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Abstract

We address the problem of image search on a very large
scale, where three constraints have to be considered jointly:
the accuracy of the search, its ef�ciency, and the memory
usage of the representation. We �rst propose a simple yet
ef�cient way of aggregating local image descriptors into a
vector of limited dimension, which can be viewed as a sim-
pli�cation of the Fisher kernel representation. We then show
how to jointly optimize the dimension reduction and the in-
dexing algorithm, so that it best preserves the quality of vec-
tor comparison. The evaluation shows that our approach
signi�cantly outperforms the state of the art: the search ac-
curacy is comparable to the bag-of-features approach for
an image representation that �ts in 20 bytes. Searching a
10 million image dataset takes about 50ms.

1. Introduction

There are two reasons why the bag-of-features image
representation (BOF) is popular for indexation and catego-
rization applications. First, this representation bene�ts from
powerful local descriptors, such as the SIFT descriptor [12]
and more recent ones [13, 28, 29]. Second, these vector rep-
resentations can be compared with standard distances, and
subsequently be used by robust classi�cation methods such
as support vector machines.

When used for large scale image search, the BOF vec-
tor representing the image is advantageously chosen to be
highly dimensional [16, 20, 10], up to a million dimensions.
In this case, the search ef�ciency results from the use of in-
verted lists [23], which speeds up the computation of dis-
tances between sparse vectors. However, two factors limit
the number of images that can be indexed in practice: the
ef�ciency of the search itself, which becomes prohibitive
when considering more than 10 million images, and the
memory required to represent an image.

In this paper, we address the problem of searching the
most similar images in a very large image database (ten mil-
lion images or more). We put an emphasis on the joint op-
timization of three constraints: the search accuracy, its ef�-
ciency and the memory usage. The last two are related [24],

as search ef�ciency can be approximated by the amount
of memory to be visited. Most similar to our work is the
approach of [9], which proposes an approximate nearest
neighbor search for BOF vectors. However, this method is
limited to small vocabulary sizes, yielding lower search ac-
curacy compared to large ones. Moreover, an image still re-
quires more than a hundred bytes to reproduce the relatively
low search accuracy of a low-dimensional BOF vector.

The ef�ciency problem was partially addressed by the
min-Hash approach [2, 3] and the method of Torresani et
al. [25]. However, these techniques still require a signi�cant
amount of memory per image, and are more relevant in the
context of near-duplicate image detection, as their search
accuracy is signi�cantly lower than BOF. Some authors ad-
dress the ef�ciency and memory constraints by using GIST
descriptors [17], and by converting them to compact binary
vectors [5, 11, 24, 27]. These approaches are limited by the
low degree of invariance of the global GIST descriptor, and
none of them jointly ful�lls the three aforementioned con-
straints: [24, 27] still requires an exhaustive search while
[11] is memory consuming due to the redundancy of the
LSH algorithm. In contrast, our approach obtains a signif-
icantly higher accuracy with, typically, a 20-byte represen-
tation. This is obtained by optimizing:

1. the representation, i.e., how to aggregate local image
descriptors into a vector representation;

2. the dimensionality reduction of these vectors;

3. the indexing algorithm.

These steps are closely related: representing an image by a
high-dimensional vector usually provides better exhaustive
search results than with a low-dimensional one. However,
high dimensional vectors are more dif�cult to index ef�-
ciently. In contrast, a low dimensional vector is more easily
indexed, but its discriminative power is lower and might not
be suf�cient for recognizing objects or scenes.

Our �rst contribution consists in proposing a represen-
tation that provides excellent search accuracy with a rea-
sonable vector dimensionality, as we know that the vector
will be indexed subsequently. We propose a descriptor, de-
rived from both BOF and Fisher kernel [18], that aggregates
SIFT descriptors and produces a compact representation. It
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is termed VLAD (vector of locally aggregated descriptors).
Experimental results demonstrate that VLAD signi�cantly
outperforms BOF for the same size. It is cheaper to com-
pute and its dimensionality can be reduced to a few hun-
dreds components by principal component analysis (PCA)
without noticeably impacting its accuracy.

As a second contribution, we show the advantage of
jointly optimizing the trade-off between the dimensionality
reduction and the indexation algorithm. We consider in par-
ticular the recent indexing method of [7], as we can directly
compare the error induced by PCA with the error resulting
from the indexation, due to the approximate reconstruction
of the vector from its encoded index.

