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Bethe–Zel’dovich–Thompson fluids (BZT) are characterized by negative values of the fundamental deriv-
ative of gasdynamics for a range of temperatures and pressures in the vapor phase, which leads to non-
classical gasdynamic behaviors such as the disintegration of compression shocks. These non-classical
phenomena can be exploited, when using these fluids in Organic Rankine Cycles (ORCs), to increase isen-
tropic efficiency. A predictive numerical simulation of these flows must account for two main sources of
physical uncertainties: the BZT fluid properties often difficult to measure accurately and the usually fluc-
tuating turbine inlet conditions. For taking full advantage of the BZT properties, the turbine geometry
must also be specifically designed, keeping in mind the geometry achieved in practice after machining
always slightly differs from the theoretical shape. This paper investigates some efficient procedures to
perform shape optimization in a 2D BZT flow with multiple-source uncertainties (thermodynamic model,
operating conditions and geometry). To demonstrate the feasibility of the proposed efficient strategies for
shape optimization in the presence of multiple-source uncertainties, a zero incidence symmetric airfoil
wave-drag minimization problem is retained as a case-study. This simplified configuration encompasses
most of the features associated with a turbine design problem, as far the uncertainty quantification is
concerned. A preliminary analysis of the contributions to the variance of the wave-drag allows to select
the most significant sources of uncertainties using a reduced number of flow computations. The resulting
mean value and variance of the objective are next turned into metamodels. The optimal Pareto sets cor-
responding to the minimization of various substitute functions are obtained using a genetic algorithm as
optimizer and their differences are discussed.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Dense gases (DGs) are defined as single-phase vapors operating
at temperatures and pressures of the order of magnitude of those
of their thermodynamic critical point. The study of the complex
dynamics of compressible dense gas flows is strongly motivated
by their potential technological advantages as working fluids in en-
ergy-conversion cycles such as Organic Rankine Cycles (ORCs).
Specific interest has developed in a particular class of dense gases,
known as the Bethe–Zel’dovich–Thompson (BZT) fluids [1], which
exhibit non-classical gasdynamic behaviors in a range of thermo-
dynamic conditions above the liquid/vapor coexistence curve, such

that the fundamental derivative of gasdynamics C ¼ 1þ q
a

@a
@q

� �
s

with q the fluid density, a the isentropic sound speed and s the
specific entropy, becomes negative. At these conditions, the well-
known compression shocks of the perfect-gas (PFG) theory violate
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the entropy inequality over a certain range of temperatures and
pressures in the vapour phase and are therefore not admissible
[2]. The BZT properties are generally encountered in fluids possess-
ing large heat capacities and formed by complex, heavy molecules,
such as some commercially available heat transfer fluids. The non-
classical phenomena typical of BZT fluids have several practical
outcomes: prominent among them is an active research effort to
reduce losses caused by wave drag and shock/boundary layer
interactions in turbomachines and nozzles [3–6], with particular
application to ORCs used to generate electric energy in low-power
applications. The use of BZT fluids [5,6] as ORC working fluids is
potentially interesting because the shock formation and the conse-
quent losses could be ideally avoided if turbine expansion could
happen entirely within or very close to the inversion zone where
C < 0. In fact, as pointed out in [7,8] and recently investigated in
[9,10], rarefaction shock waves are physically admissible in the
inversion region.

The point of interest in the present paper is that a dense gas
flow in a turbine cascade is characterized by a significant uncer-
tainty on the physical parameters and on the operating conditions
at the turbine inlet [11]. Indeed, the ORCs are mainly used in
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biomass and geothermal applications – development in solar and
heat recovery applications are also expected – where the ‘‘renew-
able” heat sources display a non-negligible level of variability. Be-
sides, the thermophysical properties of dense gases are themselves
characterized by a strong uncertainty [12,13]: the experimental
data on the critical parameters and on the caloric properties are
known with an uncertainty that can exceed 5%. The determination
of critical-point data for dense gases is indeed delicate because
such gases may decompose, totally or partly, at temperatures close
to the critical one; in this case, critical point values just rely on esti-
mates. Note the accuracy of an equation of state can theoretically
be improved by increasing the number of expansion terms, as done
with the virial expansion for the Martin–Hou equation for instance.
However, increasing the number of constants in the model requires
a larger number of thermodynamic inputs and introduces new
sources of uncertainty. As demonstrated in [14], a somehow
paradoxal situation occurs where increasing the complexity of
the thermodynamic model to improve its (deterministic) accuracy,
eventually leads to larger modeling uncertainties because of a
larger number of uncertain parameters. An analysis of thermody-
namic uncertainties was performed in [14] using a non-intrusive
polynomial chaos (PC) approach, retained for its flexibility. This
feature was considered crucial when dealing with evolving flow
solvers since regularly modified to accommodate new equations
of state.

When designing a turbine specifically adapted to BZT fluids, a
meaningful numerical prediction of the performance must neces-
sarily take into account these uncertainties on the thermophysical
properties but also on the inlet boundary conditions which are typ-
ical of dense gases applications. Moreover, a robust shape optimi-
zation must also include the more generic uncertainty introduced
by the machining of the physical blade. Papers devoted to stochas-
tic robust optimization are mostly found in the field of Multidisci-
plinary Optimization (MDO), with a well- developed line of
research on structural robust design optimization, where uncer-
tainties are found on the loads, constraints or material properties
[15–19]. Several contributions deal with aeronautics problem and
uncertainties on the operating and off-design conditions [20–23].
To the best of our knowledge, there are few papers [24,25] devoted
to robust optimization with a PC-based approach to take into ac-
count the uncertainties. Besides, previous works on dense gas tur-
bine [26] and airfoil shape [27] optimizations were purely
deterministic studies which it will be interesting to reinvestigate
at the light of the uncertainty quantification methodology devel-
oped in the present paper.

Building on the approach followed in [14], a straightforward
extension to shape optimization with uncertainties not only on
thermophysical properties but also on inlet conditions and geom-
etry could be proposed through the coupling of the previously used
PC approach and the CFD dense gas solver for this increased num-
ber of uncertainties. However, such a direct strategy would soon
become unrealistic due to the excessive amount of computational
time it would require. The present paper explores ways to make
tractable the problem of shape optimization with multiple sources
of uncertainty. The simplified drag minimization problem for a BZT
flow over an isolated airfoil is retained as case of study and two
ways of reducing the cost of this optimization when thermophys-
ical, inlet boundary and geometrical uncertainties are taken into
account are proposed and analyzed: (i) identifying the most signif-
icant uncertainties through a preliminary analysis of the contribu-
tions to the drag variance on a baseline configuration, (ii) deriving
surrogate models for the mean drag and its variance, on which the
optimization loop is applied.

