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Abstract. This paper gives an overview of recent approaches towards
image representation and image similarity computation for content-based
image retrieval and automatic image annotation ( category tagging). Ad-
ditionaly, a new similarity function between an image and an object class
is proposed. This similarity function combines various aspects of object
class appearance through use of representative images of the class. Sim-
ilarity to a representative image is determined by weighting local image
similarities, where weights are learned from training image pairs, labeled
•sameŽ and •di�erentŽ, using linear SVM. The proposed approach is
validated on a challenging dataset where it performed favorably.

1 Introduction

In the last decade we have witnessed a rapid increase in the number of digital
images. However, the access to this content is hindered by the availability of
methods to search and organize it. Available systems that perform these tasks
rely on textual information that describes the image•s semantics and use text
search algorithms to search image collections. Major drawback of this approach
is that it limits search only to images for which textual labels are available
and since labeling of images is usually performed by humans, it is a slow and
inherently subjective process.

Methods that search and organize images by their visual content are known as
content-based image retrieval(CBIR) methods. This way the problem of absence,
incorrectness or incompleteness oftextual labels is circumvented.

Applications of CBIR [7] include search of image databases by content, au-
tomatic annotation of image collections as well as user localization in real envi-
ronments and building virtual worlds from real images.

Questions that need to be answered insolving these tasks are: (1) how to
represent the images to allow search and organization by their content, (2) how
to de“ne similarity function between the image representations so that it re”ects
human perceptual similarity.

The main contribution of this paper is a new distance function between an im-
age and a category. This distance function is used for propagation of category tags
to unannotated images. The distance function to a category is obtained by com-
bining the distance functions to typical representatives of the categories …focal

N. Boujemaa, M. Detyniecki, and A. N¨ urnberger (Eds.): AMR 2007, LNCS 4918, pp. 1–16, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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images. The similarity function between focal image and unannotated image com-
bines local similarities from detected, representedand matched imagepatchesto
obtain global image similarity. The combination of local (patch) similarities which
de“nes global similarity is learned from a few training image pairs labelled as
•sameŽ or •di�erentŽ which labelling presents equvivalence constraints.

The paper is organized as follows: we “rst give in the next section an overview
of recent advances in this very active “eld, and then describe in Section 3 the
proposed approach. Finally, Section 4 gives a few experimental results obtained
on a very challenging problem.

2 Related Work

2.1 Global vs. Local Approaches

The “rst question to ask is what features to extract that will help perform
meaningful retrieval. Ideally, features should be related to image semantics, but
that is very di�cult to obtain because of the semantic gap. However, noticing
that there is a statistical dependency between real world raw images• pixels and
semantics, it is possible to show that only small amount of information contained
in the raw image data is necessary for the image retrieval and classi“cation.
Therefore the “rst step is to choose a suitable low dimensional representation
for the image in which information important for discrimination is retained.

First developed methods used global image histograms of color and shape
[9] or texture [17] features. The distance between representations is generally
computed usingL 2 distance, or in case of normalized histograms using standard
distance measures between probability distributions:� 2 distance or KL diver-
gence. While global representations have advantage to be easy to build and to
be invariant to position of objects in the image, they provide only a very rough
representation of images allowing to deal only with global contexts (like •forestŽ
images) or with objects covering the whole image.

To overcome limitations of global approachesrelevance feedbackhas been in-
troduced. The idea is to take the results provided by an algorithm and to use
information about whether or not those results are relevant before performing a
new query. The feedback, given by the user, allows to weight the image repre-
sentation before re-computing the distance.

Recently developed image representations overcome problems of global ap-
proaches the other way: by representing the image as collection of image parts
… patches. These representations are thus calledlocal representation.

Most popular way to select patches is by means of interest point detectors
[28]. Interest point detector detect characteristic structures (corners [8], blobs
[15] or ridges [30]) in the image. One of the main reasons for their popularity is
the ability to adapt to scale variation of the characteristic structures, detecting
characteristic structure at their intrinsic scale. In this case patches are de“ned
as local neighborhoods of detected interest points at detected intrinsic scale of
characteristic structure.
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Patches can also be sampled randomly [24] or even densely [32] from the
image.

