G. Csurka, C. Bray, C. Dance, and L. Fan, Visual categorization with bags of keypoints, Workshop on Statistical Learning in Computer Vision, ECCV, 2004.

J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-taylor, Improving " bag-of-keypoints " image categorisation, 2005.

L. Fei-fei and P. Perona, A Bayesian Hierarchical Model for Learning Natural Scene Categories, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.16

F. Fleuret and G. Blanchard, Pattern recognition from one example by chopping, NIPS, 2005.

J. Hartigan and M. Wang, Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, vol.28, issue.1, pp.100-108, 1979.
DOI : 10.2307/2346830

E. Hayman, B. Caputo, M. Fritz, and J. Eklundh, On the Significance of Real-World Conditions for Material Classification, European Conference on Computer Vision, 2004.
DOI : 10.1007/978-3-540-24673-2_21

T. Joachims, Text categorization with suport vector machines: Learning with many relevant features, ECML '98: Proceedings of the 10th European Conference on Machine Learning, pp.137-142, 1998.

D. Larlus and F. Jurie, Latent Mixture Vocabularies for Object Categorization, Procedings of the British Machine Vision Conference 2006, 2006.
DOI : 10.5244/C.20.98

URL : https://hal.archives-ouvertes.fr/hal-00203721

D. Lowe, Distinctive image features form scale-invariant keypoints, In International Journal of Computer Vision, 2004.
DOI : 10.1023/b:visi.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Marszalek and C. Schmid, Spatial weighting for bag-offeatures, Computer Vision and Pattern Recognition, 2006.

K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, International Journal of Computer Vision, vol.60, issue.1, 2004.
DOI : 10.1023/B:VISI.0000027790.02288.f2

URL : https://hal.archives-ouvertes.fr/inria-00548554

F. Moosmann, B. Triggs, and F. Jurie, Randomized clustering forests for building fast and discriminative visual vocabularies, NIPS, 2007.

F. Perronnin, C. Dance, G. Csurka, and M. Bressian, Adopted vocabularies for generic visual categorization, European Conference on Computer Vision, 2006.

G. Salton and M. J. Mcgill, Introduction to Modern Information Retrieval, 1986.

R. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.297-336, 1999.
DOI : 10.1145/279943.279960

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238663

J. Winn, A. Criminisi, and T. Minka, Object categorization by learned universal visual dictionary, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.171

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classifcation of texture and object categories: An in-depth study, 2005.