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Abstract

This paper presents a new approach for multi-view ob-
ject class detection. Appearance and geometry are treated
as separate learning tasks with different training data.
Our approach uses a part model which discriminatively
learns the object appearance with spatial pyramids from a
database of real images, and encodes the 3D geometry of
the object class with a generative representation built from
a database of synthetic models. The geometric information
is linked to the 2D training data and allows to perform an
approximate 3D pose estimation for generic object classes.
The pose estimation provides an ef�cient method to evaluate
the likelihood of groups of 2D part detections with respect
to a full 3D geometry model in order to disambiguate and
prune 2D detections and to handle occlusions. In contrast
to other methods, neither tedious manual part annotation of
training images nor explicit appearance matching between
synthetic and real training data is required, which resultsin
high geometric �delity and in increased �exibility. On the
3D Object Category datasets CAR and BICYCLE [15], the
current state-of-the-art benchmark for 3D object detection,
our approach outperforms previously published results for
viewpoint estimation.

1. Introduction

In recent years, multi-view generic object class detection
has received increasing attention [3, 5, 12, 15, 16, 19]. Most
approaches address the task by extrapolating known strate-
gies from 2D single-view object class detection, notably by
combining classi�ers for separate viewpoints. Some au-
thors have proposed to include weak geometric informa-
tion into the learning process, mostly by applying locally
deformable 2D models for discrete viewpoints [3, 5, 7].
Learning a generic representation of the 3D geometry of
an object class, on the other hand, is challenging. While
numerous 2D detection approaches have been developed
which are capable of handling noise and large variation in
intra-class appearance, the task of learning a robust 3D geo-
metric model for an object class remains an active research

topic [1, 15, 16].
The advantages of a 3D representation for multi-view

object class detection are obvious: 2D part detections can
be disambiguated and pruned with respect to their consis-
tency with the object class geometry under full perspective
projection, and detection con�dence can be computed per-
object instead of combining per-classi�er scores. Further-
more, such a representation allows an approximate estima-
tion of the pose. However, these advantages often come
with an increased training complexity such as manual per-
label annotations. More importantly, they usually cannot
be �exibly integrated into existing 2D detectors. In con-
trast, this paper shows that a joint model for geometry and
appearance can be avoided by learning separate models for
both and combining them at a later stage. As a result, one
can use better adapted, leaner representations and separate
training sources and exploit the ubiquitous availability of
geometrically faithful synthetic 3D CAD models for object
detection tasks, while circumventing the gap between syn-
thetic textures and real object appearance [12].

The paper is structured as follows. Section 2 summa-
rizes previous work on multi-view object class detection.
In section 3, an overview of the training approach is given.
Details on the appearance model for hierarchical part-based
detection on 2D training images are presented in section 4.
The geometric representation of the object classes, which is
built from synthetic 3D models, is described in section 5.
Section 6 describes the combined detection process. Exper-
imental results and a comparision with the state of the art
are given in section 7 for the 3D Object Category datasets
CAR and BICYCLE [15].

2. Related work

A survey of related work on multi-view object class de-
tection shows three predominant approaches which differ
in their choice of the geometric representation. 2D detec-
tors can be combined by linking them over multiple view-
points [17] and modeling �exible spatial layouts of part de-
tectors [3, 5, 7]. Other methods have been proposed which
build 3D representations of the object class from 2D train-
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Figure 1. Overview of the two training steps. (Top) Mixture models are learnt from synthetic 3D models to describe the class geometry.
(Bottom) Full object and part appearance are learnt from a 2Dimage database. See text for details. The �gure is best viewed in color.

ing data based on initial viewpoint annotations [1, 9, 15, 16].
As a third approach, the use of existing 3D models has been
suggested in the past [6] and more recently in [8, 12, 19].

