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Abstract
This paper presents an extension to category classifica-

tion with bag-of-features, which represents an image as an
orderless distribution of features. We propose a method to
exploit spatial relations between features by utilizing object
boundaries provided during supervised training. We boost
the weights of features that agree on the position and shape
of the object and suppress the weights of background fea-
tures, hence the name of our method— “spatial weighting”.
The proposed representation is thus richer and more robust
to background clutter. Experimental results show that our
approach improves the results of one of the best current im-
age classification techniques. Furthermore, we propose to
apply the spatial model to object localization. Initial results
are promising.

1. Introduction

The recognition of object categories is one of the most
challenging problems in computer vision, especially in the
presence of pose changes, intra-class variation, occlusion
and background clutter. Methods based on sparse local fea-
tures [1, 3, 5] and bag-of-features [23, 24] were proposed
to deal with pose changes and intra-class variations. They
have shown to give excellent results. However, they are sen-
sitive to background clutter, because they cannot distinguish
between objects and background. Efforts have been made to
overcome this problem by using feature selection [3], boost-
ing [19] or designing novel kernels with high discrimina-
tive power [9, 16]. Robustness to occlusions was improved
by introducing similarity measures based on partial match-
ing (EMD distance [21]) or histogram comparison (χ2 dis-
tance [10]). On those distances robust Gaussian kernels for
Support Vector Machines (SVM) [22] were built. However,
there still seems to be a strong potential for improving back-
ground clutter robustness of bag-of-keypoints representa-
tion [25].

It has been shown that considering spatial relationships
between features, which are ignored by the standard bag-
of-keypoints representation, may lead to high recognition

results [12]. This motivates us to extend the original bag-
of-keypoints representation to incorporate spatial informa-
tion. It was also shown that interest points can generate
accurate hypotheses about localization of the object in the
image [13, 15]. Extending those ideas, we introduce a
method in which the features that agree on the localization
and shape of the object boost the importance of each other.
We name our technique “spatial weighting”. We test the
performance of our approach on the PASCAL Visual Object
Classes Challenge data set [4] (see fig. 1). We evaluate a
state-of-the-art method of this challenge [4, 25] and show
that applying the proposed method can improve results.

Our approach uses all the information provided dur-
ing supervised training, i.e., not only the image label, but
also the object localization. Traditional bag-of-features ap-
proaches can use during training either all-image informa-
tion (weakly supervised setting) or object-only information.
As was shown in [25], both methods have drawbacks. We
will overcome this by employing all the information given
during the training phase.

Furthermore, it is worth noticing that the segmentation
information, which is produced as a side effect of spatial
weighting, may be used for localization. It has been shown
recently that combining the power of generative modeling
with a discriminative classifier allows to obtain good re-
sults for object category localization [7]. We show promis-
ing results for the generation of segmentation masks for the
Graz02 data set [18]. The results indicate that using the gen-
erated masks to guide the discriminative classifier can lead
to the construction of a novel, effective localization method.
For now, we show some preliminary results on the direct use
of the masks for localization.

A somewhat similar solution for approximate image seg-
mentation using local features and spatial information was
proposed by Leibe et al. [13]. We have, however, experi-
enced that a patch-based approach for segmentation does
not work well in combination with a sparse image repre-
sentation. The discriminative object parts that agree on the
localization of the object can be covered with accurate seg-
mentation patches. Nevertheless, for a full segmentation of
the object, segmentation of non-discriminative object parts
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Figure 1. PASCAL challenge image examples with ground-truth object annotation.

is also required. We find that a combination of full masks
leads to better results compared to the use of local segmen-
tation patches that we have implemented at an earlier stage
of our research.

We avoided using the Hough transform [15], as it re-
quires defining a parameter space and thus limits the shape
hypotheses to forms like rectangles, ellipses, etc. Our
method does not make assumptions about the object shape
nor simplifies it to basic shapes. It uses the full shape infor-
mation provided by the training objects and performs vot-
ing on the entire object boundary. For a given test image we
compute a full segmentation mask estimate and obtain good
results even for objects with irregular shapes.