The paper is organized as follows. Section 2 is devoted to the
description of the various numerical tools needed in the study –
CFD tools for the dense gas flows simulations, tools for uncertainty
quantification – and details the coupling between CFD, shape opti-
mization and uncertainty quantification. Section 3 describes the
preliminary analysis performed to screen the most influential
uncertain parameters contributing to the variance of the airfoil
drag. Section 4 compares different strategies to derive metamodels
for the mean drag and its variance and analyzes the set of optimal
solutions provided by the simultaneous minimization of these
objectives. The closing Section 5 summarizes the conclusions that
can be drawn from the present work regarding the topic of shape
optimization with multiple-sources of uncertainty and proposes
new lines of study to be followed for designing optimal shapes
for dense gas flows.
2. Methodology and tools

2.1. CFD tools for dense gas flows

2.1.1. Conservation laws and thermodynamic models
The two-dimensional Euler equations completed by a real-gas

thermodynamic model are solved using a cell-centered finite vol-
ume discretization on a general unstructured grid dividing the
flow domain into a finite number of triangles or quadrangles.
The time rate of change of the cell-averaged state vector w is bal-
anced with the area-averaged (inviscid) numerical fluxes, com-
puted across each cell face using a HLLC scheme. The Harten,
Lax, and van Leer (HLL) scheme developed in [28] is attractive be-
cause of its robustness and easy extension to dense gas flows. This
approximate Riemann solver relies indeed on the characteristic
speeds of two pressure waves, which depend on the local velocity
and speed of sound; adapting the definition of the speed of sound
to the equation of state describing a dense gas makes the scheme
ready for use on the flows of interest in the present study. The
HLL solver is known to be overly diffusive because it neglects
the contact surface when reducing the exact Riemann problem
to two pressure waves. This limitation was lifted by Toro et al.
[29] where the modified three-wave solver named HLLC was de-
rived, with an explicitly presented contact. The definition of the
associated wave speed does itself depend on the wave speeds pre-
viously generalized to dense gas flows. The HLLC scheme has been
extended in [30] to deal with low-Mach number flows by a simple
modification of the signal velocities; the extension of this precon-
ditioned HLLC scheme to low-speed real gas has been performed
in [31]. Though the low-Mach preconditioning is not activated in
the present transonic flow computations, the solver described in
[31] is retained in this study. Second-order space accuracy is en-
sured by a MUSCL-type reconstruction process on the conserva-
tive variables [32], extended to unstructured grid finite-volume
formulation. The HLLC numerical flux on each cell face makes
use of linearly reconstructed states in the two cells sharing the
face. These states are computed from the cell-centered values of
the conservative variables and the cell-centered gradient esti-
mates. Rather than using Green-Gauss formulae to compute the
cell-gradient, as proposed in [33], least-squares formulae with a
prescribed support for each cell are applied. The details of the
cell-gradient calculation can be found in [34,35]. To allow an
oscillation-free capture of flow discontinuities, the reconstruction
process includes slope limiters as initially proposed in [33] and
revisited in [36]. Following a procedure inspired from [37], the
second-order HLL scheme is coupled with a simple first-order
Rusanov type implicit stage which allows the use of large time-
steps hence fast convergence to steady state. The numerical flux
through the boundary edges is computed using an inflow/outflow
characteristic-based condition at the far-field boundary and a
mirror boundary condition to define the ghost-cell states at the
airfoil surface.



Table 1
Mean values adopted for the fluid considered, the PP10.

Property Pc (atm) Tc (K) Zc Tc (K) n Cm,1(Tc)/R x

16.2 630.2 0.2859 467 0.5255 78.37 0.4833

Fig. 1. Saturation curve and iso-gamma for the PP10, computed by means of PRSV
equation, filled point the chosen operating condition.
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2.1.2. Thermodynamic model: Peng–Robinson equation of state
Various strategies are followed in the literature to describe

gases close to saturation conditions, or in the supercritical region,
or in the two-phase regime [38–44]. Equations of state based on
theoretical and analytical criteria, such as the van der Waals, Red-
lich–Kwong, Peng–Robinson, Martin–Hou equations (see [45], for
more details) depend on a limited number of thermodynamic in-
puts (e.g. critical temperature and pressure, acentric factor, etc.),
which are measured with a significant experimental error in the
case of dense gases. In the present study, the Peng–Robinson–Stri-
jek–Vera (PRSV) cubic equation [46] is retained as thermal equa-
tion of state not only because it provides a good level of accuracy
for a reduced computational cost [47,48] but also for its robustness
when dealing with uncertainties on thermophysical properties. In
[14] this equation was indeed proved to yield a lower variance in
the flow prediction when the dense gas physical properties were
considered to be affected by uncertainties, with respect to other
equations such as Martin–Hou’s. Note the highly complex and
accurate Span–Wagner equation of state [13] is not considered in
this study because it does not explicitly depend on measurable
physical parameters hence does not lend itself to an uncertainty
quantification analysis. The PRSV equation of state can be ex-
pressed in the following non-dimensional form:

pr ¼
Tr=Zc

1=qr � br
� ar

1=q2
r þ 2br=qr � b2

r

; ð1Þ

where pr = p/pc, Tr = T/Tc, qr = q/qc are, respectively, the reduced
pressure, temperature and density, i.e. quantities normalized by
their values at the critical point. The coefficients appearing in (1)
are defined by:

ar ¼ 0:457235=Z2
c

� �
aðTrÞ;

br ¼ 0:077796=Zc;