Selected patches are described by signatures orpatch descriptor. Important
condition on design of patch descriptor is their robustness to various photomotric
and geometric transformations in the sense that patches that belong tosameob-
ject parts should havesamedescriptions. To achieve invariance to these changes,
patch descriptors either model the distribution or characterize the properties of
distribution of patch•s color [31], grayscale values [25,12] or response of “lter
banks which describe local texture (SIFT [16], textons [14], geometric blur [2],
PCA-SIFT [13]). In the case when patches are obtained by segmentation they
can be described by the shape of segment boundary [1].

2.2 Query-by-Example Image Search

Local image representation maps image into a set of patches described by visual
descriptors. This image representation scheme can be used for building image
search algorithms because images can be compared by comparing two sets of
visual descriptors. Schmid and Mohr [28] propose to match the visual descriptors
extracted from the query image with those extracted from the images in the
image database and to vote for the image from database that accumulates the
largest number of matched keypoints.

This very e�cient yet powerful approach have been used by many authors
for di�erent tasks such as the localization of the camera [5,10], the reconstruc-
tion of 3D scenes by assembling images searched over the Internet [5,10] or the
navigation of autonomous robots [22].

2.3 Category Tagging

These approaches allow to search images by presenting an example image as
query. To broaden the application of image search methods beyond thesequery-
by-exampleapproaches, a small set of images is semantically annotated by hu-
mans with category tags that semanticaly describe image•s content, so that im-
ages can be searched both by contentand semantics. The problem is then how
to propagate category tags from annotated to unannotated images.

This enriching images with tags related to their content, termed here ascat-
egory tagging, can be casted as a binary classi“cation problem: if the image
belongs to the category … the corresponding tag is added. Generally,recognition
algorithms which assign an object identi“er to an image possibly containing the
object, are used for tagging images.

One strong limitation of these early patch based approaches for category tag-
ging is their restriction to the recognition of images that are strictly identical
to the query. This is because the comparison is based on the matching of local
structures, which are assumed to be strictly identical.

We are here more interested in methods working at thecategory levelinstead
of the instance level. The di�erence between object instance recognition and
object class recognitionis in the de“nition of the visual class denoted by object
identi“er. In the former case all images that contain the exactly same object
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instance (eg. same car) are tagged as belonging to same visual category, so
images containing di�erent object instances belong to di�erent visual categories
(eg. di�erent car models). In later case all images that contain the same object
class are tagged as belonging to the same visual category (eg. cars are one visual
category, cats are other visual category. . . ).

In object instance recognition only variability between the images of same
object is due to changes in object pose (changes of observer•s viewpoint with
respect to the object), object con“guration (changes between parts of the object
with respect to each other) and scene illumination. Object surface can locally be
approximated by a plane so local pose changes can be approximated as rigid, and
hence majority of research e�orts are concentrated on capturing the variation
due to object pose [19] in local descriptions. In object class recognition there
is additional variability due to intra-class (or within-class) di�erences between
objects of the same visual class. This variability is complex and hard to charac-
terize as it stems from assigment of semantic category tags, and thus makes the
problem of object class recognition signi“cantly harder then problem of object
instance recognition.

2.4 Visual Vocabularies

Because of large intra class variation of object appearances and because of the
small number of training data generally available, building geometric models
of classes is di�cult, not to say impossible. Similar problem occurs in texture
classi“cation, which can be considered asa source of inspiration for object class
recognition problems. Interestingly, Malik et al. [14], in their work on texture
classi“cation, suggest to vector quantize local descriptors of images (calledtex-
tons) and then to compute texton statistics.

This idea of building a distance between images based on the comparison of
texton statistics have then been widely used for image classi“cation. Indeed,
instead of comparing the two sets directly (each patch with each patch) an in-
direction step in introduced … description of patch byvisual word. Visual words
are quantized patch description vectors, where quantization bins can be obtained
by clustering (K-means [29], hierarchical k-means [18], mean shift [11]) of train-
ing description vectors. Visual word is representative of the bin (cluster), and
set of all visual words is calledvisual vocabulary. Analogously to descriptions of
text documents, here an image is described by occurrences of visual words. This
representation relies on local descriptions and is invariant geometrical structure
(layout) of detected patches and hence is termedbag-of-(visual) words repre-
sentation. Each image is described by histogram of occurrences of visual words
that are present in the image, so that each object class is characterized by a
distribution of visual words.

