Learning visual distance function for object identification from one example

Eric Nowak 1 Frédéric Jurie 2, *
* Auteur correspondant
2 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Comparing images is essential to several computer vision problems, like image retrieval or object identification. The comparison of two images heavily relies on the definition of a good distance function. Standard functions (e.g. the euclidean distance in the original feature space) are too generic and fail to encode the domain specific information. In this paper, we propose to learn a similarity measure specific to a given category (e.g. cars). This distance is learned from a training set of pairs of images labeled “same” or “different”, indicating if the two images represent the same object (e.g. same car model) or not. After learning, this measure is used to predict how similar two images of never seen objects are (see figure 1).
Type de document :
Communication dans un congrès
Learning to Compare Examples (NIPS'06 Workshop), Dec 2006, Whistler, Canada. 2006, 〈http://bengio.abracadoudou.com/lce/〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00548582
Contributeur : Thoth Team <>
Soumis le : jeudi 6 janvier 2011 - 08:47:33
Dernière modification le : mardi 5 juin 2018 - 18:00:02
Document(s) archivé(s) le : jeudi 7 avril 2011 - 02:30:03

Fichier

5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00548582, version 1

Collections

IMAG | INRIA | UGA

Citation

Eric Nowak, Frédéric Jurie. Learning visual distance function for object identification from one example. Learning to Compare Examples (NIPS'06 Workshop), Dec 2006, Whistler, Canada. 2006, 〈http://bengio.abracadoudou.com/lce/〉. 〈inria-00548582〉

Partager

Métriques

Consultations de la notice

438

Téléchargements de fichiers

388