In section 2 we describe the category classification
framework of Zhang et al. [25] which is the bag-of-features
approach our method builds on. We present our spatial
weighting method in section 3. Experimental results are
given in section 4. Proposed future work, including the dis-
cussion about using the method for object localization, is
outlined in section 5.

2. Local features and kernels for object cate-
gory recognition

In the following we describe the basic blocks of the
framework by Zhang et al. [25] that we have extended. This
method has shown excellent results in the PASCAL VOC
Challenge [4] achieving the best classification accuracy for
the more difficult test set. It first extracts an invariant image
representation based on local image description and bag-of-
features, and then uses non-linear Support Vector Machines

(SVMs) with extended Gaussian kernels for classification.

2.1. Detection of interest points

We use two complementary local region detectors to
extract salient image structures: the Harris-Laplace detec-
tor [17] responding to corner-like regions and the Laplacian
detector [14] extracting blob-like regions.

These two detectors are invariant to scale transforma-
tions, i.e., they output circular regions at a certain charac-
teristic scale. To achieve rotation invariance, we may rotate
the circular regions in the direction of the dominant gradient
orientation [15, 17]. The affine adaptation procedure [8, 17]
allows to obtain an affine-invariant version of the detectors.
Affinely adapted detectors output elliptical regions which
are then normalized into circles.

Note that it is unreasonable to use a more invariant de-
scription than required for a given data set [25]. For most
natural object data sets the vertical direction is well de-
fined, and the orientation of the features therefore contains
valuable information. Thus, even though we can gener-
alize our method to work with affinely adapted features,
we will consider only the scale-invariant versions of the
detectors in the experimental section. We will denote the
scale-invariant Harris-Laplace detector as HS and the scale-
invariant Laplacian detector as LS.

2.2. Local description

To compute appearance-based descriptors on the patches
obtained by the detectors described in the previous subsec-
tion, we employ the SIFT [15] descriptor. We have also
evaluated the SPIN [12] descriptor, but have not included



it into our final system, as it did not produce promising re-
sults.

The SIFT descriptor computes a gradient orientation his-
togram within the support region. For each of 8 orientation
planes, the gradient image is sampled over a 4×4 grid of
locations, thus resulting in a 128-dimensional feature vec-
tor for each region. A Gaussian window function is used
to assign a weight to the magnitude of each sample point.
This makes the descriptor less sensitive to small changes
in the position of the support region and puts more empha-
sis on the gradients that are near the center of the region.
To obtain robustness to illumination changes, the descrip-
tors are made invariant to illumination transformations of
the form aI(x)+b by scaling the norm of each descriptor to
unity [15].

Following the terminology of [12], we consider each de-
tector/descriptor chain as a separate channel. We will de-
note the channels as HS-SIFT or LS-SIFT.

2.3. Bag-of-features representation

Given a set of local invariant descriptors, we want to rep-
resent their per-image distributions in training and test im-
ages. We therefore build a visual vocabulary by clustering
the descriptors from the training set and then represent each
image in the data set as a histogram of visual words drawn
from the vocabulary [24]. Each histogram entry hij ∈ Hi

is the proportion of all descriptors in image i having label j
to the total number of descriptors computed for the image.

Our evaluation has shown that vocabulary construction
has little impact on the final classification results. We there-
fore randomly subsample the training set and cluster 50k
features using K-means as clustering method to create a
1000-elements vocabulary.

2.4. Classification with non-linear SVMs

For classification, we use non-linear Support Vector Ma-
chines (SVMs) [22]. In a two-class setup that we use for
binary detection, i.e., classifying images as containing or
not containing a given object class, the decision function
for a test sample x has the following form:

g(x) =
∑

i

αiyiK(xi, x)− b (1)

where K(xi, x) is the value of a kernel function for the
training sample xi and the test sample x, yi ∈ {+1,−1}
is the class label of xi, αi is a learned weight of the training
sample xi, and b is a learned threshold. The training sam-
ples with weight αi > 0 are usually called support vectors.

