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Aggregating local descriptors into a compact image representation

Hengé 2gou Matthijs Douze Cordelia Schmid Patrick Ferez
INRIA Rennes INRIA Grenoble INRIA Grenoble Technicolor
Abstract as search ef ciency can be approximated by the amount

of memory to be visited. Most similar to our work is the
We address the problem of image search on a very largeapproach of [9], which proposes an approximate nearest
scale, where three constraints have to be considered jointly: neighbor search for BOF vectors. However, this method is
the accuracy of the search, its ef ciency, and the memory limited to small vocabulary sizes, yielding lower search ac-
usage of the representation. We rst propose a simple yetcuracy compared to large ones. Moreover, an image still re-
ef cient way of aggregating local image descriptors into a quires more than a hundred bytes to reproduce the relatively
vector of limited dimension, which can be viewed as a sim- low search accuracy of a low-dimensional BOF vector.
pli cation of the Fisher kernel representation. We thenshow  The ef ciency problem was partially addressed by the
how to jointly optimize the dimension reduction and the in- min-Hash approach [2, 3] and the method of Torresani et
dexing algorithm, so that it best preserves the quality of vec- al. [25]. However, these techniques still require a signi cant
tor comparison. The evaluation shows that our approach amount of memory per image, and are more relevant in the
signi cantly outperforms the state of the art: the search ac- context of near-duplicate image detection, as their search
curacy is comparable to the bag-of-features approach for accuracy is signi cantly lower than BOF. Some authors ad-
an image representation that ts in 20 bytes. Searching a dress the ef ciency and memory constraints by using GIST
10 million image dataset takes about 50ms. descriptors [17], and by converting them to compact binary
vectors [5, 11, 24, 27]. These approaches are limited by the
low degree of invariance of the global GIST descriptor, and
1. Introduction none of them jointly ful lls the three aforementioned con-
straints: [24, 27] still requires an exhaustive search while
There are two reasons why the bag-of-features image[11] is memory consuming due to the redundancy of the
representation (BOF) is popular for indexation and catego-.SH algorithm. In contrast, our approach obtains a signif-
rization applications. First, this representation bene ts from jcantly higher accuracy with, typically, a 20-byte represen-
powerful local descriptors, such as the SIFT descriptor [12] tation. This is obtained by optimizing:
and more recent ones [13, 28, 29]. Second, these vector rep-
resentations can be compared with standard distances, and1- the representation, i.e., how to aggregate local image
subsequently be used by robust classi cation methods such ~ descriptors into a vector representation;
as support vector machines. 2. the dimensionality reduction of these vectors;
When use_d for Iar_ge sca_le image search, the BOF vec- 3. the indexing algorithm.
tor representing the image is advantageously chosen to be
highly dimensional [16, 20, 10], up to a million dimensions. These steps are closely related: representing an image by a
In this case, the search ef ciency results from the use of in- high-dimensional vector usually provides better exhaustive
verted lists [23], which speeds up the computation of dis- search results than with a low-dimensional one. However,
tances between sparse vectors. However, two factors limithigh dimensional vectors are more dif cult to index ef -
the number of images that can be indexed in practice: theciently. In contrast, a low dimensional vector is more easily
ef ciency of the search itself, which becomes prohibitive indexed, but its discriminative power is lower and might not
when considering more than 10 million images, and the be suf cient for recognizing objects or scenes.
memory required to represent an image. Our rst contribution consists in proposing a represen-
In this paper, we address the problem of searching thetation that provides excellent search accuracy with a rea-
most similar images in a very large image database (ten mil-sonable vector dimensionality, as we know that the vector
lion images or more). We put an emphasis on the joint op- will be indexed subsequently. We propose a descriptor, de-
timization of three constraints: the search accuracy, its ef - rived from both BOF and Fisher kernel [18], that aggregates
ciency and the memory usage. The last two are related [24],SIFT descriptors and produces a compact representation. It



is termed VLAD (vector of locally aggregated descriptors). 2.2. Fisher kernel
Experimental results demonstrate that VLAD signi cantly

outperforms BOF for the same size. It is cheaper to com-
pute and its dimensionality can be reduced to a few hun-
dreds components by principal component analysis (PCA)

without noticeably impacting its accuracy. ing set. This description vector is the gradient of the sam-