(
ð2Þ

where Zc is univocally determined by the solution of a cubic equa-
tion. The function a(Tr) reads:

aðTrÞ ¼ 1þm 1� T0:5
r

� �h i2
ð3Þ

with the coefficient m depending on the acentric factor x:

m ¼ 0:480þ 1:57x� 0:176x2: ð4Þ

The value of the acentric factor itself can be either derived from
experiments or computed using the expression reported in [45]:

x ¼ 3Te=Tc

7ð1� Te=TÞ log10ðpcÞ � 1; ð5Þ

where Te is the normal boiling temperature. For the calculation of all
caloric properties, the thermal equation is supplemented with the
ideal gas contribution to the specific heat at constant volume,
approximated here by a power law of the form:

cv1ðTrÞ ¼ cv1ðTcÞðTrÞnexp
; ð6Þ

where the exponent nexp and the critical-point ideal specific heat
are material-dependent constants. The coefficient nexp is obtained
by minimizing the error with respect to experimental data, and is
provided in literature for different fluids (see for example [4]). Then,
the caloric equation of state associated to the chosen thermal equa-
tion of state is completely determined via the compatibility
relation:

e ¼ eðqr; TrÞ

¼ e0 þ
Z Tr

T0

cv1ðT 0ÞdT 0 �
Z qr

q0

Tr
@pr

@Tr

� �
qr

� pr

" #
dq0

q02
; ð7Þ
where quantities with a prime subscript are auxiliary integration
variables, and the subscript 0 indicates a reference state. The ther-
mal non-dimensional PRSV model and its associated caloric Eqs. (1),
(6) and (7) eventually depend on the set of parameters in-
put_T = {x,nexp,cv1(Tc)/R}.

2.1.3. Baseline configuration and sources of uncertainty
The steady transonic inviscid flow of a dense gas over a sym-

metric profile is considered as baseline configuration for investi-
gating a shape optimization process taking into account
uncertainties; this choice, over for instance a turbine cascade
geometry, is mainly motivated by the objective of cost reduction
when performing this preliminary study. The initial profile is a so-
nic arc for a perfect gas (with c = 1.4) flow, that is the shape around
which the flow is nowhere supersonic even when the inflow Mach
number is getting close to unity. Note it is possible to theoretically
derive the shape of a sonic arc in the case of a perfect gas or a real
gas described by the Van der Waals equation of state, as reported
in [49]. The fluid considered is the heavy fluorocarbon PP10
(C13F22), with critical properties reported in Table 1. The thermody-
namic (reduced) conditions of the free-stream are pr = 0.985,
qr = 0.622 with a freestream Mach number M1 = 0.95 (there is no
incidence, only a half-airfoil being computed). The set of operating
conditions is denoted from now on as input_O = {M1,pr,qr}. The
saturation curve for PP10 constructed by means of the PRSV equa-
tions is reported with the iso-C curves in Fig. 1: it can be observed
the chosen set for Input_O lies near the inversion region (C � 0.3)
yet not too close to ensure the thermodynamic state remains in the
monophasic region even when uncertainties introduce fluctuations
in this thermodynamic state. This configuration has also been pre-
viously studied by the authors: in [2] for a similar optimization
process but without taking into account the uncertainty and in
[14] for analyzing the sole thermodynamic uncertainties indepen-
dently from any optimization process. In accordance with now



Fig. 2. Drag coefficient of the sonic arc at zero incidence as a function of Mach
number for a perfect and dense-gas flow.

Fig. 3. Baseline profile with its interpolating Bézier points.
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well-established conclusions from previous studies [3,4,43,49], the
use of a BZT gas allows a significant increase of the critical Mach
number as well as the divergence Mach number: for the present
sonic arc geometry, the drag divergence occurs for a freestream
Mach number of about 0.83 in the case of the perfect gas flow
and 0.91 in the case of the dense gas flow (Fig. 2).

All the flow computations performed in the study use a half C-
grid made of 100 � 32 cells, with a mean height of the first cell
closest to the wall equal to 0.001 chords and an outer boundary lo-
cated at 10 chords from the airfoil surface. This grid represents a
reasonable trade-off between accuracy and computational cost, gi-
ven the number of CFD runs required by the stochastic solver.
Some considerations about the effect of the computational grid
on the quality of the stochastic simulations are reported in [14]
where stochastic simulations have been performed with uncertain-
ties on the physical properties of the dense gas only: it was dem-
onstrated, for a flow configuration similar to the one studied
here, the proposed level of grid refinement is sufficient to provide
a reasonable representation of the flow solution expectancy and
variance.
The sonic arc is defined by a Bézier polynomial [2] using six
points of fixed position along the airfoil unit chord as indicated
in Fig. 3. The arc being symmetric with respect to x/c = 0.5, the
geometry is constructed on [0,0.5] and then reflected on
[0.5,1.0]. The first and last point are, respectively, fixed to (0,0)
and (0.5,0.06), the airfoil thickness normalized by the chord being
chosen equal to 0.12. The position of the fifth control point is fixed
to (0.426,0.06) to ensure the tangent to the profile at mid-airfoil (x/
c = 0.5) is horizontal. The y-coordinates of the three internal points
are left free and form a set of geometric parameters denoted as
input_G = {y1,y2,y3}.

The parameters defining the set input_O of operating conditions
are supposed to display a 1% variation with respect to their pre-
scribed average values. This choice allows to deal with a significant
uncertainty while remaining in a monophasic region; for a stronger
variation of input_O parameters, the flow could enter the liquid–
vapour mixture region, which must be avoided since the flow sol-
ver does not include two-phase flow models. The physical proper-
ties of the PRSV model defining the set input_T are affected by a
very strong uncertainty (see [10]), reflected in a 3% variation with
respect to their mean values, which are reported in Table 1 and
correspond to the heavy fluorocarbon PP10 [12]. Note it has been
checked again that all the possible thermodynamic states for the
chosen uncertainty ranges always remain in the monophasic
region. The geometric tolerances are taken into account by inject-
ing uncertainties on the Bezier parameters of input_G: a maximal
variation of 0.7% is considered. A summary of the mean values
and uncertainty intervals associated with the three sources of
uncertainties and the nine uncertain parameters is provided in
Table 2.

2.2. Tools for uncertainty quantification (UQ)

Non intrusive polynomial chaos are used to deal with the quan-
tification of the effect of uncertainties on the dense gas flow over
the airfoil. The number of CFD simulations needed to perform this
quantification is minimized by making use of a Sparse Grid
approach based on Smolyak’s construction. The key ingredients
of the methodology followed are described in this section.