To obtain a detector response, we use the raw output of
the SVM, given by eq. (1). By placing different thresh-
olds on this output, we influence the decision and obtain
Receiver Operating Characteristic (ROC) curves.

We use an extended Gaussian kernel [2, 11]:

K(Hi, Hj) = e−
1
A D(Hi,Hj) (2)

where Hi = {hin} and Hj = {hjn} are image histograms
and D(Hi, Hj) is the χ2 distance defined as

D(Hi, Hj) =
1

2

N∑

n=1

(hin − hjn)2

hin + hjn
(3)

where N is the size of the vocabulary (N = 1000 in our ex-
periments). The resulting χ2 kernel is a Mercer kernel [6].
The parameterA is the mean value of the distances between
all training images [25].

We may combine different channels by summing their
distances, so thatD =

∑
nDn whereDn is the χ2 distance

for channel n. We will denote a combination of HS-SIFT
and LS-SIFT channels as (HS+LS)-SIFT.

3. Spatial weighting
The idea of spatial weighting is to reduce the influence

of background clutter by employing spatial relationships be-
tween the features. In the standard bag-of-features approach
presented in section 2, each feature equally influences the
bag-of-features representation. The goal of spatial weight-
ing is to give lower weights to background features. This
is achieved by having each feature boost other features that,
from its spatial point of view, should belong to an object,
e.g., a feature belonging to the wheel of a car should in-
crease the weights of the features belonging to the other
parts of the car.

See the fig. 2 for a visualization of the effect we want to
achieve. Let’s assume that the “drop” feature indicates the

Figure 2. Visualization of spatial weighting.
Three central features agree on the object lo-
calization, the two others are mistakes. Note
the ambiguity introduced by the ‘leaf’ feature.



presence of the umbrella just below, while the “leaf” feature
suggests that it is just above, but (we should consider possi-
ble ambiguity) it may be to the left or to the right, as leaves
happen to stick to both sides of the umbrella. Given the
set of features found on the test image, each feature may
produce a hypothesis about the localization of the object.
Note that true foreground features which agree on the posi-
tion and shape of the object will quickly produce a strong
response (the umbrella is obviously in the center of the visu-
alization image) and those true foreground features will be
rewarded later, as they are localized on the produced mask.
The features that belong to the background clutter will not
produce strong masks and will thus have low weights.

3.1. Potential of the approach

As we have described earlier, we have a strong motiva-
tion to employ spatial relationships between the features in
the bag-of-keypoints representation. We can use the spatial
information to estimate the position of the object in the im-
age and discard the background. The usefulness of spatial
weighting in the bag-of-features framework can be evalu-
ated by using ground-truth segmentation. Fig. 4 shows that
if we remove background clutter by using only foreground
segments, we are able to significantly improve the classifi-
cation results. The ROC curve achieved by testing on the
object cropped out from an image is often well above the
original ROC curve where testing is performed on the full
image. Note, however, that training is always performed on
full images, as it should not be performed using a training
set that is easier than the expected test set, as was shown
in [25].

3.2. Algorithm

In the following we explain how to produce a segmenta-
tion mask based on the training information. We will de-
scribe the use of the mask for background clutter reduc-
tion by boosting the foreground features and suppressing
the background ones. For the application to localization,
one should refer to subsection 5.2. Our spatial weighting
procedure is described by the pseudo-code presented in list-
ing 1.

During training, ground-truth segmentation information
is used to learn (remember) the position of the object from
a “point of view” relative to the training features. In fact,
as we have ground-truth data for the training set, we first
filter (line 1) the training data to include foreground fea-
tures only. We perform this operation to avoid noise that
would be introduced by matching test features with back-
ground features. The position of background features can-
not be correlated with the position of the object, even if
those features would give hints about the object category,
e.g., a street sign could give us hints about cars object cat-
egory, but it is impossible to draw any precise conclusions

0 1 T r a i n i n g S e t . F i l t e r F e a t u r e s ( ) ;
0 2 f o r each Tes t Image i n T e s t S e t
0 3 S e g m e n t a t i o n = 0 ;
0 4 f o r each T e s t F e a t u r e i n Tes t Image
0 5 H y p o t h e s i s = 0 ;
0 6 f o r N c l o s e s t T r a i n F e a t u r e i n T r a i n i n g S e t
0 7 M = T r a i n F e a t u r e . GetImage ( ) .