Visual vocabulary in”uences the classi“cation performance, so creation of vi-
sual vocabulary is an important step. Majority of clustering techniques used for
creation of visual vocabulary are computationally expensive, and more impor-
tantly, don•t use the information about patch class so created vocabularies are
not discriminative.
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In [20] extremely randomized forests were used for vocabulary creation. Cre-
ation of random forest is computationally much less complex then other methods
of vocabulary creation, while attaining comparable results. Also, patch class la-
bels are used to guide the cluster splitting towards creation of discriminative
clusters.

The very recent Pascal VOC2007 image categorization challenge1 has demon-
strated the superiority of these vocabulary based approaches over all other com-
petitive ones.

2.5 Similarity Functions and Focal Images

In [23] similar approach was used to learn the similarity function between images
from train image pairs labeled •sameŽ or •di�erentŽ. Image pair is represented
by the set of patch pairs, which are formed in process ofpatch matching. Instead
of quantization of patch descriptions, pairs of patch descriptions were quantized
discriminatively using extremely randomized forests. Each visual word in this
case represents the characteristic local (patch) (dis)similarity. The patch pairs
are weighted towards •sameŽ or •di�erentŽ prediction by linear classi“er, so
global similarity is obtained by weighting and integrating over local (patch)
similarities. We use this algorithm to build the visual vocabularies and measure
image distance to focal images.

Regarding the class models, our workis inspired by the recent work of Fromeet
al. In [6] classi“cation of query image is performed by combining the similarities
to representative images of the object class …focal images, and choosing the
class for the query image with biggest combined similarity. Similarity is learned
from training image pairs, for each focal image separately. This is an example
of divide-and-conquer approach, since calculating the similarity to an image is
easier task then calculating the similarity to a class, because class has more
complex feature distribution then an image.

Our work is inspired by both approaches: we use focal images to divide prob-
lem into simpler problems, but we learn similarity measure as in [23].

3 Method

As mentioned before, we cast thecategory taggingproblem as the problem of
object class recognition, i.e. we determine the classes aquery imagebelongs to.

In general, the decision of object class membership is brought by calculating
a measure of similarity to each learned object class for given query image and
comparing that similarity measure with a threshold. If the similarity is high
enough, the tag is added.

Here, inspired by [6], we experiment with a di�erent approach. We calcu-
late similarity between query image and an object class by combining similarity
measures calculated between query imageand representative images of an object
class. Representative images of an object class are calledfocal images.

1 http://www.pascal-network.org/challenges/VOC/voc2007/
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CLUSTERING FOREST

PATCH PAIR

FOCAL IMAGE QUERY IMAGE

HISTOGRAM

d

Fig. 1. Similarity between focal image and query image: 1) Matching patch pairs 2)
Clustering patch pairs by clustering forest 3) Representation of image pair by histogram
of cluster occurrences 4) Weighting clusters to calculate similarity d between focal image
and query image

The overview of similarity the measure calculation for an image is outlined in
the Fig. 1, while in Fig. 2 we show how we bring the “nal decision by combining
the results of similarities to focal images.

3.1 Similarity to the Focal Image

For each focal image we construct a classi“er that gives the measure of similarity
between the selected focal image and thequery image. Training image pairs
(focal,query) are formed and labelled •sameŽ and •di�erentŽ by choosing the
query images of a known class from training set. The calculation of similarity
measure between the focal image and the query image, as illustrated Fig. 1, can
be divided in 4 steps.

Step 1: Selection, Description and Matching of Patches. We represent
the image as a collection of patches and use an interest point detector to select
the patches.

Using interest point detector ensures that local image structures detected
in one image will be also detected in other images, an important requirement
for creating patch pairs by matching of selected patches. Although one could
question if the patches selected this way are discriminative enough to be used in
challenging task of object class recognition, we believe that by selecting a large
number of patches we will be able to form patch pairs which are discriminative
for an object class.

Motivated by results of a recent comparative study [18] of interest point de-
tectors and descriptors for object class recognition we use scale-invariant Hessian
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point detector, which enables the patch description to be invariant to structure•s
scale, and consequently makes our methods invariant to the scale of the object.