After presenting two image vector representations that
inspired ours, BOF and the Fisher kernel [18], we intro-
duce our descriptor aggregation method in Section 2. The
joint optimization of dimensionality reduction and indexing
is presented in Section 3. Experimental results demonstrate
the performance of our approach in section 4: we show that
the performance of BOF is attained with an image represen-
tation of about 20 bytes. This is a signi�cant improvement
over the state-of-the-art [9], both in terms of memory usage,
search accuracy and ef�ciency.

2. Image vector representation

In this section, we brie�y review two popular approaches
that produce a vector representation of an image from a set
of local descriptors. We then propose our method to aggre-
gate local descriptors.

2.1. Bag of features

The BOF representation groups local descriptors. It re-
quires the de�nition of a codebook ofk “visual words” usu-
ally obtained by k-means clustering. Each local descriptor
of dimensiond from an image is assigned to the closest cen-
troid. The BOF representation is obtained as the histogram
of the assignment of all image descriptors to visual words.
Therefore, it produces ak-dimensional vector, which is sub-
sequently normalized. There are several variations on how
to normalize the histogram. When seen as an empirical
distribution, the BOF vector is normalized using the Man-
hattan distance. Another common choice consists in using
Euclidean normalization. The vector components are then
weighted byidf (inverse document frequency) terms. Sev-
eral weighting schemes have been proposed [16, 23]. In the
following, we performL 2 normalization of histograms and
use theidf calculation of [23].

Several variations have been proposed to improve the
quality of this representation. One of the most popu-
lar [21, 26] consists in using soft quantization techniques
instead of a k-means.

2.2. Fisher kernel

The Fisher kernel [6] is a powerful tool to transform an
incoming variable-size set of independent samples into a
�xed size vector representation, assuming that the samples
follow a parametric generative model estimated on a train-
ing set. This description vector is the gradient of the sam-
ple's likelihood with respect to the parameters of this distri-
bution, scaled by the inverse square root of the Fisher infor-
mation matrix. It gives the direction in parameter space into
which the learnt distribution should be modi�ed to better
�t the observed data. It has been shown that discriminative
classi�ers can be learned in this new representation space.

Perronnin et al. [18] applied Fisher kernel in the con-
text of image classi�cation. They model the visual words
with a Gaussian mixture model (GMM), restricted to diag-
onal variance matrices for each of thek components of the
mixture. Deriving a diagonal approximation of the Fisher
matrix of a GMM, they obtain a(2d + 1) � k � 1 dimen-
sional vector representation of an image feature set, ord� k-
dimensional when considering only the components associ-
ated with either the means or the variances of the GMM.
In comparison with the BOF representation, fewer visual
words are required by this more sophisticated representa-
tion.

2.3. VLAD: vector of locally aggregated descriptors

We propose a vector representation of an image which
aggregates descriptors based on a locality criterion in fea-
ture space. It can be seen as a simpli�cation of the
Fisher kernel. As for BOF, we �rst learn a codebook
C = f c1; :::ck g of k visual words with k-means. Each
local descriptorx is associated to its nearest visual word
ci = NN(x). The idea of the VLAD descriptor is to accu-
mulate, for each visual wordci , the differencesx � ci of the
vectorsx assigned toci . This characterizes the distribution
of the vectors with respect to the center.

Assuming the local descriptor to bed-dimensional, the
dimensionD of our representation isD = k � d. In the
following, we represent the descriptor byvi;j , where the
indicesi = 1 : : : k andj = 1 : : : d respectively index the
visual word and the local descriptor component. Hence, a
component ofv is obtained as a sum over all the image de-
scriptors:

vi;j =
X

x such that NN(x )= ci

x j � ci;j (1)

wherex j andci;j respectively denote thej th component of
the descriptorx considered and of its corresponding visual
word ci . The vectorv is subsequentlyL 2-normalized by
v := v=jjvjj2 .

Experimental results show that excellent results can be
obtained even with a relatively small number of visual
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Figure 1. Images and corresponding VLAD descriptors, fork=16 centroids (D =16� 128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

wordsk: we consider values ranging fromk=16 tok=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual4 � 4 spatial grid representation of oriented gradients
for eachvi =1 ::k . We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a signi�cant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For suf�ciently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes

This section addresses the problem of coding an image
vector. Given aD-dimensional input vector, we want to
produce a code ofB bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be ef�ciently searched in a set ofn en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is brie�y described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satis�es the memory constraint. It is, how-
ever, signi�cantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.



