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Abstract. This chapter proposes a representation of rigid three-dimensional
(3D) objects in terms of local a�ne-invariant descriptors o f their images
and the spatial relationships between the corresponding surface patches.
Geometric constraints associated with di�erent views of th e same patches
under a�ne projection are combined with a normalized repres entation of
their appearance to guide the matching process involved in object mod-
eling and recognition tasks. The proposed approach is applied in two do-
mains: (1) Photographs | models of rigid objects are constru cted from
small sets of images and recognized in highly cluttered shots taken from
arbitrary viewpoints. (2) Video | dynamic scenes containin g multiple
moving objects are segmented into rigid components, and the resulting
3D models are directly matched to each other, giving a novel approach
to video indexing and retrieval.

1 Introduction

Traditional feature-based geometric approaches to three-dimensional (3D) object
recognition | such as alignment [13, 19] or geometric hashing [15] | enumerate
various subsets of geometric image features before using pose consistency con-
straints to con�rm or discard competing match hypotheses. They largely ignore
the rich source of information contained in the image brightness and/or color
pattern, and thus typically lack an e�ective mechanism for selecting promis-
ing matches. Appearance-based methods, as originally proposed in the context
of face recognition [43] and 3D object recognition [28], prefer a classical pattern
recognition framework that exploits the discriminatory power of (relatively) low-
dimensional, empirical models of global object appearancein classi�cation tasks.
However, they typically de-emphasize the combinatorial aspects of the search in-
volved in any matching task, which limits their ability to ha ndle occlusion and
clutter.

Viewpoint and/or illumination invariants provide a natura l indexing mech-
anism for object recognition tasks. Unfortunately, although planar objects and



certain simple shapes|such as bilateral symmetries or various types of gener-
alized cylinders|admit invariants, general 3D shapes do not [4], which is the
main reason why invariants have fallen out of favor after an intense urry of
activity in the early 1990s [26, 27]. In this chapter, we revisit invariants as a
local description of truly three-dimensional objects: Indeed, although smooth
surfaces are almost never planar in the large, they are always planar in the small
|that is, su�ciently small patches can be treated as being co mprised of copla-
nar points. Concretely, we propose to capture the appearance of salient surface
patches using local image descriptors that are invariant under a�ne transfor-
mations of the spatial domain [18, 24] and of the brightness signal [20], and to
capture their spatial relationships using multi-view geometric constraints related
to those studied in the structure from motion literature [39]. This representation
is directly related to a number of recent schemes for combining the local surface
appearance at \interest points" [12] with geometric constraints in tasks such
as wide-baseline stereo matching [44], image retrieval [36], and object recogni-
tion [20]. These methods normally either require storing a large number of views
for each object, or limiting the range of admissible viewpoints. In contrast, our
approach supports the automatic acquisition of explicit 3D object models from
multiple unregistered images, and their recognition in photographs and videos
taken from arbitrary viewpoints.

Section 2 presents the main elements of our object representation framework.
It is applied in Sections 3 and 4 to the automated acquisitionof 3D object models
from small sets of unregistered images and to the identi�cation and localization
of these models in cluttered photographs taken from arbitrary and unknown
viewpoints. Section 5 briey discusses further applications to the video indexing
and retrieval domain, including a method for segmenting dynamic scenes ob-
served by a moving camera into rigid components and matchingthe 3D models
recovered from di�erent shots. We conclude in Section 6 witha short discussion
of the promise and limitations of the proposed approach.

2 Approach

2.1 A�ne Regions and their Description

The construction of local invariant models of object appearance involves two
steps, the detection of salient image regions, and their description. Ideally, the
regions found in two images of the same object should be the projections of the
same surface patches. Therefore, they must becovariant, with regions detected
in the �rst picture mapping onto those found in the second onevia the geometric
and photometric transformations induced by the corresponding viewpoint and
illumination changes. In turn, detection must be followed by a description stage
that constructs a region representationinvariant under these changes. For small
patches of smooth Lambertian surfaces, the transformations are (to �rst order)
a�ne, and we use the approach recently proposed by Mikolajczyk and Schmid
to �nd the corresponding a�ne regions : Briey, the algorithm iterates over steps
where (1) an elliptical image region is deformed to maximizethe isotropy of the



corresponding brightness pattern (shape adaptation [10]); (2) its characteristic
scale is determined as a local extremum of the normalized Laplacian in scale
space (scale selection [17]); and (3) the Harris operator [12] is used to re�ne the
position of the the ellipse's center (localization [24]). The scale-invariant interest
point detector proposed in [23] provides an initial guess for this procedure, and
the elliptical region obtained at convergence can be shown to be covariant under
a�ne transformations. The a�ne region detection process us ed in this chapter
implements both this algorithm and a variant where a di�eren ce-of-Gaussians
(DoG) operator replaces the Harris interest point detector. Note that this oper-
ator tends to �nd corners and points where signi�cant intensity changes occur,
while the DoG detector is (in general) attracted to the centers of roughly uniform
regions (blobs): Intuitively, the two operators provide complementary kinds of
information (see Figure 1 for examples).