Ge tGroundTru thSegmenta t ionMask ( ) ;
0 8 T = f i n d t r a n s f o r m a t i o n (

T r a i n F e a t u r e . GetPointOfView ( ) ,
T e s t F e a t u r e . GetPointOfView ( ) ) ;

0 9 M’ = M. A p p l y T r a n s f o r m a t i o n ( T ) ;
1 0 W = g a u s s i a n (

d i s t a n c e ( T e s t F e a t u r e , T r a i n F e a t u r e ) ,
0 , Sigma ) ;

1 1 H y p o t h e s i s = H y p o t h e s i s + W ∗ M’ ;
1 2 H y p o t h e s i s . Normal i ze ( ) ;
1 3 S e g m e n t a t i o n = S e g m e n t a t i o n + H y p o t h e s i s ;
1 4 His togram [ Tes t Image ] = 0 ;
1 5 f o r each T e s t F e a t u r e i n Tes t Image
1 6 T e s t F e a t u r e . Weight ( S e g m e n t a t i o n ) ;
1 7 His togram [ Tes t Image ] . Add ( T e s t F e a t u r e ) ;

Listing 1. Pseudo-code describing the spatial
weighting procedure.

about the location of a car from the position of the sign.
However, as segmentation information only roughly follows
object edges and local descriptors need some support area,
it is worth dilating (our choice) or blurring the segmentation
image by some pixels (we chose 32) before filtering out the
background features.

Having prepared the training set, we can generate hy-
potheses about possible object locations and shapes for each
feature of a test image (line 4). For each test feature we
look for the features from the training data that are closest
(we use Euclidean distance here) in the 128-dimensional
feature-space (for our SIFT implementation). We choose
N = 100 most similar training features (line 6). For each
interest point that is found, we are given not only its po-
sition, but with scale-invariant detectors we also know its
scale [14]. By finding dominant gradient orientation [15]
we may determine the orientation of the point and with
affine-adaptation technique [8, 17] it is possible to find all
affine deformation parameters. We call this information a
“point of view” of a given feature. The point of view is
necessary to normalize the retrieved mask shapes (line 7) to
compensate for viewpoint changes (lines 8-9). For exam-
ple, in the case of scale invariant features, a feature detected
at scale 6 may correspond to a feature detected at scale 3
in the training image. Then we need to shift the mask of
the training image to the relative position of the point in the
test image and rescale the mask by a factor of 2. In the
same manner we use rotation compensation for rotation in-
variant features and affine transformation for affine invari-
ant features. We sum the transformed masks and create a
hypothesis cast by the test feature (line 11). Masks in the



Winner [4]
Reimpl. of Zhang et al. [25] Spatial weighting
HS- LS- (HS+LS)- HS- LS- (HS+LS)- Gain-SIFT -SIFT -SIFT -SIFT -SIFT -SIFT

te
st

se
t1 bikes 93.0 85.1 90.4 92.1 86.8 91.2 92.1

cars 96.1 93.5 93.8 94.5 93.5 94.9 96.0 +1.5
motorbikes 97.7 94.0 95.8 96.3 92.6 95.4 96.3

people 91.7 89.3 88.1 91.7 89.3 89.3 92.9 +1.2

te
st

se
t2 bikes 72.8 72.6 73.4 74.8 75.3 75.9 76.8 +2.0

cars 72.0 72.5 73.9 75.8 73.7 73.9 76.8 +1.0
motorbikes 79.8 72.9 77.1 78.8 74.3 78.2 79.3 +0.5

people 71.9 75.1 74.5 76.9 76.3 74.9 77.9 +1.0

Table 1. Equal Error Rates (EER) of ROC curves for the classification task of the PASCAL chal-
lenge. Best result achieved during the challenge (‘winner’), performance of our reimplementation of
Zhang’s method and improvement introduced with our spatial weighting are presented.

sum are weighted with a Gaussian function of the distance
between the training and test features (line 10). We have
found Sigma = 0.15 to be a reasonable value for σ.