We choose SIFT [16] descriptor to describe patches, because it has been shown
to be su�ciently robust to capture the intra-class variance of patches [18]. Patch
pairs are formed by selecting similar patches in two images, where similarity be-
tween patches relates inversely toL 2 distance between patches• SIFT descriptors.

Step 2: Clustering Patch Pairs. Once we have formed patch pairs that de-
scribe local similarities between focal and query image we can combine these
local similarities to form global similarity. Instead of using only the distance
between visual descriptors to describe local similarities (as in [6]) we introduce
clustering step to additionally characterize the similarity between patches. We
choose to cluster patch pairs using EXTRA trees, motivated by their good per-
formance in the similar task of learning of the distance between images [23].
Each cluster describes characteristic patch (dis)similarity.

EXTRA trees are binary tr ees constructed by recursively splitting the nodes
on the basis of labelled data in the node. The process starts from the root node,
which contains all training patch pairs from focal image to query images. At
each node, we randomly generate a number of splitting criteria and select the
optimal splitting criterion for the node.

Splitting criterion c(·, ·|i, s, t ) is binary predicate that as input has a pair
of patches, represented as pair of vectorsf focal and f query and is determined
by parameters i ,s and t. Parameter i selects the dimension of vector which
represents the patches in the pair,t is threshold and s � {Š 1, 1} determines
sign of comparison:

c(f focal , f query |i, s, t ) = ( s · (f focal
i Š t) � 0) � (s · (f query

i Š t) � 0) (1)

We can interpret the above equation as: •If i th dimension of both focal image
patch vector and query image patch vector are above (or below, depending ons)
threshold t then splitting criterion is true.Ž Ra ndom splitting criterion is created
by selecting parametersi , s and t at random.

When splitting criterion is applied to all patch pairs in the current node
of the tree it splits the patch pairs into two disjunctive sets: a set of patch
pairs for which the splitting criterion is true, and a set of patch pairs for which
the splitting criterion is false. These sets correspond to two child nodes. The
optimality of splitting criterion is evaluated by its information gain IG which is
calculated from the two sets obtained by applying the splitting criterion: IG =
H Š n 0 H 0 + n 1 H 1

n , where H ,H0 and H1 denote, respectively, the entropy of patch
pairs in current (parent) node, entropy of patch pairs for which splitting criterion
is false (entropy of “rst child) and entropy of patch pairs for which splitting
criterion is true (entropy of second child node). Similarly n,n0 and n1 denote,
respectively, numbers of patch pairs in the parent node, “rst and second child.
The criterion with highest information gain is selected for the node.

By selecting this optimality measure of splitting criteria we supervise the
clustering process to create discriminative clusters. Each leaf of the tree is a
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cluster which de“nes similarity between patches of the match: patch similarity
is determined by the path the patch pair took from root to leaf node.

The main advantage of random trees is computational simplicity of construc-
tion because, in contrast to methods that search the optimal values of splitting
criterion parameters, we just select them at random and keep the one with
highest information gain. On the other hand, randomness responsible for com-
putational simplicity of construction inc reases variance of resulting clusterer.

To reduce the variance introduced by random sampling of parameters of split-
ting criteria we use a number of independently grown trees … a clustering forest
[23]. Since every tree de“nes a di�erentclustering of patch pair feature space,
every pair of patches reaches several clusters (leaves of the trees in the forest) …
one cluster per tree in the forest.

The number of patch pairs to create the clusterer is question of bias/variance
trade-o�. If we construct a tree from too small number of patch pairs the variance
will be large and if we use all available matches we will over-“t the training data
so clusters will be speci“c to training data and will not generalize to test data.
On the other hand,as always in vision, the available data is scarce and we want to
use information from all available patch pairs. Intermediate solution is to create
tree using all available matches, but stop the splitting of the node if number
of patch pairs remaining in the node is too small, to prevent over-“tting. This
procedure is known aspruning.

Step 3: Representing a Pair of Images by Histogram. Global similarity
between focal image and query image is represented by a set of patch pairs. Using
the clusterer we represent global similarity between focal and query image by a
histogram of occurrences of clusters that describe local (patch) (dis)similarities.

Having constructed clusterer we can represent every pair of images (focal,
query) by a histogram of occurrences of clusters … leaves in the forest which are
reached by patch pairs from this pair of images.