The combination of 2D detectors to cover a multi-view
sphere has been the initial step towards a more comprehen-
sive use of geometry for object class detection [17]. In or-
der to increase robustness towards pose changes, additional
probabilistic layout models [3] as well as local 2D geomet-
ric constraints have been introduced in combination with
increasingly powerful object part representations and learn-
ing procedures [5]. In [13], additional classi�ers on spatial
pyramids are learnt to obtain orientation estimates. How-
ever, these approaches are inherently limited to a few dis-
crete viewpoints as detection output.

Alternatively, viewpoint-annotated training data can be
used to dynamically build 3D representations to better ad-
dress the possible viewpoint variations of object classes.
In [15], homographic constraints between groups of object
parts are combined to form a piecewise planar 3D approx-
imation of object classes which also allows to interpolate
unseen instances within the chosen parameterization. More
recently, [16] introduced a probabilistic approach to learn-
ing af�ne constraints between object parts; during testing,
they rely on a complex sequence of random forest clas-
si�ers, Hough voting and linear SVM classi�ers. In [1],
sparsely annotated 2D feature positions are factorized to ob-
tain a 3D implicit shape model. Although these methods
perform well, their training process is elaborate and they
rely on relatively sparse object part representations which
may impact their robustness for unseen objects.

The third category of multi-view object class detection
approaches resorts to existing 3D models of varying level
of detail. Initially suggested for example by [6] in the con-
text of relational graphs, the idea has since been extended.
Khan et al. [19] collect patches from viewpoint-annotated
2D training images and map them onto an existing 3D CAD
model. Liebelt et al. [12] introduce a �ltering step to build

a 3D representation of both geometry and local feature ap-
pearance from a database of synthetic models. Heisele et
al. [8] generate dif�cult training sets from synthetic 3D
models for an active learning algorithm. While being signif-
icantly simpler to train, these methods suffer from rendering
artifacts and a reduced similarity between synthetic models
and real images.

In contrast, this paper presents a combination of the in-
dividual strengths of the above mentioned ideas, while cir-
cumventing their respective shortcomings. Based on dis-
criminative part-based 2D detectors which are both robust
and straightforward to train, only a few synthetic 3D models
for each object class are used to learn a generative 3D rep-
resentation of the object class geometry without relying on
the presence of synthetic textures. In particular, no manual
annotation of individual part locations is necessary. More-
over, a probabilistic pose estimation allows to obtain an ap-
proximate 3D object pose alongside a precise and robust 2D
detection. This estimation step provides an effective evalu-
ation measure to assess the consistency of the 2D part de-
tections with respect to the full 3D geometry of the object
class.

3. Overview

Figure 1 illustrates the approach presented in this paper,
which is based on combining a 2D appearance model with
an external 3D geometry.

The object class appearance is learnt from a database
of 2D images, showing the objects from different view-
points (�gure 1, 2D.1); each image is annotated with the 2D
bounding box and the viewpoint of the object, but neither
manual part annotations nor segmentations are necessary.
Each annotated bounding box is subdivided (2D.2) into a
regular grid where each grid block represents a part of the
object. A single spatial pyramid detector is used for the
full object regions of interest (2D.3 top), while for each part
region under each viewpoint, several smaller, overlapping



spatial pyramid detectors are trained (2D.3 bottom).

The 3D geometry is learnt from one or several synthetic
3D CAD models representative of the object class geome-
try. The models are rendered from many viewpoints (�g-
ure 1, 3D.1); the rendered images are subdivided (3D.2)
into the same regular grid as in (2D.2). For each rendered
pixel inside a part region, its original position on the CAD
model surface is known; thus the image pixels belonging to
the same part can be backprojected onto the surface (3D.3),
sampled into discrete 3D points (3D.4) and the distribution
of all 3D points belonging to one object part can be modeled
by a mixture of Gaussians (3D.5).