Fig. 1. A�ne regions found by Harris-Laplacian (left) and DoG (righ t) detectors.

The a�ne regions output by our detection process are ellipses that can be
mapped onto a unit circle centered at the origin using a one-parameter family
of a�ne transformations. This ambiguity can be resolved by determining the
dominant gradient orientation of the image region, turning the corresponding
ellipse into a parallelogram and the unit circle into a square (Figure 2). Thus,
the output of the detection process is a set of image regions in the shape of
parallelograms, together with a�ne rectifying transformations that map each
parallelogram onto a \unit" square centered at the origin (F igure 3).

A recti�ed a�ne region is a normalized representation of the local surface
appearance. For distant observers (a�ne projection), it is invariant under ar-
bitrary viewpoint changes. For Lambertian patches and distant light sources,
it can also be made invariant to changes in illumination (ignoring shadows) by
subtracting the mean patch intensity from each pixel value and normalizing
the Frobenius norm of the corresponding image array to one. The Euclidean dis-
tance between feature vectors associated with their pixel values can thus be used
to compare recti�ed patches, irrespective of viewpoint and(a�ne) illumination
changes. Other feature spaces may of course be used as well. As many others, we
have found the Lowe's SIFT descriptor [20] |a histogram over both spatial di-
mensions and gradient orientations| to perform well in our e xperiments, along



Fig. 2. Normalizing patches. The left two columns show a patch from i mage 1 of
Krystian Mikolajczyk's gra�ti dataset (available from the INRIA LEAR group's web
page:http://lear.inrialpes.fr/software ). The right two columns show the match-
ing patch from image 4. The �rst row shows the ellipse determi ned by a�ne adaptation.
This normalizes the shape, but leaves a rotation ambiguity, as illustrated by the nor-
malized circles in the center. The second row shows the same patches with orientation
determined by the gradient at about twice the characteristi c scale.

with a 10 � 10 color histogram drawn from the UV portion of YUV space when
color is available.

2.2 Geometric Constraints

Given an a�ne region, let us denote by R the a�ne transformation from the
image patch to its recti�ed (normalized) form, and by S = R � 1 the a�ne trans-
formation from the recti�ed form back to the image patch (Fig ure 3). The 3� 3
matrix S has the form

S =
�

h v c
0 0 1

�
;

and its columns enjoy the following geometric interpretation: The third column
gives the homogeneous coordinates of the centerc of the corresponding image
parallelogram, while h and v are the vectors joining c to the midpoints of the
parallelogram's sides (Figure 3). The matrix S e�ectively contains the locations
of three points in the image, so a match betweenm � 2 images of the same patch
contains exactly the same information as a match betweenm triples of points.
It is thus clear that all the machinery of structure from moti on [39] and pose
estimation [13, 19] from point matches can be exploited in modeling and object
recognition tasks. Reasoning in terms of multi-view constraints associated with
the matrix S provides a uni�ed and convenient representation for all stages of
both tasks.
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Suppose there aren surface patches observed inm images, and that we are
given a complete set of measurementsSij as de�ned above for image indicesi =
1; : : : ; m and patch indicesj = 1 ; : : : ; n. (Later, we will show how to handle the
\missing data" problem that results when not all patches arevisible in all views.)
A recti�ed patch can be thought of as a �ctitious view of the or iginal surface
patch (Figure 3), and the mapping Sij can thus be decomposed into aninverse
projection N j [5] that maps the recti�ed patch onto the corresponding surface
patch, followed by a projection M i that maps that patch onto its projection in
image number i . In particular, we can write

Ŝ def=

2

4
S11 : : : S1n

...
. . .

...
Sm 1 : : : Smn

3

5 =

2

4
M 1

...
M m

3

5 [ N1 : : : Nn ] :

The inverse projection matrix can be written as

N j =
�

H V C
0 0 1

�

j

;

and its columns admit a geometric interpretation similar to that of Sij : the �rst
two contain the \horizontal" and \vertical" axes of the surf ace patch, and the
third one is the homogeneous coordinate vector of its center.