. As a second contribution, we show the advantage of e jikelihood with respect to the parameters of this distri-
jointly optimizing the trade-off between the dimensionality 1, ion scaled by the inverse square root of the Fisher infor-

reduction and the indexation algorithm. We consider in par- ,-sion matrix. It gives the direction in parameter space into
ticular the recent indexing method of [7], as we can directly \ hicpy the learnt distribution should be modi ed to better
compare the error induced by PCA with the error resulting  yq ghserved data. It has been shown that discriminative
from the indexation, due to the approximate reconstruction ¢, ers can be learned in this new representation space.
of the vector from its encoded index. Perronnin et al. [18] applied Fisher kernel in the con-
After presenting two image vector representations that text of image classi cation. They model the visual words
inspired ours, BOF and the Fisher kernel [18], we intro- \ith a Gaussian mixture model (GMM), restricted to diag-
duce our descriptor aggregation method in Section 2. Thegnga| variance matrices for each of tkeomponents of the
joint optimization of dimensionality reduction and indexing mixture. Deriving a diagonal approximation of the Fisher
is presented in Section 3. Experimental results demonstratenatrix of a GMM, they obtain 2d+1) k 1dimen-
the performance of our approach in section 4: we show thatsjonal vector representation of an image feature set, d-
the performance of BOF is attained with an image represen-gimensional when considering only the components associ-
tation of about 20 bytes. This is a signi cant improvement ated with either the means or the variances of the GMM.
over the state-of-the-art [9], both in terms of memory usage, |n comparison with the BOF representation, fewer visual
search accuracy and ef ciency. words are required by this more sophisticated representa-
tion.

The Fisher kernel [6] is a powerful tool to transform an
incoming variable-size set of independent samples into a
xed size vector representation, assuming that the samples
follow a parametric generative model estimated on a train-

2. Image vector representation 2.3. VLAD: vector of locally aggregated descriptors

In this section, we brie y review two popular approaches  \ya propose a vector representation of an image which

that produce a vector representation of an image from a set,yreqates descriptors based on a locality criterion in fea-
of local descrlptprs. We then propose our method to aggre- e space. It can be seen as a simplication of the
gate local descriptors. Fisher kernel. As for BOF, we rst learn a codebook
C = fq;:iccg of k visual words with k-means. Each

2.1. Bag of features local descriptorx is associated to its nearest visual word
¢ = NN(x). The idea of the VLAD descriptor is to accu-
mulate, for each visual worg}, the differences ¢ of the
vectorsx assigned ta@;. This characterizes the distribution
of the vectors with respect to the center.

Assuming the local descriptor to lskdimensional, the
dimensionD of our representation iD = k d. In the

The BOF representation groups local descriptors. It re-
quires the de nition of a codebook &f“visual words” usu-
ally obtained by k-means clustering. Each local descriptor
of dimensiord from an image is assigned to the closest cen-
troid. The BOF representation is obtained as the histogram
of the assignment of all image descriptors to visual words. - : _
Therefore, it produceskadimensional vector, which is sub- following, we represent the descriptor by; , where the

" lized. Th | variati h indicesi = 1:::k andj = 1:::d respectively index the
sequently normaiized. There aré several variations on Now, ;. 4| \yord and the local descriptor component. Hence, a
to normalize the histogram. When seen as an empirical

ST . > 8 component o¥ is obtained as a sum over all the image de-
distribution, the BOF vector is normalized using the Man- P g

hattan distance. Another common choice consists in usingscrlptors. X

Euclidean normalization. The vector components are then Vi = Xi G (1)
. i . I}) J i

weighted byidf (inverse document frequency) terms. Sev-

eral weighting schemes have been proposed [16, 23]. In the

following, we performL, normalization of histograms and wherex; andc;; respectively denote '[|']'éh component of

use thedf calculation of [23]. the descriptox considered and of its corresponding visual
Several variations have been proposed to improve theword ¢;. The vectorv is subsequently ,-normalized by

quality of this representation. One of the most popu- v = vIjvjj, .