The resulting object class representation now consists of
a 2D pre-detector of regions of interest, dense 2D part de-
tectors per viewpoint, and an approximate representation of
the 3D geometry of the object class (�gure 1, 2D+3D). To
summarize, by subdividing both the annotated real training
bounding boxes (�gure 1, bottom) and the rendered images
of the 3D models (�gure 1, top) into the same regular grid
of parts (�gure 1, 2D.2 and 3D.2), the link between local
3D geometry and local 2D image appearance is established.
Note that this requires bounding box annotations as well as
approximative viewpoint annotations in the 2D training im-
ages.

4. Part-based Appearance Model

Learning the appearance of an object class needs to take
into account large intra-class and viewpoint variations in
addition to signi�cant background clutter and partial occlu-
sions. Moreover, when dealing with part-based object class
detection, one aims at learning suf�ciently powerful part de-
scriptors for relatively small image patches. These patches
do not always contain suf�cient structure to be suitable for
discriminative classi�ers. In addition, manually including
detailed annotations on the location of each object part is
tedious. Consequently, some authors have suggested using
�xed part layouts for 2D detection [2, 7, 14] where each
detector is associated with an object part depending on its
location inside the grid. More recently, the use of hierar-
chical structures as a representation for both the entire ob-
ject and its subparts has been advocated [3, 5]. This work
builds on these ideas in relying on spatial pyramids [11]
both for the global object and the local parts. It extends be-
yond previous, sparse part-based approaches [14] by using
both densely computed local features and spatial pyramids
densely covering the image space. Learning the appearance
of an object class consists of a two-fold supervised training
process which is both ef�cient and robust; �gure 1, 2D.3 il-
lustrates the two detection components which are described
in the following paragraphs.

4.1. Detector Layout

Both detection steps build on densely computed local
features as their basic building blocks. The DAISY de-
scriptor [18] was chosen because of its ef�cient implemen-
tation. Initially, from all positive and negative trainingim-
ages, DAISY descriptors are randomly sampled and clus-
tered into a small codebook of �xed sizeC using a standard
k-means algorithm with random initialization. The code-
book size can be adapted to the complexity of the object
class; see section 7 for details on the chosen parameters.
Given each positive training annotation, DAISY features are
then computed densely within the annotated training region
and assigned to their respectively closest codewords to build
localized occurrence histograms.

A single detector is trained on entire objects to identify
regions which have a higher likelihood of containing an en-
tire object instance; �gure 1, 2D.3 top, shows an example
layout. The dimensions and aspect ratio of the training an-
notations determine the dimension of the detector used dur-
ing testing.

For the part-based detectors, instead of manually select-
ing semantic parts, the training annotations are further sub-
divided into a regular grid ofV � W regions, assuming that
the densely sampled detectors whose centers fall into the
same region can be considered to share some common char-
acteristics of this part of the entire object under this view-
point; see �gure 1, 2D.3 bottom. Consequently,V � W
groups of detectors are obtained, each representing the ap-
pearance of a part of the entire object under the current view.
These part detectors have to deal less with background vari-
ation, but focus primarily on differentiating between the ap-
pearance of areas of an object under changing viewpoints.

The negative training examples for object parts and full
objects are initially chosen randomly on the background of
the training images; the detector layouts which were used
for the positive training instances are re-used to determine
the layout of the negative samples.

4.2. Appearance Representation

Following [11], the localized occurrence histograms are
combined into spatial pyramids. For the full object pre-
detector, a single spatial pyramid is built to represent the
appearance of the entire object under the current view; see
�gure 1, 2D.3 top. For the part-based detectors,V � W
groups of spatial pyramids are obtained, each representing
the appearance of a part of the entire object under the cur-
rent view. The spatial pyramids of each part are densely
sampled and allowed to overlap in order to completely cover
the part area as shown in �gure 1, 2D.3 bottom.