To extract the matrices N j (and thus the corresponding patches' geometry)
from a set of image measurements, we construct a reduced factorization of Ŝ
by picking, as in [39], the center of mass of the surface patches' centers as the
origin of the world coordinate system, and the center of massof these points'



projections as the origin in each image. In this case, the projection equation
Sij = M i N j becomes

�
D ij

0 0 1

�
=

�
A i 0
0T 1

� �
Bj

0 0 1

�
; or D ij = A i Bj ;

whereA i is a 2� 3 matrix, D ij = [ h v c ]ij is a 2� 3 matrix, and Bj = [ H V C ]j
is a 3� 3 matrix. It follows that the reduced 2 m � 3n matrix

D̂ = Â B̂; where D̂ def=

2

4
D11 : : : D1n

...
. . .

...
Dm 1 : : : Dmn

3

5 ; Â def=

2

4
A 1
...

A m

3

5 ; B̂ def= [ B1 : : : Bn ] ;

(1)
has at most rank 3. Following [39] we use singular value decomposition to fac-
torize D̂ and compute estimates of the matricesÂ and B̂ that minimize the
squared Frobenius norm of the matrixD̂ � Â B̂. Geometrically, the (normalized)
Frobenius norm d = jD̂ � Â B̂j=

p
3mn of the residual can be interpreted as the

root-mean-squared reprojection error, that is, the distance (in pixels) between
the center and side points of the patches observed in the image and those pre-
dicted from the recovered matricesÂ and B̂. Given n matches established across
m images (a match is anm-tuple of image patches), the residual errord can
thus be used as a measure of inconsistency between the matches.

2.3 Matching

Matching is a fundamental process in both modeling and recognition. An image
can be viewed as simply a collection of 2D patches, and likewise a 3D model is
a collection of 3D patches. There are three steps in our general procedure for
matching between two such patch setsA and B :

Step 1 | Appearance based selection of potential matches.For each patch in
set A, this step selects one or more patches in setB with similar appearance,
as measured by the descriptors presented in Section 2.1. Mismatches might oc-
cur due to measurement noise or confusion of similar (for example, repetitive)
structures.

Step 2 { Robust estimation. Using RANSAC, alignment, or other related tech-
niques, this step selects a geometrically consistent subset of the match hypothe-
ses. Our assumption is that the largest such consistent set will contain mostly
true matches. This establishes the geometric relationshipbetween the two sets
of patchesA and B .

Step 3 { Geometry-based addition of matches.This step seeks a �xed-point in
the space (A � B ) of matches by iteratively estimating a geometric model based
on the current set of matches and then selecting all match hypotheses that
are consistent with the model. At the same time it adds new match hypotheses



guided by the model. Generally, the geometric model will notchange much during
this process. Rather, the resulting maximal set of matches bene�ts recognition,
where the number of matches acts as a con�dence measure, and modeling, where
it produces better coverage of the object.

3 3D Object Modeling from Images

There are several combinatorial and geometric problems to solve in order to
convert a set of images into a 3D model. The overall process isdivided into four
steps: (1) matching: match regions between pairs of images; (2)chaining: link
matches across multiple images; (3)stitching: solve for the a�ne structure and
motion while coping with missing data; (4) Euclidean upgrade: use constraints
associated with the intrinsic parameters of the camera to turn the a�ne recon-
struction into a Euclidean one. In the following we describeeach of these steps.
We will use a teddy bear to illustrate some of the steps of the modeling process.
Additional modeling experiments will also be presented.

Matching. The �rst step is to match the regions found in a pair of images.This
is an instance of thewide-baseline stereo matchingproblem which has been well
studied in the literature [3, 22, 24, 31, 35, 38, 44]. Any technique that generates
a set of matches between a�ne regions in a pair of images is appropriate, in-
cluding the general matching procedure (Section 2.3). Thisalgorithm appears
in three di�erent contexts in this work, so we have chosen to give the details of
its application only in the object recognition case (Section 4). Here we give a
very brief sketch of its application to 2D matching. For the appearance-based
matching (Step 1) we compare SIFT descriptors. For robust estimation (Step 2)
we take advantage of the normalized residuald = jD̂ � Â B̂j=

p
3mn to measure

the consistency of subsets of the matches. Finally, in Step 3we use an estimate
of the epipolar geometry between the two images to �nd additional hypothetical
matches, which are again �ltered using the consistency measure. For details on
the 2D matching procedure, see [33].

Chaining. The matching process described in the previous section outputs a�ne
regions matched across pairs of views. It is convenient to represent these matches
by a single (sparse)patch-viewmatrix whose columns represent surface patches,
and rows represent the images in which they appear (Figure 5).

There are two challenges to overcome in the chaining process. One is to ensure
that the image measurementsSij are self-consistent for all projections of a given
patch j . To solve this, we choose one member of the corresponding column as
reference patch, and re�ne the parameters of the other patches to maximize
their texture correlation with it (Figure 6). The second cha llenge is to cope with
mismatches, which can cause two patches in one image to be associated with
the same column in the patch-view matrix. In order to properly construct the
matrix, we choose the one patch in the image whose texture is closest to the
reference patch mentioned above.