The normalized hypotheses (line 12) of all the features
in the test image are added to create the segmentation mask
(line 13), see fig. 3 for examples of the resulting masks.

Figure 3. Test images of Graz02 data set (on
the left), generated masks (in the middle) and
multiplication of the two (on the right).

One may also consider the final mask to be a score map
describing the likelihood that a given image pixel belongs
to an object. The score value is then computed based on the
number of features agreeing on a hypothesis that a given
pixel is a foreground pixel, i.e., belongs to an object. The
scores are then used to boost the importance of the features
lying on the object and suppress the background features.
We have redesigned the histogram building algorithm to
weight features according to the mask value corresponding
to their positions (line 16). Thus the features considered to
be foreground features will most strongly influence the rep-

resentation and the background features will have a minor
impact on the histogram.

4. Experimental results

To measure the performance of our spatial weighting
technique, we have reimplemented the method of Zhang et
al. [25] and evaluated it on the PASCAL VOC Challenge [4]
data set with and without spatial weighting. We have eval-
uated the binary classification performance using Receiver
Operating Characteristic (ROC). We have performed quan-
titative evaluation of the ROC curves by computing the
Equal Error Rates (EER) following the procedure defined
for the challenge [4].

Table 1 summarizes the results. For each of the eight
test sets we present the best reported result of the challenge,
the performance of the evaluated method without spatial
weighting (for each channel separately and for the combi-
nation) and the performance after introducing our technique
(again for each channel separately and for the combination).
We also show the gain achieved by our method.

One may have the impression that the achieved improve-
ment is not so high compared to the overall result. How-
ever, our 1.5% improvement should not be compared to
the original 94.5% ERR, but rather to the remaining 5.5%.
It should be taken into account that we are improving the
method, which gives the best known results for 5 out of 8
PASCAL test sets and for all of the most challenging ones.
Our method achieves the similar performance on the easier
datasets and outperforms the best known methods on 3 out
of 4 more difficult test sets.

It is worth noting that the performance of the reimple-
mented method itself is slightly better than the one reported
during the challenge [4]. This is due to the improvement in
the A parameter selection [25] for the χ2 kernel (see eq. (2)
in subsection 2.4).
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Figure 4. Selected Receiver Operating Characteristic (ROC) curves for classification on PASCAL test
sets. Results for a reimplementation of Zhang et al. [25] framework, our spatial weighting method
and ground-truth based segmentation are presented. Please note that only the most interesting
parts of the curves are shown to improve readability.

Fig. 4 presents some of the computed ROC curves. Plots
are shown for the evaluated method without spatial weight-
ing, for the same method with spatial weighting and for a
ground-truth estimated potential that motivated us to de-
velop the technique. The curves were selected to show
cases with and without improvement. Results for other test
sets are supporting our conclusions, the selection was done
purely due to space limitations.

One can notice that the method does not give improve-
ment for all test sets. It is worth comparing the achieved
gain with the potential estimated using the ground-truth seg-
mentation. A conclusion may be drawn that in cases where
the ground-truth ROC curve falls close to the ROC curve of
the original approach, minor improvement or no improve-
ment at all is observed. This can be easily understood. If
there is little background clutter, removal of background
does not help. For example, the background of motorbikes
in test set 1 is mostly uniform and the EER cannot be pushed
above 96.3%. On the other hand, the background of bicy-

cles in test set 2 is heavily cluttered and spatial weighting
gives 2.0% improvement in this case.

5. Extensions and future work
Spatial weighting has several potential extensions. Two

of them are discussed in the following. We also show some
promising initial results for localization.