lar [21, 26] consists in using soft quantization techniques  Experimental results show that excellent results can be

instead of a k-means. obtained even with a relatively small number of visual

X such that NNx)= ¢;
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Figure 1. Images and corresponding VLAD descriptorskfat6 centroidslp =16 128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

wordsk: we consider values ranging froks16 tok=256. resulting vectors. For this purpose, we consider the recent
Figure 1 depicts the VLAD representations associated approximate nearest neighbor search method of [7], which
with a few images, when aggregatiri8dimensional is brie y described in the next section. We will show the

SIFT descriptors. The components of our descriptor mapimportance of the joint optimization by measuring the mean
to components of SIFT descriptors. Therefore we adopt thesquared Euclidean error generated by each step.
usual4 4 spatial grid representation of oriented gradients
for eachvj-; .x . We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip- 3.1. Approximate nearest neighbor
tors, a component may be positive or negative, due to the
difference in Equation 1. Approximate nearest neighbors search methods [4, 11,
One can observe that the descriptors are relatively sparsél5, 24, 27] are required to handle large databases in com-
(few values have a signi cant energy) and very structured: puter vision applications [22]. One of the most popu-
most high descriptor values are located in the same cluster|ar techniques is Euclidean Locality-Sensitive Hashing [4],
and the geometrical structure of SIFT descriptors is observ-which has been extended in [11] to arbitrary metrics. How-
able. Intuitively and as shown later, a principal component ever, these approaches and the one of [15] are memory con-
analysis is likely to capture this structure. For sufciently suming, as several hash tables or trees are required. The
similar images, the closeness of the descriptors is obvious. method of [27], which embeds the vector into a binary
space, better satis es the memory constraint. It is, how-
3. From vectors to codes ever, signi cantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
This section addresses the problem of coding an imagebased approximate search method of [7]. In the following,
vector. Given aD-dimensional input vector, we want to we use this method, as it offers better accuracy and because
produce a code 0B bits encoding the image representa- the search algorithm provides an explicit approximation of
tion, such that the nearest neighbors of a (non-encoded}he indexed vectors. This allows us to compare the vector
query vector can be ef ciently searched in a setnoén- approximations introduced by the dimensionality reduction
coded database vectors. and the quantization. We use the asymmetric distance com-
We handle this problem in two steps, that must be opti- putation (ADC) variant of this approach, which only en-
mized jointly: 1) a projection that reduces the dimension- codes the vectors of the database, but not the query vector.
ality of the vector and 2) a quantization used to index the This method is summarized in the following.



ADC approach. Let x 2 <P be a query vector and 3.2. Indexation-aware dimensionality reduction

Dimensionality reduction is an important step in approx-
imate nearest neighbor search, as it impacts the subsequent
indexation method. In this section, for the ADC apprdach
we express the compromise between this operation and the
indexing scheme using a single quality measure: the ap-
proximation error. For the sake of presentation, we assume
that the mean of the vectors is the null vector. This is ap-
proximately the case for VLAD vectors.

Principal component analysis (PCA) is a standard
tool [1] for dimensionality reduction: the eigenvectors as-
sociated with thd ® most energetic eigenvalues of the em-
L pirical vector covariance matrix are used to de ne a matrix
To gglt a good ve_ctor approximatiok,should be large M mapping a vectox 2 <P to a vecton®= Mx 2 < D
k = .2 for a 64 bit code). For such Iarge. valueslof Matrix M istheD® D upper part of an orthogonal matrix.
learning ak-means codebook as well as assignment to theThis dimensionality reduction can also be interpreted in the

centr0|ds_|s not tractable. Our solution is to use a pr_od- initial space as a projection. In that casds approximated
uct quantization method which de nes the quantizer with- by

out explicitly enumerating its centroids. A vectolis rst
split intom subvectorx?, ... x™ of equal lengttD=m. A
product quantizer is then de ned as function

nd the nearest neighbor N(X) of x. The ADC approach
consists in encoding each vectgrby a quantized version
¢ = q(yi) 2 <P. For a quantizen(:) with k centroids,
the vector is encoded Hgg, (k) bits, k being a power of 2.
Finding thea nearest neighbors N)x) of x simply con-
sists in computing

NNa(x) = a-argminjjx qlyi)ii®: 2

Note that, in contrast with the embedding method of [27],
the queryx is not converted to a code: there is no approxi-
mation error on the query side.