2.2.1. Polynomial chaos
Polynomial chaos (PC) expansions are derived from the original

theory of Wiener on spectral representation of stochastic processes
using Gaussian random variables. PC expansions have been used
for UQ by Ghanem and Spanos [50] and extended by Xiu and
Karniadakis [51] to non-Gaussian processes. Any well-behaved
process y (e.g. a second-order process) can be expanded in a con-
vergent (in the mean square sense, see Cameron and Martin [52])
series of the form:

yðx; t; nÞ ¼
X

a
yaðx; tÞWaðnÞ; ð8Þ

where n is a set of nx independent random variables n = (n1,n2, . . . ,
nnx) and a a multi-index a = (a1,a2, . . . ,anx) with each component
ai = 0, 1, . . .. The multivariate polynomial function Wa is defined
by a product of orthogonal polynomials Uai

i ðniÞ in relation to the
probability density of the random variable ni, i.e. WaðnÞ ¼Qnx

i¼1U
ai
i ðniÞ.

A one-to-one correspondence exists between the choice of
stochastic variable ni and the polynomials Uai

i of degree ai. For in-
stance if ni is a normal/uniform variable, the corresponding Uai

i

are Hermite/Legendre polynomials of degree ai; the degree of Wa
is jaj1 ¼

Pnx
i¼1ai. The multivariate polynomial functions Wa are

orthogonal with respect to the probability distribution function
of the vector n of standard independent random variables ni, i = 1,
2, . . . ,nx. Coefficients ya(x, t) are the PC coefficients or stochastic



Table 2
Summary of the mean values, maximal variation and probability density function (PDF) for input_G, input_O and input_T.

Mean values Max variation PDF

Input_G {X1,X2,X3} Decoupled {0.044993,0.040517,0.060488} 0.7% Uniform/Gaussian
Coupled Uniform

Input_O {M1,pr,pr} Decoupled {0.95,0.985,0.622} 1% Uniform/Gaussian
Coupled Gaussian

Input_T {x,n,cm,1(Tc)/R} Decoupled {0.5255,78.37,0.4833} 3% Uniform/Gaussian
Coupled Gaussian

Fig. 4. Sparse Grids corresponding to Kronrod Patterson (on the left) (33 points),
Gauss Legendre (in the middle) (55 points, not nested) and Clenshaw Curtis (on the
right) (65 points) sequences for d = 2 (dimension) and l = 5 (level equal to
polynomial degree of exactness), uniform distribution with variables varying in
[0,1].

220 P.M. Congedo et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 216–232
modes of the random process y. Defining the scalar product by the
expectation operator yields:

yaðx; tÞ ¼ hyðx; tÞ;WaikWak�2
: ð9Þ

For practical use, the PC expansions have to be truncated in term of
degree polynomial no:

yðx; t; nÞ ¼
X
jaj16no

yaðx; tÞWaðnÞ: ð10Þ

The number of multivariate polynomials Wa, i.e. the dimension of
the expansion basis, is related to the stochastic dimension nx and
the degree no of polynomials and is given by the formula
(nx + no)!/(nx! no!).

Several approaches can be used to estimate PC coefficients. The
first approach is based on a Galerkin projection of the model equa-
tions; it leads to a set of coupled equations and requires an adap-
tation of the deterministic code in order to be applied. Alternative
non-intrusives approaches are based on Monte Carlo simulations
or quadrature formulae to evaluate PC coefficients (see for instance
[53]). When the number d of variables is large, quadrature formu-
lae based on tensor product of a 1D formula require too many
numerical evaluations and Sparse Grids integration based on Smol-
yak’s construction [54] are preferred. For these non-intrusive ap-
proaches, PC coefficients are therefore evaluated from a set of
points (ni,xi) and weights by formulae of the form:

yaðx; tÞ ¼ kWak�2
Xn

i¼1

yðx; t; niÞ WaðniÞ xi: ð11Þ

From this PC expansion of the random process y(x, t), it is easy to
derive its mean and variance and to deal with the sensitivity anal-
ysis using the analysis of variance (ANOVA). Before detailing this
sensitivity analysis, let us introduce the Sparse Grid Method, very
useful to reduce the number of computer simulations required
by the UQ process.

2.2.2. Sparse Grid Method
PC coefficients are computed from multidimensional integra-

tion based on quadrature formulae. To reduce the number of com-
puter simulations a method based on Smolyak’s construction is
used. Smolyak’s cubature formulae, also called Sparse Grid, allow
us to estimate the integration of a function of d variables over a do-
main X

If ðdÞ :¼
Z

X
f ðdÞðnÞdn: ð12Þ

The construction of the Smolyak’s cubature is based on the tensor-
product of one-dimensional quadrature formulas of level l, for the
univariate function f(1):

If ð1Þ � Q 1
l f :¼

Xn1
l

i¼1

wlif ðxliÞ; ð13Þ

using the weight wli and abscissas xli of a sequence C1
l of n1

l points.
Let us introduce the difference quadrature formula:

D1
k f :¼ ðQ1

k � Q1
k�1Þf with Q 1

0f :¼ 0; ð14Þ
which is defined on the union of the grids [l
k¼1C

1
k . Smolyak’s con-

struction for d-dimensional functions is given by

Qd
l f :¼

X
jkj16lþd�1

ðD1
k1
� � � � � D1

kd
Þf ; ð15Þ

where jkj1 ¼
Pd

i¼1ki. To minimize functions evaluations (number of
points in the union of the grids), an interesting case is when the set
of one-dimensional quadrature are nested, i.e. C1

l�1 � C1
l ) Cd

l�1 �
Cd

l . If n1
l ¼ Oð2lÞ the order of nd

l is O(2lld�1) to be compared with
product rules for which the order is O(2ld). The efficiency of Sparse
Grid increases with the dimension of the problem. The polynomial
degree of exactness of the Smolyak construction is l + d � 1 if the
one dimensional quadratures are exact for polynomial of degree l.
Examples for Sparse Grid corresponding to delayed Clenshaw
Curtis, Gauss Legendre and Fejer rules for d = 2 and l = 5 are shown
in Fig. 4. These Sparse Grids are computed by the toolbox Nisp [55],
which includes the SmolPack library of Petras to use delayed
Clenshaw Curtis sequences [56]. The size of the grids depends of
the level (l), the number of stochastic variables (d) and the used
rule. For instance to compute exactly the coefficients of a polyno-
mial function of degree 3 with 9 uncertainties, the size of the
sample with the SmolPack is 871 against 1177 with Gauss formulae
(for which grids are non nested), hence a 26% reduction in CFD eval-
uations. For a polynomial function of degree 4 with 9 uncertainties,
3463 and 5965 runs are, respectively, needed by SmolPack and
Gauss formulae, corresponding to a 42% reduction offered by the
Sparse Grid approach.