ADC approach. Let x 2 < D be a query vector and
Y = f y1; : : : ; yn g a set of vectors in which we want to
�nd the nearest neighbor NN(x) of x. The ADC approach
consists in encoding each vectoryi by a quantized version
ci = q(yi ) 2 < D . For a quantizerq(:) with k centroids,
the vector is encoded bylog2(k) bits,k being a power of 2.
Finding thea nearest neighbors NNa(x) of x simply con-
sists in computing

NNa(x) = a- arg min
i

jj x � q(yi )jj2: (2)

Note that, in contrast with the embedding method of [27],
the queryx is not converted to a code: there is no approxi-
mation error on the query side.

To get a good vector approximation,k should be large
(k = 2 64 for a 64 bit code). For such large values ofk,
learning ak-means codebook as well as assignment to the
centroids is not tractable. Our solution is to use a prod-
uct quantization method which de�nes the quantizer with-
out explicitly enumerating its centroids. A vectorx is �rst
split into m subvectorsx1, ... xm of equal lengthD=m. A
product quantizer is then de�ned as function

q(x) =
�
q1(x1); :::; qm (xm )

�
; (3)

which maps the input vectorx to a tuple of indices by sepa-
rately quantizing the subvectors. Each individual quantizer
qj (:) hasks reproduction values learned by k-means. To
limit the assignment complexityO(m � ks), ks is a small
value (e.g.,ks=256). However, the setk of centroids in-
duced by the product quantizerq(:) is large:k = ( ks)m .

The squared distances in Equation 2 are computed using
the decomposition

jjx � q(yi )jj2 =
X

j =1 ;:::;m

jj x j � qj (yj
i )jj2; (4)

whereyj
i is the j th subvector ofyi . The square distances

in this summation are read from look-up tables computed,
prior to the search, between each subvectorx j and theks

centroids associated with the corresponding quantizerqj .
The generation of the tables is of complexityO(D � ks).
Whenks � n, this complexity is negligible compared with
the summation cost ofO(D � n) in Equation 2.

This quantization method was chosen because of its ex-
cellent performance, but also because it represents the in-
dexation as a vector approximation: a database vectoryi

can be decomposed as

yi = q(yi ) + "q(yi ); (5)

whereq(yi ) is the centroid associated withyi and"q(yi ) the
error vector generated by the quantizer.

Notation: ADC m � bs refers to the method when using
m subvectors andbs bits to encode each subvector (bs =
log2 ks). The total number of bitsB used to encode a vector
is then given byB = m bs.

3.2. Indexationaware dimensionality reduction

Dimensionality reduction is an important step in approx-
imate nearest neighbor search, as it impacts the subsequent
indexation method. In this section, for the ADC approach1,
we express the compromise between this operation and the
indexing scheme using a single quality measure: the ap-
proximation error. For the sake of presentation, we assume
that the mean of the vectors is the null vector. This is ap-
proximately the case for VLAD vectors.

Principal component analysis (PCA) is a standard
tool [1] for dimensionality reduction: the eigenvectors as-
sociated with theD 0 most energetic eigenvalues of the em-
pirical vector covariance matrix are used to de�ne a matrix
M mapping a vectorx 2 < D to a vectorx0 = Mx 2 < D 0

.
Matrix M is theD 0� D upper part of an orthogonal matrix.
This dimensionality reduction can also be interpreted in the
initial space as a projection. In that case,x is approximated
by

xp = x � "p (x) (6)

where the error vector"p (x) lies in the null space ofM . The
vectorxp is related tox0by the pseudo-inverse ofM , which
is the transpose ofM in this case. Therefore, the projection
is xp = M > Mx . For the purpose of indexing, the vectorx0

is subsequently encoded asq(x0) using the ADC approach,
which can also be interpreted in the originalD -dimensional
space as the approximation2

q(xp ) = x � "p (x) � "q(xp ) (7)

where"p (x) 2 Null( M ) and"q(xp ) 2 Null( M )? (because
the ADC quantizer is learned in the principal subspace) are
orthogonal. At this point, we make two observations:

1. Due to the PCA, the variance of the different com-
ponents ofx0 is not balanced. Therefore the ADC
structure, which regularly subdivides the space, quan-
tizes the �rst principal components more coarsely in
comparison with the last components that are selected.
This allocation introduces a bottleneck on the �rst
components with respect to the quantization error.