Xp = X

"p(X) (6)

where the error vectdi, (x) lies in the null space d¥l . The
; 8 ) .
- 1y. e my . 3 vectorxp is related tox by the pseudo-inverse tf , wr_nch.
. q(x.) & ()35 gn (XT) L ) is the transpose dfl in this case. Therefore, the projection
which maps the input vectorto a tuple of indices by sepa-  isx, = M >Mx . For the purpose of indexing, the vecick
rately quantizing the subvectors. Each individual quantizer js subsequently encoded g9 using the ADC approach,
G (1) hasks reproduction values learned by k-means. To which can also be interpreted in the origifaidimensional

limit the assignment complexit9@(m  Kks), ks is a small space as the approximatfon
value (e.g.ks=256). However, the seék of centroids in-
"p(x)  "q(Xp) (7)

duced by the product quantizef:) is large:k = (ks)™.
where"(x) 2 Null(M ) and" q(xp) 2 Null(M )? (because

The squared distances in Equation 2 are computed using
the decomposition

the ADC quantizer is learned in the principal subspace) are
orthogonal. At this point, we make two observations:

a(Xp) = X

X A
ix ay)ii® = ixX g% (4)
1. Due to the PCA, the variance of the different com-
ponents ofx° is not balanced. Therefore the ADC
structure, which regularly subdivides the space, quan-
tizes the rst principal components more coarsely in
comparison with the last components that are selected.
This allocation introduces a bottleneck on the rst
components with respect to the quantization error.
2. There is a trade-off on the number of dimensiohto
be retained by the PCA. BCis large, the projection
error vector' (x) is of limited magnitude, but a large

wherey! is thej ™ subvector ofy;. The square distances
in this summation are read from look-up tables computed,
prior to the search, between each subvegtoand theks
centroids associated with the corresponding quantigzer
The generation of the tables is of complex@®(D k).
Whenks n, this complexity is negligible compared with
the summation cost @(D  n) in Equation 2.

This quantization method was chosen because of its ex-
cellent performance, but also because it represents the in-

dexation as a vector approximation: a database vegtor
can be decomposed as

yi = alyi) + "qi); )]

quantization errof 4(xp) is introduced. On the oppo-
site, keeping a small number of components leads to a
high projection error and a low quantization error.

whereq(y;) is the centroid associated wighand"4(y;) the
error vector generated by the quantizer.

Notation: ADC m  b; refers to the method when using
m subvectors and bits to encode each subvectdr (=
log, ks). The total number of bitB used to encode a vector
is then given byB = mbs.

Balancing the components' variance.In [27], this issue
was addressed by allocating different numbers of bits to the
different components. The ADC method does not have this

INote that [7] did not propose any dimensionality reduction.
2For the sake of conciseness, the quantites g(x% andM T "4 (x9
are simpli ed tog(xp) and" q(xp) respectively.
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Figure 2. Effect of the encoding steps on the descriplap: VLAD vector x for k=16 (D=2048). Middle: vectorx, altered by the
projection onto the PCA subspad2%128). Bottom: vectorg(x,) after indexing by ADC16 8 (16-bytes code).

exibility. Therefore, we address the problem by perform- vectors k=16, D=2048) generated from SIFT descriptors,
ing an orthogonal transformation after the PCA. In other we obtain the following average projection, quantization

terms, given the dimensidd®andX a vector to index, we

and total mean square errors:

want to nd an orthogonal matrix) such that the compo- D° &(DY (D% eDY
nents of the transformed vectgr’®>= QX °= QMX have 32 00632 0.0164 0.0796
equal variances. It would be optimal to nd the matfx 48 0.0508 0.0248 0.0757
minimizing the expected quantization error introduced by 64 0.0434 0.0321 0.0755
the ADC method: 80 0.0386 0.0458 0.0844