The histogram of pair of images is interpreted as a vector in a high dimensional
space where each dimension of a vector (each histogram bin) corresponds to a
cluster (leaf of the forest).

We choose to binarize histograms, as in [20], to avoid the problem of non-
binary normalized histograms where the in”uence of small (relative) number
of discriminative patch pairs can be reduced by a large (relative) number of
non-discriminative ones.

Step 4: Weighing the Clusters. We believe that clusters are speci“c to an
object class and that some clusters are more signi“cant for the similarities of
objects within the class (and dissimilarities of objects between the classes) then
the others. This relative relevance of clusters for classi“cation is acknowledged
by assigning weights to clusters.

Since for every query image in the training set we know the true class we use
this information to learn the linear classi“er to “nd a hyper-plane that separates
pairs of images of the same class as focal image from pairs of images which have
di�erent class from focal image. The normal to the obtained hyper-plane is a
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Fig. 2. Combining distances from focal images to query image by mixture of experts

vector of weights that re”ect relative impo rtance of clusters (local similarities)
for classi“cation (global similarity).

We use linear support vector machine as aclassi“er because for a large number
of applications it has shown good generalization performance when using high
dimensional data and small training set, as it is our case.

3.2 Similarity to an Object Category

Focal images represent the di�erent aspects of object class appearance. To obtain
similarity of a query image to an object category we need to combine all learned
similarities to focal images. We call the classi“ers that give similarity measures
to the focal imagesbase classiÞers, and their scoressimilarities .

In general, to combine base classi“ers their decisions must be comparable.
Standard way is to convert similarities to probabilities, so for each query image
classi“er reports probability that query image belongs to the same categories as
focal image.

To this end we use Platt•s scaling [27], a procedure that “nds the parameters
of the sigmoid function that performs mapping of base classi“er•s scores (similar-
ities) to probabilities by maximum likelihood “t to the data. It has been shown
that this procedure outperforms others in case of small learning sets [21]. To
“nd these parameters we have used the validation set. In the rest of the paper
we will assume that similarities are mapped to probabilities and will use terms
similarities and probability estimates interchangeably.

To combine the probability estimates of base classi“ers, in absence of any
additional information about the data that would guide the combination process,
“xed rules are usually used. The most common “xed rules are: sum, product,
median, maximum and minimum of all scores of base classi“ers [4].

Most commonly used “xed rule is the •sum of scoresŽ rule, also used by [6] to
combine the similarities from focal images. This rule assumes that all classi“ers
have the same in”uence on the combined decision.
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Each of these “xed rules will perform well if some assumptions are satis“ed
[4], but since these assumptions are never fully satis“ed we can always “nd a
better way to combine classi“ers if we use speci“c information about the data
we want to combine.

This is why we train linear SVM to learn the classi“er relative weights on the
validation data. Since category tags are available for the images in the validation
set we can use probability estimates of base classi“ers on validation data as train-
ing data for mixture-of-experts classi“er that learns classi“er weights. Learned
weight vector can have negative components, which means that we reverse de-
cisions of some classi“ers. To avoid this anomaly, we map negative components
of weight vector w c by taking their absolute value and dividing it by L 1 norm
of the weight vector:

wc�

i =
|wc

i |
� N c

i =1 |wc
i |

The decision is then brought byweighted sumrule, where weights are learned
by combining linear classi“er and mapped to be positive.

4 Experimental Results

4.1 Dataset

We have tested the proposed method on Graz-02 database [26]. This database
has been designed for object recognition or object categorization, containing
images with objects of high complexity, high intra-class variability and highly
cluttered backgrounds.

We used only two classes: bicycles and background. Bicycles are selected to
have same orientation which leaves 102 images of bicycles and 300 images of
background.

The data-set is divided in 4 subsets: set of focal images, training set, validation
set and testing set. Half of randomly selected images are selected for testing,
and another half is divided between testing and validation set. Images in the
training set are used to learn the clusterer (EXTRA trees) and classi“er (SVM),
and images in the validation set are used to “nd the parameters of sigmoid
function that performs mapping of similarities to probabilities and to “nd the
mixture-of-experts classi“er weights.