2. There is a trade-off on the number of dimensionD 0 to
be retained by the PCA. IfD 0 is large, the projection
error vector"p (x) is of limited magnitude, but a large
quantization error"q(xp ) is introduced. On the oppo-
site, keeping a small number of components leads to a
high projection error and a low quantization error.

Balancing the components' variance.In [27], this issue
was addressed by allocating different numbers of bits to the
different components. The ADC method does not have this

1Note that [7] did not propose any dimensionality reduction.
2For the sake of conciseness, the quantitiesM T q(x0) andM T " q (x0)

are simpli�ed toq(xp ) and" q (xp ) respectively.
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Figure 2. Effect of the encoding steps on the descriptor.Top: VLAD vector x for k=16 (D =2048). Middle: vectorxp altered by the
projection onto the PCA subspace (D 0=128).Bottom:vectorq(xp ) after indexing by ADC16 � 8 (16-bytes code).

�exibility. Therefore, we address the problem by perform-
ing an orthogonal transformation after the PCA. In other
terms, given the dimensionD 0 andX a vector to index, we
want to �nd an orthogonal matrixQ such that the compo-
nents of the transformed vectorX 00= QX 0 = QMX have
equal variances. It would be optimal to �nd the matrix~Q
minimizing the expected quantization error introduced by
the ADC method:

~Q = arg min
Q

EX
�
jj "q(QMX )jj2�

: (8)

However, this optimization problem is not tractable, as the
objective function requires to learn the product quantizer
q(:) of the ADC structure at each iteration. Finding a matrix
Q satisfying the simpli�ed balancing objective is done by
choosing it in the form of a Householder matrix

Q = I � 2vv> ; (9)

with the optimization performed on theD 0 components
of v. A simple alternative is to avoid this optimization by
using, forQ, aD 0� D 0 random orthogonal matrix. For high
dimensional vectors, this choice is an acceptable solution
with respect to our balancing criterion. This will be con-
�rmed by our experiments in Section 4, which show that,
for VLAD descriptors, both choices are equivalent.

Joint optimization of reduction/indexing. Let us now
consider the second problem, i.e., optimizing the dimen-
sionD 0, having �xed a constraint on the number of bitsB
used to represent theD-dimensional VLAD vectorx, for
instanceB =128 (16 bytes). The square Euclidean distance
between the reproduction value andx is the sum of the er-
rors jj "p (x)jj2 and jj "q(xp )jj2, which both depend on the
selectedD 0. The mean square errore(D 0) is empirically
measured on a learning vector setL as

e(D 0) = ep(D 0) + eq(D 0) (10)

=
1

card(L )

X

x 2L

jj "p (x)jj2 + jj "q(xp )jj2: (11)

This gives us an objective criterion to optimize directly the
dimensionality, which is obtained by �nding on the learning
set the value ofD 0 minimizing this criterion. For VLAD

vectors (k=16, D=2048) generated from SIFT descriptors,
we obtain the following average projection, quantization
and total mean square errors:

D 0 ep (D 0) eq(D 0) e(D 0)
32 0.0632 0.0164 0.0796
48 0.0508 0.0248 0.0757
64 0.0434 0.0321 0.0755
80 0.0386 0.0458 0.0844

It is important to compute the measures several times
(here averaged over 10 runs), as the ADC structure depends
on the local optimum found by k-means, and leads to vari-
able quantization errors. The optimization selectsD 0=64
for k=16 andB =128. We will con�rm in the experimental
section that this value represents an excellent trade-off in
terms of search results.

Remarks.

� The choice ofD 0 is constrained by the structure of
ADC, which requires thatD 0 is a multiple ofm. For
instance, by keepingD 0=64 eigenvalues, the valid set
of values form is f 1,2,4,8,16,32,64g.

� The optimization is solely based on the mean squared
error quantization criterion. For this reason, it is not
clear how our framework could be extended to another
indexation method, such as LSH [4], which does not
provide an explicit approximation vector.

� We apply the projectionQ � M before theL 2 nor-
malization of the aggregated representation (see Sub-
section 2.3). This brings a marginal improvement in
terms of image search accuracy.

The impact of dimensionality reduction and indexation
based on ADC is illustrated by the VLAD pictorial repre-
sentation introduced in Section 2. We can present the pro-
jected and quantized VLAD in this form, as both PCA pro-
jection and ADC provide a way of reconstructing the pro-
jected/quantized vector. Figure 2 illustrates how each of
these operations impacts our representation. One can see
that the vector is only slightly altered, even for a compact
representation ofB =16 bytes.