5.1. Feature selection and iterative version

In the same way as we filter the training feature set to
reduce the noise caused by false matches with background
features, we could try to filter the test image features to re-
duce the number of considered background features. Fil-
tering with ground-truth segmentation information reveals
a potential of improving the results presented in section 4
by further 1% on average and even by up to 2.5% in the
case of Pacal test set 1 containing people. Naturally, we
may not use ground-truth for the purpose described above,



Figure 5. Iterating the spatial weighting pro-
cedure: first iteration (on the left), last itera-
tion (in the middle) and original image (on the
right).

so one could choose to implement feature selection tech-
niques, e.g., the likelihood ratio of the classification [3].

We have decided to evaluate an iterative approach to spa-
tial weighting instead. It is possible to build segmentation
masks iteratively, by weighting the test features using the
segmentation mask from the previous step. Effectively, we
should achieve a result similar to filtering with ground-truth
information. The masks usually converge to a stable form
in about 10 iterations. See fig. 5 for overview of the effect.
Note the difference between more (top two rows) and less
(bottom row) cluttered images. From top to bottom it took
9, 8 and 3 iterations to converge.

5.2. Localization

Segmentation masks produced by the spatial weight-
ing method seem to be promising for localization. Note
that they are not sufficient for the general localization task,
where we have to distinguish between separate object in-
stances on one image. However, the masks are directly suit-
able for a task where we can assume that one object per
image is present. Here we search for the highest value in
the mask to select the point with the highest probability of
being localized on the object. Object boundary approxima-
tion can be determined by simple thresholding. We plan to
further develop the method to support multiple object in-
stances on one image.

As the PASCAL data set contains multiple object in-
stances per image, it is not suitable for evaluation of the
produced segmentation masks. We have therefore followed
the experimental setting of Opelt and Pinz [20] defined for
the Graz02 [18] dataset. We have evaluated the localiza-
tion performance of our method following the criterion cho-
sen by the authors. It is based on the criterion established

Opelt [20] Spatial weighting
HS-SIFT LS-SIFT

bikes 76.7 78.7 82.7
cars 55.3 62.7 68.0

people 48.0 83.3 71.3

Table 2. Percentage of the images that satisfy
the localization criterion [20].

by Agarwal et al. [1], which requires the position given by
the system to fall within an ellipse drawn at the center of
the localized object. However, due to different parameter
settings, Opelt’s ellipse is larger and thus the criterion is
weaker then Agarwal’s. Table 2 presents the comparison
with Opelt’s approach.

We have also evaluated the localization accuracy by gen-
eralizing the bounding box evaluation criterion defined for
the PASCAL challenge [4] to any bounding shapes. We var-
ied the overlap requirement, i.e., the localization was con-
sidered to be correct when

|H ∩G|
|H ∪G| ≥ t (4)

where H is a computed localization mask, G is ground-
truth localization mask and t is an overlap threshold. Fig. 6
shows the localization accuracy—i.e, the number of cor-
rect localizations with respect to the total number of test
images—as a function of the threshold t. As one could ex-
pect, our method gives more precise localization for rigid
objects like cars and fails where very precise segmentation
is required for objects with highly variable silhouettes like
people. The localization accuracy grows rapidly while re-
laxing the threshold. Please note that for arbitrary silhou-
ettes the masks fulfilling the 33% overlap requirement are
usually visually satisfying. We only give results for the de-
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tector that obtained best results in table 2. The other detec-
tor achieved slightly lower results as expected.

6. Summary

In this paper we have proposed an extension to category
classification with bag-of-features that incorporates spatial
relations between features. We have introduced the “spatial
weighting” technique, which uses spatial relations to boost
the weights of foreground features and to decrease the in-
fluence of background features on the representation, thus
making it more robust to background clutter.

The experimental evaluation has shown that applying the
proposed extension to one of the state-of-the-art methods
further improves the classification results. The classifica-
tion rate achieved by our method on the PASCAL VOC Chal-
lenge data set outperforms the state-of-the-art [4].

We have also demonstrated the possibility of applying
our method to object localization. Preliminary results show
promise. Future research could focus on guiding a dis-
criminative classifier using the maps produced by the spa-
tial weighting technique to create an efficient localization
method.
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