Given positive and negative training examples, separate
SVM classi�ers are now trained, one for the entire object
under all viewpoints and one for each of theV � W object



parts under each of the weakly-annotated views as provided
by the training database. In the case of the 3D Object Cat-
egory datasets CAR and BICYCLE, annotations are given
for discrete distances and elevation and azimuth angles (also
see section 7). As illustrated in �gure 2, the proposed ap-
proach parameterizes the viewpoints in spherical coordi-
nates of� = ( r ; a ; b ) wherer is radius,a azimuth and
b elevation, assuming a simpli�ed camera which is always
oriented at the centroid of the object. A part is assigned
to one block of the �xed grid when its center falls into the
block, thereby allowing for some overlap between the parts
(see �gure 1, 2D.3 bottom). All views having azimuth an-
gles within a given range together with all distances and el-
evation angles associated with this azimuth angle are com-
bined to trainV � W part detectors for this particular base
viewpoint; see section 7 for details on the chosen parame-
ters. To compensate for the random choice of initial nega-
tive training instances, a standard bootstrapping procedure
is used to iteratively select the most dif�cult false positives
and false negatives for each part classi�er. The SVMs are
learned on a pyramid intersection distance kernel with the
per-level weighting scheme suggested in [11].

Figure 2. Discretization of the viewpoints for initial classi�cation
into “base viewpoints” in discrete azimuth steps, each combining
multiple elevations and distances.

5. Geometry Model

The following section outlines how the model of the ob-
ject class geometry is built to represent the 3D distribution
of the centers for each of theV � W parts per object class
and for each discretized camera viewpoint (�gure 2).

Recently, some publications have proposed methods for
building a 3D representation from trainingdata to be used
for detection tasks. In most cases, groups of consistently
deforming image regions are promoted to a higher geome-
try model to re�ect their co-occurrence [1, 15, 16]. In [12],
synthetic models with reduced textural similarity to real im-
ages have been used to compute �ltered local features and
to project their locations in rendered images into a common
3D coordinate system.

In this paper, a different approach is proposed which re-
lies on commercially available synthetic 3D models; see �g-

ure 3 for some examples. However, unlike all previous ap-
proaches, the geometric learning task is separated from the
appearance component. No explicit matching between syn-
thetic textures and real images is required; still the precise
geometry of synthetic models can be used in an extremely
�exible way to learn the 3D distribution of parts of an ob-
ject class, as long as the models represent characteristic ob-
ject class geometries. In particular, no manual annotation
of part locations is required. By limiting the contribution
of the synthetic models to their geometry, far fewer mod-
els are needed to represent the geometry of an object class
rather than all possible textural appearance variations.

5.1. 3D Training Data

Figure 3. Synthetic 3D models used for the geometry training.

The use of synthetic models as training sources for the
geometry allows to densely sample the space of possible
viewpoints and to choose the models such that the train-
ing database includes representative object surface geome-
tries. The approach follows the pose space parameterization
of [15] as de�ned by their test database; the parameteriza-
tion is based on a spherical coordinate system as illustrated
in �gure 2; a simpli�ed camera model is assumed where
rotations around the camera view axis are not part of the
parameter space.

For each object class, all its 3D models are rendered
into images of �xed dimensions, along with their automat-
ically generated bounding boxes. Each model is rendered
from the same viewpoints that are present in the real im-
age database (termed “base viewpoints”) as well as from
additional densely sampled viewpoints, re�ecting interme-
diate distances and object orientations. By using synthetic
models, viewpoints can be more densely sampled from the
space of all relevant poses to account for the typical visi-
bility of the parts under perspective projection, depending
on 3D surface structure and local self-occlusions. For each
rendered view, the bounding box is subdivided into a reg-
ular grid ofV � W parts (see �gure 1, 3D.2) in the same
way as for the appearance training (see �gure 1, 2D.2). The
assignment of 3D surface locations to parts does not require
any annotation, since for synthetically rendered images, the
actual 2D bounding boxes are known; their automatic sub-
division into the same regular grid that was used for the