Descriptor k D Holidays (mAP) UKB (score/4)
D ! D 0=128 ! D 0=64 ! D 0=32 D ! D 0=128 ! D 0=64 ! D 0=32

BOF 1 000 1 000 0.401 0.444 0.434 0.408 2.86 2.99 2.91 2.77
20 000 20 000 0.404 0.452 0.445 0.416 2.87 2.95 2.90 2.78

Fisher (� ) 16 2 048 0.497 0.490 0.475 0.452 3.07 3.05 2.98 2.83
64 8 192 0.495 0.492 0.464 0.424 3.09 3.09 2.98 2.75

VLAD 16 2 048 0.496 0.495 0.494 0.451 3.07 3.05 2.99 2.82
64 8 192 0.526 0.510 0.477 0.421 3.17 3.15 3.03 2.79

Table 1. Performance comparison of BOF, Fisher and VLAD representations, before and after dimension reduction: the performance is
given for the fullD -dimensional descriptor, and after a dimensionality reduction toD 0=128, 64 and 32 components. Note that for UKB,
the best score reported by Nister and Stewénius is 3.19, for a 1M vocabulary tree [16] learned on an independent dataset.

4. Experiments

In this section, we �rst evaluate our VLAD descriptor
and the joint dimensionality reduction/indexing approach.
We then provide a comparison with the state of the art and
measure the accuracy and ef�ciency of the search on 10 mil-
lion images.

4.1. Evaluation datasets and local descriptors

To extract local features, we have used the experimen-
tal setup of [9] and the feature extraction software available
online3. More precisely, the regions of interest are extracted
using the Hessian af�ne-invariant region detector [14] and
described by the SIFT descriptor [12]. We have used an
independent image set for all the learning stages. The eval-
uation is performed on three datasets:

� The INRIA Holidays dataset [8]. This is a collection
of 1491 holiday images, 500 of them being used as
queries. The accuracy is measured by the mean Aver-
age Precision (mAP).

� The University of Kentucky Benchmark (UKB). This
set comprises images of 2550 objects, each of which
is represented by 4 images. The most commonly used
evaluation metric for this dataset counts the average
number of relevant images (including the query itself)
that are ranked in the �rst four positions when search-
ing the 10 200 images.

� To evaluate the behavior of our method on a large
scale, we have downloaded 10M images from Flickr.
The Holidays dataset is merged with this set, as in [9],
to provide ground truth matches.

4.2. Image vector representations

Table 1 compares the different local aggregation meth-
ods described in Section 2: BOF, Fisher kernel, and our
VLAD aggregation technique. These representations are
all parametrized by a single parameterk. It corresponds
to the number of centroids for BOF and VLAD, and to the

3http://lear.inrialpes.fr/people/jegou/data.php

number of mixture components in the Fisher kernel repre-
sentation. For Fisher, we have only used the components
associated with the mean vectors (� ), as we observed that,
although the variance components improve the results, they
provide comparable results after dimensionality reduction
to the sameD 0.

The evaluation is performed without the indexing
scheme at this stage. Here, we put an emphasis on the per-
formance obtained after dimensionality reduction, as these
vectors will be indexed afterwards. Despite its simplicity,
the VLAD descriptor equals or outperforms the Fisher ker-
nel on both Holidays and UKB, and signi�cantly outper-
forms BOF. Note that surprisingly the dimension reduction
improves the accuracy for BOF. The scores of BOF are
slightly different from those reported in [9], because we use
Euclidean distances to compare representations instead of
the cosine measure. These choices are not strictly equiva-
lent, becauseidf weights are applied after the L2 normal-
ization.

Higher dimensional representations, which usually pro-
vide better accuracy, suffer more from the dimensionality
reduction. This is especially true for Fisher kernel and
VLAD: for D 0=32, using only 16 centroids/mixtures is
signi�cantly better than larger values ofk. On average,
VLAD outperforms the Fisher kernel representation. For
only D 0=64 dimensions VLAD attains an excellent accu-
racy of mAP=0.494 on Holidays.

Note that in a very recent work [19], Perronnin et al. fur-
ther improved the Fisher kernel in several ways, obtain-
ing mAP=0.593 on Holidays with a mixture ofk=64 Gaus-
sians. Hopefully, our VLAD representation would also ben-
e�t from the proposed techniques.