Fig. 4. Some of the matches found in two images of the bear (for readability, only 20
out of hundreds of matches are shown here). Note that the lines drawn in this diagram
are not epipolar lines. Instead they indicate pairs of matched a�ne regions.

Fig. 5. A (subsampled) patch-view matrix for the teddy bear. The ful l patch-view
matrix has 4,212 columns. Each black square indicates the presence of a given patch
in a given image.

Stitching. The patch-view matrix is comparable to the data matrix used in
factorization approaches to a�ne structure from motion [39 ]. If all patches ap-
peared in all views, we could indeed factorize the matrix directly to recover the
patches' 3D con�gurations as well as the camera positions. In general, however,
the matrix is sparse. To cope with this, we �nd dense blocks (sub-matrices with
complete data) to factorize and then register (\stitch") th e resulting sub-models
into a global one. The problem of �nding maximal dense blockswithin the patch-
view matrix reduces to the NP-complete problem of �nding maximal cliques in
a graph. In our implementation, we use a simple heuristic strategy which, while
not guaranteed to be optimal or complete, generally produces an adequate solu-
tion: Briey, we �nd a dense block for each patch|that is, for each column in
the patch-view matrix|by searching for all other patches th at are visible in at
least the same views. In practice, this strategy provides both a good coverage of
the data by dense blocks and an adequate overlap between blocks.

The factorization technique described in Section 2.2 can ofcourse be applied
to each dense block to estimate the corresponding projection matrices and patch
con�gurations in some local a�ne coordinate system. The next step is to com-
bine the individual reconstructions into a coherent globalmodel, or equivalently



Fig. 6. Re�ning patch parameters across multiple views: recti�ed p atches associated
with a match in four views before (top) and after (bottom) app lying the re�nement
process. The patch in the rightmost column is used as a reference for the other three
patches. The errors shown in the top row are exaggerated for the sake of illustration.

register them in a single coordinate system. With a proper set of constraints
on the a�ne registration parameters, this can easily be expressed as an eigen-
value problem. In our experiments, however, we have found this linear approach
to be numerically ill behaved (this is related to the inherent a�ne gauge am-
biguity of our problem). Thus, in practice, we pick an arbitrary block as root,
and iteratively register all others with this one using linear least squares, before
using a non-linear bundle adjustmentmethod to re�ne the global registration
parameters.

Euclidean Upgrade. It is not possible to go from a�ne to Euclidean structure and
motion from two views only [14]. When three or more views are available, on the
other hand, it is a simple matter to compute the corresponding Euclidean weak-
perspective projection matrices (assuming zero skew and known aspect ratios)
and recover the Euclidean structure [39, 30]: Briey, we �nd the 3 � 3 matrix
Q such that A i Q is part of a scaled rotation matrix for i = 1 ; : : : ; m. This
provides linear constraints onQQT , and allows the estimation of this symmetric
matrix via linear least-squares. The matrix Q can then be computed via Cholesky
decomposition [29, 45].

Modeling results. Figure 7 shows a complete model of the teddy bear, along with
the directions of the a�ne cameras. Figure 8 shows the models(but not the
cameras) for seven other objects. The current implementation of our modeling
approach is quite reliable, but rather slow: The teddy bear shown in Figure 7
is our largest model, with 4014 model patches computed from 20 images (24
image pairs). Image matching takes about 75 minutes per pairusing the general
matching procedure (Section 2.3), for a total of 29.9 hours.(All computing times



in this presentation are given for C++ programs executed on a3Ghz Pentium
4 running Linux.) The remaining steps to assemble the model run in 1.5 hours.
The greatest single expense in our modeling procedure is patch re�nement, and
this can be sped up by loosening convergence criteria and reducing the number
of pixels processed, at the cost of a small loss in the number of matches.

Fig. 7. The bear model, along with the recovered a�ne viewing direct ions. These
cameras are shown at an arbitrary constant distance from the origin.

4 3D Object Recognition

We now address the problem of identifying instances of 3D models in a test
image. This is essentially a matching process, and we apply again the general
matching procedure (Section 2.3). The rest of this section describes the speci�cs
of each step of the procedure.

Step 1 { Appearance based selection of potential matches.When texture patches
have high contrast (that is, high variance in the intensity gradient) the SIFT
descriptor does a good job of selecting promising matches. When the patches
have low contrast SIFT becomes less reliable, since the intensity gradient �eld
forms the basis for both the characteristic orientation andthe histogram entries.
In some situations, SIFT will even place the correct match inthe bottom half of
the list of candidates (Figure 9). For better reliability, w e pre-�lter the matches
using a color descriptor: a 10� 10 histogram of the UV portion of YUV space.




