Q=argmin Ex jj"q(QMX )ii? : 8
However, this optimization problem is not tractable, as the
objective function requires to learn the product quantizer
g(:) of the ADC structure at each iteration. Finding a matrix
Q satisfying the simpli ed balancing objective is done by
choosing it in the form of a Householder matrix

Q=1 ©)

with the optimization performed on thB° components

of v. A simple alternative is to avoid this optimization by
using, forQ,aD® D°random orthogonal matrix. For high
dimensional vectors, this choice is an acceptable solution
with respect to our balancing criterion. This will be con-
rmed by our experiments in Section 4, which show that,
for VLAD descriptors, both choices are equivalent.

v ;

Joint optimization of reduction/indexing. Let us now
consider the second problem, i.e., optimizing the dimen-
sionD? having xed a constraint on the number of bis
used to represent the-dimensional VLAD vectorx, for
instanceB =128 (16 bytes). The square Euclidean distance
between the reproduction value axds the sum of the er-
rors jj"p(X)ji? andjj" 4(xp)ji%, which both depend on the
selectedD® The mean square erreD9 is empirically
measured on a learning vector Eeas

D9 ep(D°)+Xeq(D°)
ii"p OOIi2 + i (xp)ii *:

(10)
(11)

cardL) oL

It is important to compute the measures several times
(here averaged over 10 runs), as the ADC structure depends
on the local optimum found by k-means, and leads to vari-
able quantization errors. The optimization selddts64
for k=16 andB =128. We will con rm in the experimental
section that this value represents an excellent trade-off in
terms of search results.

Remarks.

The choice ofD? is constrained by the structure of
ADC, which requires thab is a multiple ofm. For
instance, by keepin® =64 eigenvalues, the valid set
of values fom isf 1,2,4,8,16,32,64

The optimization is solely based on the mean squared
error quantization criterion. For this reason, it is not
clear how our framework could be extended to another
indexation method, such as LSH [4], which does not
provide an explicit approximation vector.

We apply the projectio@ M before theL, nor-
malization of the aggregated representation (see Sub-
section 2.3). This brings a marginal improvement in
terms of image search accuracy.

The impact of dimensionality reduction and indexation
based on ADC is illustrated by the VLAD pictorial repre-
sentation introduced in Section 2. We can present the pro-
jected and quantized VLAD in this form, as both PCA pro-
jection and ADC provide a way of reconstructing the pro-
jected/quantized vector. Figure 2 illustrates how each of

This gives us an objective criterion to optimize directly the these operations impacts our representation. One can see
dimensionality, which is obtained by nding on the learning that the vector is only slightly altered, even for a compact
set the value oD ° minimizing this criterion. For VLAD representation d8 =16 bytes.



Descriptor k D Holidays (mAP) UKB (score/4)
D | D%128 | D%64 | D%=32| D ! D%128 | D%64 | D%32
BOF 1000 1000]| 0.401 0.444 0.434 0.408 | 2.86 2.99 2.91 2.77
20000 20000| 0.404 0.452 0.445 0.416 | 2.87 2.95 2.90 2.78
Fisher () 16 2048 | 0.497 0.490 0.475 0.452 | 3.07 3.05 2.98 2.83
64 8192 | 0.495 0.492 0.464 0.424 | 3.09 3.09 2.98 2.75
VLAD 16 2048 | 0.496 0.495 0.494 0.451 | 3.07 3.05 2.99 2.82
64 8192 | 0.526 0.510 0.477 0.421 | 3.17 3.15 3.03 2.79

Table 1. Performance comparison of BOF, Fisher and VLAD representations, before and after dimension reduction: the performance is
given for the fullD -dimensional descriptor, and after a dimensionality reductidd %128, 64 and 32 components. Note that for UKB,
the best score reported by Nister and Steius is 3.19, for a 1M vocabulary tree [16] learned on an independent dataset.

