Description of interest regions with local binary patterns

Marko Heikkila 1 Matti Pietikainen 1 Cordelia Schmid 2
2 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper presents a novel method for interest region description. We adopted the idea that the appearance of an interest region can be well characterized by the distribution of its local features. The most well-known descriptor built on this idea is the SIFT descriptor that uses gradient as the local feature. Thus far, existing texture features are not widely utilized in the context of region description. In this paper, we introduce a new texture feature called center-symmetric local binary pattern (CS-LBP) that is a modified version of the well-known local binary pattern (LBP) feature. To combine the strengths of the SIFT and LBP, we use the CS-LBP as the local feature in the SIFT algorithm. The resulting descriptor is called the CS-LBP descriptor. In the matching and object category classification experiments, our descriptor performs favorably compared to the SIFT. Furthermore, the CS-LBP descriptor is computationally simpler than the SIFT.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/inria-00548650
Contributor : Thoth Team <>
Submitted on : Monday, December 20, 2010 - 10:24:15 AM
Last modification on : Monday, December 17, 2018 - 11:22:02 AM

Links full text

Identifiers

Collections

Citation

Marko Heikkila, Matti Pietikainen, Cordelia Schmid. Description of interest regions with local binary patterns. Pattern Recognition, Elsevier, 2009, 42 (3), pp.425-436. ⟨10.1016/j.patcog.2008.08.014⟩. ⟨inria-00548650⟩

Share

Metrics

Record views

599