We have selected 8 focal images from the class of bicycles: in “rst four focal
images di�erent types of bicycles (corresponding to di�erent aspects of bicycle
class distribution) are prominent object in the image; in the remaining focal
images bicycles are not prominent due to various degradations (small scale of
the object, occlusions, overlapping and low contrast).

4.2 Experimental Setup

We use scale-invariant Hessian point detector to select the patches from imagesm
and set low detection threshold to get enough patches for construction of patch
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pairs. The scaling factor between neighboring scales of image pyramid, used in
the process of scale selection, is set to 1.2. We discard the patches detected at
small scales.

For patch description we use SIFT descriptor. SIFT descriptors are calculated
at scale detected by scale-invariant Hessian interest point detector. For SIFT
descriptor we use 4 bins for spatial distribution of gradients (both in x and y
direction) and 8 bins to describe gradient orientation distribution, giving a 128-
dimensional patch descriptor. Descriptors are normalized to haveL 2 norm equal
to 1 so they are invariant to a�ne illumination changes.

We use 5 trees in the forest, motivated by results of [23]. The dimension of
histogram that represents the pair of images is approximately 20000. Average
depth of the trees is 39± 4.

For weighting the clusters we use C-SVM, with parameterC = 1.
We have used Platt•s scaling implementation from LIBSVM library [3] to

perform mapping of similarities to probabilities.
Performance is expressed as equal error rate (EER) of precision and recall. For

each focal image, due to random nature of classi“er construction, we construct
5 classi“ers and report mean and standard deviation.

4.3 Matching Patch Pairs

We constrain matching procedure by forming matches for each patch in the focal
with just the most similar patch in query image. We call this kind of matching
unidirectional matching.

Bidirectional matching is the matching procedure which additionally con-
strains unidirectional matches to keep only the patch pairs which are most similar
in other direction also (from query image to focal image).

Using the unidirectional matching the number of patch pairs is equal to num-
ber of patches in focal image, while with bidirectional matching limits the num-
ber of patch pairs to min(Nfocal , Nquery ), where N denotes the number of patches
detected in the image. This is why in case of unidirectional matching we use
binary histograms, while in case of bidirectional matching the use of binary his-
tograms would introduce bias due to di�erent number of patch pairs per query
image. In latter case we therefore use non-binary histograms and normalize them
(to have L 1 norm 1) to make the description vector of image pair invariant to
number of formed patch pairs.

We conducted experiments to test the e�ectiveness of described matching
strategies. The results are presented in Table 1.

Table 1. In”uence of matching patch pairs strategy to classi“cation results

Focal image ID 1 2 3 4 5 6 7 8 all
unidirectional matching 0.88 0.85 0.88 0.87 0.89 0.87 0.90 0.86 0.87 ± 0.02
bidirectional matching 0.82 0.83 0.82 0.82 0.83 0.75 0.80 0.82 0.81 ± 0.03

This results show that unidirectional matching performs better. This results
can be explained by several reasons:
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– Number of matches to describe the image is smaller in case of bidirectional
matching, which means that clusters will be formed on the basis of smaller
amount of data and hence may not be representative characterization of local
(dis)similarities.

– Representation of image pair by non-binary histogram causes the suppression
of small, but important discriminative clusters

– Bidirectional matching limits the patch matching to patches from region of
feature space where feature distributions of both images overlap. If in this
region most patches belong to background we will not be able to learn from
patches that belong to object.

4.4 Creation of the Clustering Forest

We have performed the experiments to determine what is the best way to create
the clusterer with given number of matches. We have created the clusterer using
only 5% and 20% of available training patch pairs, selected randomly from all
available training patch pairs. In this case we do not need to prune the trees.
When we use all training patch pairs we prune the trees, when node contains
less then 20 patch pairs, by turning the node into leaf. Table 2. summarizes the
experiment•s results.

Results of experiments show that our assumption was correct: the trees cre-
ated from only 5% of patch pairs perform worse than the ones created with 20%.
Although the results of experiments in last two columns of Table 2. are the same,
we choose to use the trees created from all available patch pairs because we do
not introduce randomness due to nature of patch pairs selection to create the
clustering forest.

4.5 In�uence of Context

To investigate the in”uence of background patches we have cropped images of
the bicycles to contain only the bicycles (object). We have lowered the detection
threshold of interest point detector to 0 to get approximately same number of
patch detections in cropped image as in original, uncropped one.