2.2.3. Sensitivity analysis from polynomial chaos
From the PC expansion (16), it is easy to derive the mean E and

variance V of the random process y(x, t). To simplify notations, an
orthonormal basis is chosen, i.e. kWak = 1 "a; the following equal-
ities hold:

Eðyðx; tÞÞ ¼ y0ðx; tÞ:

Vðyðx; tÞÞ ¼
Xy2
aðx;tÞ

a
:

ð16Þ

Another interesting property of PC expansion is to make easier
sensitivity analysis [46]; so-called global sensitivity analysis [57] is
based on the analysis of variance (ANOVA). Let us introduce the
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generic model Y(n) = f(X(n)) where X is a set of nx independent ran-
dom variables defined from probabilistic transformation Xi = Xi(ni).
The variance decomposition of the response is:

VðYÞ ¼
X
u # U

r2
uðXuÞ; ð17Þ

where U = (1,2, . . . ,nx) is the set of random variables indexes and r2
u

is the variance introduced by interactions of random variables
Xu # XU. The variance decomposition is based on 2nx � 1 terms
ru. From a PC expansion it is easy to compute all variances terms
r2

u of Xu equivalent to nu, i.e. r2
u ¼

P
aPuy2

a, with the notation
a P u) ai P ui " i = 1, 2, . . . ,nx.

The associated sensitivity measure of Xu, named Sobol’s index
[58], is written as the correlation ratio:

Su ¼
V ½EðYjXuÞ�

VðYÞ ¼
P

v6ur2
v

VðYÞ : ð18Þ

For a single variable, the first order Sobol’s index is obtained by:

Si ¼
r2

i

VðYÞ : ð19Þ

If the generic model is linear, i.e. Y ¼
Pnx

i¼1aiXi, the first Sobol’s
index Si is equal to the classical linear correlation coefficient, so
the Sobol’s indexes allow us to deal with global sensitivity analysis
for non-linear models.
Fig. 5. Fully coupled approach
2.3. Coupling CFD/ shape optimization and UQ

2.3.1. Problem formulation
Our aim is to find an optimal shape for an isolated symmetric

airfoil which provides a robust minima for the drag coefficient. Ro-
bust means this shape simultaneously minimizes the mean value
and the variance of the drag coefficient computed when taking into
account the physical uncertainties of the problem gathered in the
previously defined sets input_T, input_O and input_G. Note this
bi-objective problem possesses a set of solutions, forming the glo-
bal Pareto front and corresponding to various trade-off between a
low mean value and a low variance. In mathematical terms, the
problem to solve is expressed as:

min
y1 ;y2 ;y3

meanðCDÞ;rðCDÞð Þ ð20Þ

with {y1,y2,y3} varying in the solution space S, made of intervals de-
fined as ½yi � dyi; yi þ dyi� with yi the reference mean value for the
geometric parameter yi (these reference mean values are those used
to reproduce the baseline sonic arc) and dyi 10% of the correspond-
ing mean value yi. The drag coefficient CD is a function of input_T =
{x,nexp,cv1 (Tc)/R}, input_O = {M1,pr,qr} and input_G = {y1,y2,y3}.
With the non-intrusive statistical approach considered in this pa-
per, the stochastic simulation allowing to compute the mean and
the variance of CD reduces to perform series of CFD evaluations
for optimization problem.



Fig. 6. Approach using surrogate models for optimization problem.
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using specific sets of values for input_T, input_G and input_O, which
are chosen as reported in Section 2.2. For a given shape in the pre-
viously prescribed domain of geometric definition, a single evalua-
tion corresponds to a particular combination of input_G, input_O
and input_T; the global set containing all the possible variations
of the uncertain inputs is called Uncertain Design of Experiment
(UDOE). Three input data define the UDOE: (i) the mean values of
input_G, input_T and input_O parameters (the mean values of in-
put_T and input_O are fixed throughout the optimization problem),
(ii) the maximal variations associated with these parameters (which
have been specified in Section 2.1), (iii) the density probability dis-
tribution associated with each of these parameters. The UDOE is a
set of combinations for input_G, input_T and input_O, determined
by the quadrature formulae used to compute the PC coefficients.
For every combination, a CFD evaluation is performed giving a com-
puted CD value; when such a value has been obtained for each ele-
ment of the UDOE, the mean value and variance of the drag
coefficient are estimated using the UQ tools described in the previ-
ous section.

A shape optimization procedure including uncertainties is
made of two steps schematized in Fig. 5. The first step is the gen-
eration of a DOE for the variables of the optimization problem; in
the present case a set of initial mean values for input_G is gener-
ated in the solution space S. Using the UQ tools described in the
previous section, a UDOE is built for each value of input_G in the
initial DOE; a grid is then generated for each distinct value of in-
put_G and the flow is computed on each of this grid using the
CFD code with the corresponding values of input_T and input_O
in the UDOE. The mean value and variance of the drag coefficient
are computed from the set of values associated with the UDOE
and once this computation has been performed for all the values
of input_G in the initial DOE the first generation for solving (20)
is available. The second step corresponds to the optimization pro-
cess itself. In the present work the NSGA algorithm [59] is applied
to obtain the optimal Pareto set associated with (20). The main
tuning parameters of the algorithm are the population size, the
number of generations, the crossover and mutation probabilities
pc, pm and the so-called sharing parameter r used to take into ac-
count the relative isolation of an individual along a dominance
front. Typical values for pc, pm are, respectively, 0.9 and 0.1; val-
ues of r are retained following a formula given in [59] that takes
into account the population size and the number of objectives.
Using the values of the objective functions mean(CD), r(CD) and
selection, cross-over, mutation genetic operators, a new popula-
tion of mean values for the input_G parameters is generated in
S. For each member of the population (viz. airfoil shape) a UDOE
is built, which differs from the ones previously used by the values
of input_G only since the mean values of input_T and input_O are
fixed once for all in the present problem. A grid is generated for
each new shape and a CFD run is performed for the correspond-
ing input_T, input_O in the UDOE. The quantities mean(CD), r(CD)
are then computed using the available UQ tools and a new pop-
ulation of potentially improved individuals is obtained which is
evolved by applying the genetic operators. This procedure is re-
peated until a convergence criterion is satisfied (typically the var-
iation of the Pareto set is required to decrease below a prescribed
threshold).