4. Experiments number of mixture components in the Fisher kernel repre-
sentation. For Fisher, we have only used the components
associated with the mean vectorg,(as we observed that,
although the variance components improve the results, they
provide comparable results after dimensionality reduction
to the sameé°,

The evaluation is performed without the indexing
scheme at this stage. Here, we put an emphasis on the per-
formance obtained after dimensionality reduction, as these

To extract local features’ we have used the experimen_vectors will be indexed afterwards. DeSpite its Slmp|ICIty,
tal setup of [9] and the feature extraction software available the VLAD descriptor equals or outperforms the Fisher ker-
online®. More precisely, the regions of interest are extracted Nel on both Holidays and UKB, and signi cantly outper-
using the Hessian af ne-invariant region detector [14] and forms BOF. Note that surprisingly the dimension reduction
described by the SIFT descriptor [12]. We have used animproves the accuracy for BOF. The scores of BOF are
independent image set for all the learning stages. The evalslightly different from those reported in [9], because we use
uation is performed on three datasets: Euclidean distances to compare representations instead of

the cosine measure. These choices are not strictly equiva-
The INRIA Holidays dataset [8]. This is a collection lent, becausédf weights are applied after the, lnormal-
of 1491 holiday images, 500 of them being used as ization.
gueries. The accuracy is measured by the mean Aver- Higher dimensional representations, which usually pro-
age Precision (mAP). vide better accuracy, suffer more from the dimensionality
The University of Kentucky Benchmark (UKB). This reduction. This is especially true for Fisher kernel and
set comprises images of 2550 objects, each of which VLAD: for D=32, using only 16 centroids/mixtures is
is represented by 4 images. The most commonly usedsigni cantly better than larger values &. On average,
evaluation metric for this dataset counts the averageVLAD outperforms the Fisher kernel representation. For
number of relevant images (including the query itself) only D°=64 dimensions VLAD attains an excellent accu-
that are ranked in the rst four positions when search- racy of mAP=0.494 on Holidays.
ing the 10 200 images. Note that in a very recent work [19], Perronnin et al. fur-
To evaluate the behavior of our method on a large ther improved the Fisher kernel in several ways, obtain-
scale, we have downloaded 10M images from Flickr. N9 MAP=0.593 on Holidays with a mixture &f64 Gaus-
The Holidays dataset is merged with this set, as in [9], Sians- Hopefully, our VLAD representatlon would also ben-
to provide ground truth matches. e tfrom the proposed techniques.

In this section, we rst evaluate our VLAD descriptor
and the joint dimensionality reduction/indexing approach.
We then provide a comparison with the state of the art and
measure the accuracy and ef ciency of the search on 10 mil-
lion images.

4.1. Evaluation datasets and local descriptors

4.2. Image vector representations 4.3. Reduction and indexation

Table 1 compares the different local aggregation meth- Balancing the vari_ances. Tablg 2 compares_the ;earch
ods described in Section 2: BOF, Fisher kernel, and Ourperformance obtained by applying the ADC indexing af-

VLAD aggregation technique. These representations aret®’ 1) PCA dimension reduction, 2) PCA followed by an

all parametrized by a single parameter It corresponds orthogonal transformation optimizing the variance balanc-

to the number of centroids for BOE and VLAD, and to the ing criterion (see Subsection 3.2), and 3) PCA followed by
a random orthogonal transformation. The need for a rota-

3http://lear.inrialpes.fripeople/jegou/data.php tion is clear. However, using a random one provides results




Method mAP Method bytes UKB Holidays
No transformation 0.445 BOF, k=20,000 (from [9]) 10.364 2.92 0.446
Balancing optimization 0.457 miniBOF [9] 20 2.07 0.255
Random orthogonal transformation  0.4%7 80 272 0.403

Table 2. Comparison of different orthogonal transformation matri- 160 283 0.426
ces, with VLAD,k=16,D°=64, ADC16 8. These measures are VLAD, k=16, ADC 16 8 16 288 0.460
averaged over 10 runs on the Holidays dataset. VLAD, k=64, ADC32 10 40 3.10 0.495

Table 3. Comparison with the state of the art on UKB (score/4)
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o ' ' and Holidays (mAP)D °=64 fork=16 andD °=96 fork=64.
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Figure 3. Search accuracy on Holidays with respect to reduction 02 miniBOF[9] ©
to different dimension® ®with ADC 16 8. Experiments are av- 8 16 32 64 128 256 512
eraged over 5 learning runs. The error bars represent the standard number of bytes
deviations over those runs. Figure 4. mAP for search on Holidays. For a given number of

bytes, the optimal choice @ ° is computed and only the results
) o ] of the best codebook sizk£16, 64 or 256) are reported. The error
comparable to those obtained by optimizing the matrix. Our pars represent the standard deviation over 5 runs. miniBOF results
explanation is that the random rotation suf ciently balances of [9] are reported for reference.

the energy.