The results in Table 3. show that for some focal images context (background)
shows important role, especially in focal image 5 where bicycle is not prominent
object in the image due to small scale. For focal image 7 results are also signi“-
cantly worse when using cropped images. In this image bicycles are overlapping
(stacked one behind another), and therefore, because of the overlap, parts of
the bicycles locally do not look like bicycles. The good result of the method on
these focal images in uncropped case can be explained by in”uence of patch pairs

Table 2. In”uence of percentage of matches to create the clusterer

% matches to create clusterer 5% 20% 100%
Pruned no no yes

EER of PR 0.80 ± 0.03 0.83 ± 0.03 0.83 ± 0.03
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Table 3. In”uence of background of matches to classi“cation results

Focal image ID 1 2 3 4 5 6 7 8 all
object + background 0.88 0.84 0.88 0.87 0.88 0.86 0.90 0.86 0.87 ± 0.02

object 0.87 0.83 0.85 0.86 0.76 0.85 0.83 0.86 0.84 ± 0.03

formed from background patches in focal image. Nevertheless, for majority of
focal images results are not signi“cantly in”uenced by patch pairs formed from
background patches, so we can conclude that method learns to discriminate the
object dominantly from object part of image.

4.6 Combination of Classi�ers

We have performed experiment with use of “xed rules to combine the probability
estimates of base classi“ers and compared with results of a linear support vector
machine (weighted sum). The results are presented in Table 4.

4.7 Advantages and Limitations

The results are presented for one focal image, because the results for other
focal images are similar, so advantages and limitations of the method can be
empathized on one example. From results of classi“cation for “rst focal image
presented in the Fig. 3 we can conclude that similarity is correctly determined
as high for images where object (bicycle) is dominant in the image. Since the bi-
cycles are not compact objects there is large amount of background present even
in the patches which contain parts of the bicycle. For bicycles which have simple,
almost uniform background the performance is good. Majority of misclassi“ed
bicycles (detected as background) displays has complex, textured background
or/and object of the small size compared to size of the background. The low
performance in this case can be explained by the small fraction of detected
patches that belong to the object.

Background images misclassi“ed as object all display parts that are locally
similar to bicycle parts due to signi“cant texture whose rich structure ensures
existence of these local similarities. The misclassi“cation can be explained by
observing the patches that contribute to misclassi“cation (patches that are
weighted towards prediction •same as object classŽ). Our matching procedure is
not constrained to one-to-one matches and hence it is possible to havepopular
patches in query image … patches that are matched to many patches in focal
image (e.g. in the case of misclassi“er motorbike brake handle is matched to
parts of bycicle•s frame). If this patch pair is similar in the way the object patch
pairs are then it will be assigned to cluster that is weighted for object class

Table 4. Results of classi“er combination

Combination rule max min median sum product weighted sum (linear SVM)
EER of PR 0.84 0.88 0.86 0.86 0.86 0.88
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Fig. 3. Results for “rst focal image. First row: focal image, second row: “rst 3 most
similar images, third row: two false posit ive followed by two false negative images,
fourth row: last 3 most similar images.

prediction and wrong decision will be brought. To solve this problem a better
matching procedure has to be employed, perhaps also including simple geometric
constraints.

As expected, images which are misclassi“ed for all focal images are misclassi-
“ed in combination, which means that we could get better results using combi-
nation of classi“ers only if we improve the performance of base classi“ers.

5 Conclusion

We have given an on overview of approaches for image description and image
similarity measures used for content-based image retrieval.

The matching in the case of object classes is not well de“ned problem since
de“nition of •corresponding partŽ is ambiguous. It has been shown that matching
strategy, which determines •corresponding partsŽ, severely in”uences the results,
and we believe that better matching strategy could improve the results.

We employed divide-and-conquer strategy through use of focal images, and
we have shown that in the case of complex problem of object class recognition
(used here for category tagging) it has shown to be bene“cial.

Additional work is required to fully validate these preliminary results. First, it
would be interesting to experiment the approach with more categories and eval-
uate the performance on large scale problems. Second, as the question of “nding
best correspondences between categories is the most critical part of the proposed
algorithm, it would be interesting to try to learn to “nd these correspondences
using labeled sets of corresponding parts.
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