Swallowtail and Ad-
miral classes (last 3 rows), however, are extremely dif�cult
as the majority of their surface is textureless, with the Pea-
cock and Admiral butter�ies having no distinctive regular
textures at all. Additionally, silhouette shape is not a strong
cue for discriminating between butter�y classes.

Fig.9 gives the pixel-level recall-precision plots for each
of the one-vs-all classi�ers, in the same order as the exam-
ples in Fig.8. These datasets demonstrate the performance
range of our algorithm. The Zebra classi�er produces ex-
cellent results due to its regular texture. The combination of
textures on the Machaon, Monarch (Closed) and Monarch
(Open) give promising results as well, with the combined
model improving performance. The Peacock and Admiral
classes contain much larger challenges and strain the sys-
tem since they both lack a distinctive regular texture and
contain mainly large uniform regions. In these cases the
texture-based classi�er is essentially useless, severely hand-
icapping the system.

Finally, we present results for multi-class classi�cation
on the butter�ies dataset. If the maximum one-vs-all classi-
�er value at pixelpi is c� = maxC

c=1 M c(pi ), then the class
at each pixelpi is:

C(pi ) =

�
c� M c� (pi ) > 1.5(1 Š M c� (pi ))
background otherwise

In Table10 we can see the pixelwise classi�cation rates for
the butter�y classes. The only two low scores came from the
Swallowtail and Peacock classes which performed poorly in
the one-vs-all tasks as well. Fig.11 shows some examples
of classi�cations. The multiclass framework seems to have
improved classi�cation. One possible explanation for this
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Figure 9. Recall-Precision curve for the one-vs-all classi�ers in the Butter�ies dataset. All classi�ers were created using semi-supervised
training. The blue solid line represents classifying using region texture only, the red dashed line using RCFs only, and the green dash-dotted
line using the full region texture and RCF model. Results are for pixel-level classi�cation.

is that a concensus between 7 classi�ers is required to label
a region as background, increasing the precision.

7. Conclusions and future work

In this paper, we have presented a method for performing
pixel-level object classi�cation and localization in a region-
based framework which incorporates both texture features
and a new feature, the Region-based Context Feature. In
addition, training is performed in a semi-supervised man-
ner, minimizing the amount of work required. Our frame-
work takes advantage of the deformable nature of segmen-
tation regions to clearly delineate the boundaries of an ob-
ject and provide a pixel-level mask which is more accurate
than a bounding box or other rigid structure. Through the
use of texture information and �exible spatial information
as encapsulated in the Region-based Context Feature, we
can model objects which are highly deformable and con-
tain repetitive patterns, a challenge for interest-point based
systems with highly constrained shape models. We have
shown that the system performs well on objects which are
at least partially covered by repetitive textures, and it is able
to model low texture regions by relating to these repeti-
tive textures and shape cues. Objects which have neither
strong shape nor texture features are probably better served
by other methods. As future work, it would be interesting to
try to learn thresholds for the detection task while still only
using semi-supervised training data. We would also like to
explore methods for identifying the number of objects in an

image. Additional �ltering would also help to remove some
of the spurious results.
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