A semi-supervised learning approach to object recognition with spatial integration of local features and segmentation cues

Peter Carbonetto 1 Gyuri Dorkó 2 Cordelia Schmid 2, * Hendrik Kück 1 Nando De Freitas 1
* Auteur correspondant
2 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : This chapter presents a principled way of formulating models for automatic local feature selection in object class recognition when there is little supervised data. Moreover, it discusses how one could formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods and Bayesian model selection and data association, the proposed model identifies the most relevant sets of local features for recognizing object classes, achieves performance comparable to the fully supervised setting, and consistently outperforms existing methods for image classification.
Type de document :
Chapitre d'ouvrage
Jean Ponce and Martial Hebert and Cordelia Schmid and Andrew Zisserman. Towards category-level object recognition, 4170, Springer, pp.277--300, 2006, Lecture Notes in Computer Science (LNCS), 978-3-540-68794-8. 〈10.1007/11957959_15〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00548613
Contributeur : Thoth Team <>
Soumis le : lundi 20 décembre 2010 - 10:07:11
Dernière modification le : mercredi 11 avril 2018 - 01:54:21

Lien texte intégral

Identifiants

Collections

Citation

Peter Carbonetto, Gyuri Dorkó, Cordelia Schmid, Hendrik Kück, Nando De Freitas. A semi-supervised learning approach to object recognition with spatial integration of local features and segmentation cues. Jean Ponce and Martial Hebert and Cordelia Schmid and Andrew Zisserman. Towards category-level object recognition, 4170, Springer, pp.277--300, 2006, Lecture Notes in Computer Science (LNCS), 978-3-540-68794-8. 〈10.1007/11957959_15〉. 〈inria-00548613〉

Partager

Métriques

Consultations de la notice

127