2.3.2. Fully coupled approach
In a fully coupled approach, the above optimization procedure

is directly applied, which means the global cost of the process is gi-
ven by the unit cost of a CFD run yielding a value for CD, multiplied
by the total number of CFD runs performed. This last number is
equal to the number of different input_G present in the initial
DOE (also equal to the size of the evolving population of airfoil
shapes) multiplied by the number of generations for the genetic
optimization process multiplied by the number of different input
sets forming the UDOE, so that:

total cost ¼ ðunit CFD costÞ � ðsize of initial populationÞ
� ðnumber of generationsÞ � ðsize of the UDOEÞ:

With an initial population made of 20 individuals evolving during
30 generations and a 15-min CFD run to achieve steady-state for
a dense gas flow over an airfoil, the cost of the optimization without
uncertainty would be 150 h or a bit more than 6 days; if nine uncer-
tainties are taken into account with a third-order PC, the size of the
UDOE will be 49 � 200 thousand sets of inputs hence a totally unac-
ceptable total cost, even with the use of massive parellelization. To
achieve reasonable computational times, specific strategies are
needed to reduce the number of evaluation for the uncertainty
quantification and/or the number of individuals computed through-
out the optimization.

2.3.3. Approach using surrogate models
As a first way to reduce the computational cost of a fully coupled

approach, a preliminary analysis on the baseline sonic arc is per-
formed which allows to assess the contribution of each uncertain
parameter to the drag coefficient variance (ANOVA-type sensitivity
analysis) so as to retain only the most influential ones in the UDOE
used within the optimization process. A second way to achieve this
CPU reduction is the massive use of surrogate models. The optimi-
zation process relying on surrogate models is also decomposed in
two steps (see Fig. 6): the first step is identical to the one described
for the fully coupled approach but with a size of UDOE which can be
reduced thanks to the previous sensitivity analysis and with a size
of DOE that can be different (larger in particular) because it will
only slightly impact the global cost of the process; in the second
step, the DOE of mean values for input_G or DOE (G) with their
associated computed values for the mean and variance of CD is
used in order to build a surrogate function for each of these
objectives: mean (CD) = f1(input_G) = f1({y1 ,y2,y3}), variance (CD) =
f2(input_G) = f2({y1,y2,y3}) where {y1,y2,y3} corresponds to a
(mean) value in the S solution space. These simple mathematical
functions (approximately) account for the uncertainties effects
with a very modest computational cost. A Pareto optimal set for
the simultaneous minimization of f1 and f2 is readily obtained. For
every member of this optimal set, the UQ tools can then be used
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to compute a correct final estimate for mean (CD) and variance (CD),
following the approach previously described in Section 2.3.1 and
used for every population individual at each generation in the fully
coupled approach of Section 2.3.2. Since the final population pro-
duced by NSGA is usually entirely distributed along the global Par-
eto front, the total cost of the approach can be estimated as:

total cost ¼ ðunit CFD costÞ � ðsize of initial DOEÞ � 2

� ðsize of the UDOEÞ;

where the factor 2 corresponds to the initial computations of Mean
(CD) and Variance (CD) and to the final a posteriori computations.
The cost of optimization for the surrogate functions f1, f2 is negligi-
ble with respect to the unit CFD cost. Note however the size of the
UDOE must be reduced for the calculation to remain tractable hence
the total number of uncertain parameters must be reduced as much
as possible and the preliminary ANOVA analysis remains a compul-
sory step.

3. Preliminary Anova-based screening

3.1. General strategy

When computing the dense gas flow over the baseline sonic arc,
nine parameters are considered uncertain, which are classified into
three distinct sources: the three design parameters input_G
describing the geometry, the three parameters input_O defining
the operating condition for the flow and the three parameters in-
put_T closing the gas thermodynamic model. The mean values,
maximal variations and pdf type for each parameter are summa-
rized in Table 2. The deterministic pressure field for the baseline
sonic arc (corresponding to the mean value of input_G) with oper-
ating conditions input_O and thermophysical properties input_T
fixed equal to their mean values is computed with the CFD solver
and plotted in Fig. 7. The computed drag coefficient in this refer-
ence case is CD = 4.05E � 02. The analysis of the contribution of
the nine uncertainties to the variance of this drag coefficient is first
performed following a decoupled analysis: a single source of
uncertainty (input_T or input_G or input_O with three parameters
in any case) is taken into account, the two other sources being held
constant equal to the respective mean values of their six parame-
ters. The contribution of the three-parameter source of uncertainty
is analyzed using the ANOVA approach described in Section 2.2.3,
which yields the individual contribution of each uncertain param-
eter as well as the possible contribution of interacting parameters.
Fig. 7. Deterministic pressure field for the baseline sonic arc.
This analysis is carried out with a third-order PC, the coefficients of
which are computed with a UDOE of size 43 = 64. This UDOE is gen-
erated assuming successively a Gaussian and a Uniform pdf for the
uncertain parameters.

In a second step, all the sources of uncertainty (input_T and in-
put_G and input_O) are simultaneously taken into account in order
to assess possible interactions between the geometry, the operat-
ing conditions and the thermophysical parameters that might con-
tribute to the variance of CD. If the UDOE is generated using again a
third-order PC, its size will grow up to 49 = 262,144. In view of this
extremely high computational cost, it is decided to resort to the
Sparse Grid Method (SGM) described in Section 2.2.2 to perform
this fully coupled analysis. To improve the reliability of this analy-
sis, the SGM is applied not only with a third-order polynomial
(yielding a UDOE of size 871) but also with a fourth-order one
(yielding a UDOE of size 3463), allowing an assessment of the con-
vergence and accuracy of the statistical analysis.

3.2. Results of the decoupled analysis

When input_T is considered as the sole source of uncertainty,
the variance of CD is 5.8E�06 (resp. 5.7E�06) for a Gaussian (resp.
Uniform) pdf. The contributions of the parameters cv1(Tc)/R, x and
nexp to this variance, as computed using the ANOVA approach, are
plotted in Fig. 8. It can be first observed the results depend only
very weakly on the pdf type (0.4% difference between Gaussian
and Uniform for cv1(Tc)/R, 0.9% for x). Uncertainty is mainly
caused by the parameter cv1(Tc)/R (�76.5% of the variance ex-
plained) and the parameter x (�23.4% of the variance explained)
while the parameter nexp is non-influent. The weight of the caloric
component with respect to the thermal component when dealing
with an uncertain equation of state agrees with previous observa-
tions [14]. Since the first order effects of cv1(Tc)/R and x explain
99.8% of the variance, the stochastic model for the drag coefficient
displays an ‘‘additive” form, i.e. the interactions are not influent
(that is why they are not reported in Fig. 8). The contours of the
pressure coefficient maximal standard deviation (square root of
the variance) in the computational domain are plotted in Fig. 9,
along with the mean distribution and error bar for the pressure
coefficient distribution along the baseline sonic arc. It can be con-
cluded the effect of uncertainty on input_T is concentrated in the
vicinity of the shock location.