4.3. Reduction and indexation

Balancing the variances. Table 2 compares the search
performance obtained by applying the ADC indexing af-
ter 1) PCA dimension reduction, 2) PCA followed by an
orthogonal transformation optimizing the variance balanc-
ing criterion (see Subsection 3.2), and 3) PCA followed by
a random orthogonal transformation. The need for a rota-
tion is clear. However, using a random one provides results



Method mAP
No transformation 0.445
Balancing optimization 0.457
Random orthogonal transformation 0.457

Table 2. Comparison of different orthogonal transformation matri-
ces, with VLAD,k=16,D 0=64, ADC16� 8. These measures are
averaged over 10 runs on the Holidays dataset.
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Figure 3. Search accuracy on Holidays with respect to reduction
to different dimensionsD 0 with ADC 16� 8. Experiments are av-
eraged over 5 learning runs. The error bars represent the standard
deviations over those runs.

comparable to those obtained by optimizing the matrix. Our
explanation is that the random rotation suf�ciently balances
the energy.

Choice of the projection subspace dimension.For a �xed
image representation with a vector of lengthD and a �xed
numberB of bits to encode this vector, Figure 3 con�rms
the analysis of Section 3: there is an important trade-off on
D 0. The optimum limits the loss introduced by the projec-
tion and the quantization step. The best choice ofD 0 corre-
sponds to the one found by our optimization procedure. For
instance, for VLAD withk=16, we obtain the same opti-
mum (D 0=64) as the one estimated in Section 3.2 based on
our objective error criterion.

4.4. Comparison with the state of the art

Our objectives are comparable to those of [9] in terms
of memory usage and desired degree of invariance (rota-
tion/scale invariance). Table 3 and Figure 4 compare the
accuracies obtained by [9] and our approach on the bench-
marks Holidays and UKB. Our approach obtains a com-
parable search quality with at least an order of magnitude
less memory. Equivalently, for the same memory usage,
our method is signi�cantly more precise.

Figure 4 also illustrates the trade-off between search
quality and memory usage. An interesting observation is

Method bytes UKB Holidays
BOF, k=20,000 (from [9]) 10.364 2.92 0.446
miniBOF [9] 20 2.07 0.255

80 2.72 0.403
160 2.83 0.426

VLAD, k=16, ADC 16 � 8 16 2.88 0.460
VLAD, k=64, ADC 32 � 10 40 3.10 0.495

Table 3. Comparison with the state of the art on UKB (score/4)
and Holidays (mAP).D 0=64 fork=16 andD 0=96 fork=64.
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Figure 4. mAP for search on Holidays. For a given number of
bytes, the optimal choice ofD 0 is computed and only the results
of the best codebook size (k=16, 64 or 256) are reported. The error
bars represent the standard deviation over 5 runs. miniBOF results
of [9] are reported for reference.

that the choice of the number of centroidsk depends on the
number of bitsB chosen to represent the image. It shows
that we attain competitive accuracy, with respect to BOF,
using only 16 bytes. Note that small (resp. large) values of
k should be associated with small (resp. large) values ofB :
large ones are more impacted by dimensionality reduction.

4.5. Large scale experiments

Figure 5 evaluates our approach on a large scale (up to
10 million images). It gives the mAP performance as a
function of the dataset size for the full VLAD vector (k=64,
D=8192), after it is reduced by PCA toD 0=64 dimensions,
and after the reduced vector is indexed with ADC16� 8 in
16 bytes of memory.

For this experiment, we have also used IVFADC, the non
exhaustive search variant of ADC proposed in [7]. IVFADC
combines ADC with an inverted �le to restrict the search to
a subset of vectors. Consequently, it stores the image iden-
ti�ers explicitly (4 bytes per image), and therefore requires
20 bytes of memory with the selected parameters. It gives
comparable results, depending on the operating point (bet-
ter and more ef�cient for very large sets).
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Figure 5. Search accuracy as a function of the database size.

Overall, our results are signi�cantly better than those re-
ported in [9], where a mAP of 0.066 is reported for 1 million
images and a 20-bytes representation, versus mAP=0.193 or
0.241 in our case, depending on the ADC variant.

Timings: Timing experiments have been performed on a
single processor core. Searching our 10 million dataset for
VLAD vectors with k=64 reduced toD 0=64 dimensions
takes 7.2 s when Euclidean distances are exhaustively com-
puted. Searching with ADC16 � 8 takes 0.716 s, while
using the IVFADC16� 8 variant takes 0.046 s. This timing
is better than the one reported in [9], and this for a signi�-
cantly better accuracy.
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