Choice of the projection subspace dimensiorfor a xed that the choice of the number of centrokdglepends on the
image representation with a vector of len@ihand a xed number of bitsB chosen to represent the image. It shows
numberB of bits to encode this vector, Figure 3 con rms that we attain competitive accuracy, with respect to BOF,
the analysis of Section 3: there is an important trade-off on using only 16 bytes. Note that small (resp. large) values of
DP The optimum limits the loss introduced by the projec- k should be associated with small (resp. large) valué:of
tion and the quantization step. The best choicB Btorre- large ones are more impacted by dimensionality reduction.
sponds to the one found by our optimization procedure. For

instance, for VLAD withk=16, we obtain the same opti- 4.5 Large scale experiments

mum (D °=64) as the one estimated in Section 3.2 based on
our objective error criterion. Figure 5 evaluates our approach on a large scale (up to

10 million images). It gives the mAP performance as a
. . function of the dataset size for the full VLAD vectd=64,
4.4. Comparison with the state of the art D=8192), after it is reduced by PCA %64 dimensions,
Our objectives are comparable to those of [9] in terms and after the reduced vector is indexed with ADE 8in
of memory usage and desired degree of invariance (rota-16 bytes of memory.
tion/scale invariance). Table 3 and Figure 4 compare the For this experiment, we have also used IVFADC, the non
accuracies obtained by [9] and our approach on the bench-exhaustive search variant of ADC proposed in [7]. IVFADC
marks Holidays and UKB. Our approach obtains a com- combines ADC with an inverted le to restrict the search to
parable search quality with at least an order of magnitudea subset of vectors. Consequently, it stores the image iden-
less memory. Equivalently, for the same memory usage,ti ers explicitly (4 bytes per image), and therefore requires
our method is signi cantly more precise. 20 bytes of memory with the selected parameters. It gives
Figure 4 also illustrates the trade-off between searchcomparable results, depending on the operating point (bet-
quality and memory usage. An interesting observation is ter and more ef cient for very large sets).
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Overall, our results are signi cantly better than those re-
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[14]

ported in [9], where a mAP of 0.066 is reported for 1 million [15]
images and a 20-bytes representation, versus mAP=0.193 or

0.241 in our case, depending on the ADC variant.

Timings: Timing experiments have been performed on a
single processor core. Searching our 10 million dataset for

VLAD vectors with k=64 reduced td %64 dimensions

[16]

[17]

H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor seardBAMI. To appear.

H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In ECCV, October 2008.

H. Jegou, M. Douze, and C. Schmid.
features. INCCV, September 2009.

H. Jgou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image seaiditV, 87(3), May 2010.

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image searchI@CV, October 2009.

D. Lowe. Distinctive image features from scale-invariant
keypoints.lJCV, 60(2):91-110, 2004.

K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptorsPAMI, 27(10):1615-1630, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A
comparison of af ne region detectorklCV, 65(1/2):43-72,
2005.

M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm con guration. IMISAPR
February 2009.

D. Nistéer and H. Stewnius. Scalable recognition with a vo-
cabulary tree. IlCVPR June 2006.

A. Oliva and A. Torralba. Modeling the shape of the scene:
a holistic representation of the spatial envelop&lCV,
42(3):145-175, 2001.

Packing bag-of-

takes 7.2 s when Euclidean distances are exhaustively Com[18] F. Perronnin and C. R. Dance. Fisher kernels on visual vo-

puted. Searching with ADA6 8 takes 0.716s, while

using the IVFADC16 8variant takes 0.046 s. This timing
is better than the one reported in [9], and this for a signi -

cantly better accuracy.
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