When input_O is considered as the sole source of uncertainty,
the variance of CD is 3.7E�04 (resp. 3.9E�04) for a Gaussian (resp.
Uniform) pdf. The contributions of the operating Mach number,
pressure and density to this variance, as computed using the ANO-
VA approach, are plotted in Fig. 10. The difference between Gauss-
ian and Uniform distribution remains slight: 1.2% for the Mach, 7%
for the pressure, and 5.1% for the density. The operating Mach
Fig. 8. Analyse of variance for the stochastic dense gas simulation when uncer-
tainties on thermodynamic models (input_T) are taken in account.



Fig. 9. Standard deviation of the pressure field (max = 0.095) on the left, mean solution and error bar for the Cp at the wall on the right, uncertainties on thermodynamic
model (input_T).

Fig. 10. Analyse of variance for the stochastic dense gas simulation when
uncertainties on operating conditions (input_O) are taken in account.
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number is clearly the most influential parameter since it explains
89.9% of the variance for the gaussian pdf. The strong influence
of this parameter is easily understood from Fig. 2: when the oper-
ating Mach number varies in the range [0.9405,0.9595] the dense
gas flow is precisely in the drag divergence region where the shock
location is highly sensitive to the inflow conditions. The operating
pressure and density contributes respectively to 7.8% and 1.9% of
the variance (for Gaussian pdf). The first order effects on Mach,
pressure and density explain 99.9% of the variance, clearly indicat-
ing the stochastic model for the drag coefficient displays an addi-
tive form, with no influence of interactions between parameters.
The contours of the pressure coefficient maximal standard devia-
tion are plotted in Fig. 11, along with the mean distribution and er-
ror bar for the pressure coefficient distribution along the baseline
sonic arc: the effect of uncertainty on input_O is concentrated in
the vicinity of the shock location. There is also an effect of uncer-
tainty near the trailing and leading edge, even if much reduced
with respect to the shock. This effect is not observed when uncer-
tainties on input_T and input_G are considered.

When input_G is considered as the sole source of uncertainty,
the variance of CD is 2.1E�08 (resp. 2.3E�08) for a Gaussian (resp.
Uniform) pdf. The contributions of the parameters y1, y2, y3 to this
variance, as computed using the ANOVA approach, are plotted in
Fig. 12. The first order effects of y1, y2, y3 explain 99% of the vari-
ance, hence an additive form for the stochastic model of drag coef-
ficient can be concluded. The parameter y1 is found to be a bit more
influential than y2 and y3 but the effect of these latter parameters
cannot be neglected. The contributions depend more significantly
on the pdf but the keypoint remains the lack of dominant param-
eter, which can be related to the reduced number of geometrical
parameters considered for the shape parameterization, making sig-
nificant the contribution of each parameter. The contours of the
pressure coefficient maximal standard deviation are plotted in
Fig. 13, along with the mean distribution and error bar for the pres-
sure coefficient distribution along the baseline sonic arc: the effect
of uncertainty on input_G is important in the vicinity of the shock
location but more distributed along the airfoil than with input_O
and input_T.

Table 3 summarizes the computed mean value, variance and
coefficient of variation (the ratio of the standard deviation to the
mean) of the drag coefficient when considering successively in-
put_T, input_O and input_G as sole source of uncertainty, with
an associated Gaussian or Uniform pdf. It is essential to observe
the variance associated with input_O is two orders of magnitude
larger than the one associated with input_T and four orders of
magnitude larger than the one associated with input_G. This same
hierarchy is also observed in Figs. 9, 11, 13 when analyzing the
contour levels of the pressure coefficient variance or the error bars
of the wall pressure distribution: the influence of geometrical
uncertainties appear negligible with respect to the other uncer-
tainties, with the uncertainties on operating conditions clearly
dominant. The computation of the coefficient of variation is impor-
tant to estimate how uncertainties affect the prediction of numer-
ical simulation when compared for example to the discretization
error. As showed in Table 3, uncertainties associated to input_T
and input_O affect the drag coefficient computation much more
than the discretization error.

3.3. Results of the coupled analysis

The three sources of uncertainties, corresponding to nine uncer-
tain parameters, are now simultaneously taken into account using
the SGM. A uniform pdf is assumed for the geometrical parameters
of input_G, corresponding to a worst case scenario where all the
parameters are equally important; a Gaussian distribution is as-
sumed for input_T and input_O since the previous analysis has
shown the difference between a Gaussian and Uniform pdf remains



Fig. 11. Standard deviation of the pressure field (max = 0.203) on the left, mean solution and error bar for the Cp at the wall on the right, uncertainties on operating conditions
(input_O).

Fig. 12. Analyse of variance for the stochastic dense gas simulation when
uncertainties on geometry (input_G) are taken in account.

Fig. 13. Standard deviation of the pressure field (max = 0.013) on the left, mean solut
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slight. The ANOVA analysis is performed for a third-order and
fourth-order polynomial; the hierarchy of the most influential
parameters and the contribution of each uncertainty to the global
variance is analyzed. The results obtained with the two plans are
very similar: the hierarchy is identical with minor differences in
the decomposition of the variance as reported in Fig. 14. The
fourth-order analysis is displayed in Fig. 15 and yields the follow-
ing comments: the uncertainty on the operating Mach number is
the most influential with a contribution to more than 89% of the
variance; the first-order effects on the operating Mach number,
pressure and density explain 99.5% of the variance. The drag coef-
ficient stochastic model is of ‘‘additive” form with negligible inter-
action effects. Going back to the third-order/ fourth-order
comparison, the difference for the three most dominant parame-
ters (input_O) does not exceed 10% so that the results of the ANO-
VA analysis can be considered as converged. The uncertainties on
ion and error bar for the Cp at the wall, uncertainties on the geometry (input_G).



Table 3
Mean, variance and coefficient of variation for each phase of the decoupled analysis (isolated uncertainties on input_T, input_O and input_G, respectively).

Phase 1 Phase 2 Phase 3

Mean (Gaussian,uniform) (4.05E�02; 4.05E�02) (4.13E�02; 4.14E�02) (4.05E�02; 4.05E�02)
Variance (Gaussian,uniform) (5.76E�06; 5.74E�06) (3.70E�04; 3.90E�04) (2.12E�08; 2.29E�08)
Coefficient of variation (Gaussian,uniform) (5.93%; 5.92%) (46.57%; 47.7%) (0.36%; 0.37%)

Fig. 14. Analyse of variance for the stochastic dense gas simulation when uncertainties on geometry (input_G), operating conditions (input_O), and thermodynamic models
(input_T) are taken in account (coupled analysis), difference (%) on the contribution to the variance between the order 3 and the order 4 with the Sparse Grid Method.

Fig. 15. Analyse of variance for the stochastic dense gas simulation when uncertainties on geometry (input_G), operating conditions (input_O), and thermodynamic models
(input_T) are taken in account (coupled analysis, Sparse Grid Method order 4).
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the geometry (input_G) and the thermodynamic model (input_T)
produce negligible effects with respect to the operating conditions.

3.4. Conclusions

The decoupled and coupled analysis of the contribution to the
variance for the set of uncertain parameters involved in the dense
gas flow computation allow to draw important conclusions regard-
ing the selection of parameters that need to be taken into account
when performing a robust shape optimization for this dense gas
flow. In the present case, geometrical uncertainties are much less
influential than the other sources of uncertainties hence input_G
will be considered as deterministic in the optimization performed
in the next section, with geometrical parameters rigorously equal
to their mean values, varying in the previously defined solution
space S. The influence of the uncertainty on the thermophysical
properties input_T remains also limited, with respect to that on
the operating conditions input_O. Note this hierarchy is likely to
depend on the choice of equation of state: the PRSV model has
been found in [14] to be less sensitive than other models to uncer-
tainties on its parameters and the present conclusion is consistent
with these previous findings. In the forthcoming optimization pro-
cess, input_T will also be considered as deterministic, with its three
parameters fixed equal to the mean values given in Table 2.
4. Shape optimization under uncertainty

4.1. Optimization using surrogate functions

The preliminary analysis described in the previous section
showed that the number of uncertainties that should be evaluated
during the optimization procedure could be reduced to the three
uncertainties on the operating conditions (input_O). Since input_T
is fixed, it no longer appears in the schematic view of the optimi-
zation process displayed in Fig. 15. Similarly, the set of mean val-
ues for input_G given by the initial DOE (G) is directly used to
generate a population of airfoil shapes, without impacting the
UDOE, the sole input of which is given by the mean values for in-
put_O, hence denoted UDOE (O). The remainder of the first step is
identical to the one described in Fig. 6, with the generation of
(mean value, variance) couples for the drag coefficient associated
with each element of DOE (G). The second step is also left un-
changed with the design of surrogate functions f1(input_G), f2(in-
put_G) for mean (CD) and variance (CD). The third step of a
posteriori UQ assessment for optimal shapes undergoes the same
simplification as the start of the first step: the mean value and var-
iance of the drag coefficient for an optimal shape are computed
using the UQ tools on UDOE (O). The proposed strategy of optimi-
zation taking into account uncertainties involves three types of



Fig. 16. Approach using surrogate models for optimization problem after
preliminary analysis.
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choices: the method for generating DOE (G), the method for deriv-
ing the surrogate functions and the UQ method for generating
UDOE (O). Three distinct strategies corresponding to three differ-
ent combinations of methods have been considered in order to as-
sess to what extent the optimal values obtained for input_G are
independent from these choices.

In strategy 1, a Quasi Monte Carlo (QMC) geometric DOE (G)
with 20 individuals is used given by the toolbox Nisp [55]; the
UDOE (O) is built from a third-order Sparse Grid Method, using
Nisp again. QMC is similar to the usual Monte Carlo simulation
but uses quasi-random sequences instead of (pseudo) random
numbers; these sequences are deterministic and fill the space more
uniformly than random sequences (known as low discrepancy se-
quences, i.e. the Sobol sequences). The surrogate functions f1, f2 are
built from the values (mean (CD), variance (CD)) associated with
DOE (G) using a multi-layered perceptron (MLP) neural network,
with a cross validation method enabling to select 4 hidden units
so that each neural network has a 3 � 4 � 1 architecture.

In strategy 2, a QMC geometric DOE (G) with 40 individuals and
a UDOE (O) also based on a QMC distribution are considered. The
surrogate functions are derived using the same MLP than for strat-
egy 1.

In strategy 3, DOE (G) is generated using a Box Wilson DOE
(based on fractional factorial design) of 15 individuals and UDOE
(O) is generated using the same Sparse Grid Method as strategy
1. The surrogate functions are derived using the same MLP than
for strategy 1.

The set of optimal solutions obtained using these three strate-
gies are displayed in Fig. 16, both in the objective plane (f1, f2)
and in the parameter planes (y1,y2) and (y1,y3). Let us recall the
solution space for {y1, y2,y3} is defined as [0.04049,0.04949] �
[0.03646,0.04457] � [0.05444,0.06654]; the Pareto fronts in the
parameter space are very similar: they correspond to the upper
limit of variation for y1 and y2 with the third parameter y3 varying
on [0.0544,0.0599] for strategy 3, on [0.0575,0.0600] for strategy 1
and [0.0540,0.0570] for strategy 2.

4.2. A posteriori UQ analysis for selected optimal shapes

Three individuals are selected on each Pareto front in the objec-
tive plane, corresponding respectively to the minimum of f1, the
minimum of f2 and a point at mid-distance between the previous
ones. In the final step of the optimization, an a posteriori UQ is per-
formed for these individuals, that is (f1, f2) are replaced by (mean
(CD), variance (CD)) computed using an UDOE (O) based on the
Sparse Grid Method with a fourth-order polynomial (83 CFD eval-
uations are performed for each geometry to quantify the effects of
the three uncertainties input_O) or on the Quasi Monte Carlo
method (with 64 CFD evaluations for each geometry). The use of
two distinct strategies for computing the mean and variance of
the drag coefficient aims at offering some cross-validation for the
conclusions that will be drawn regarding the proposed optimal
shapes. These choices of UDOE (O) are also applied to the baseline
sonic arc to compute the mean value and variance associated with
this initial geometry. Besides, a classical ‘‘deterministic” minimiza-
tion of the drag coefficient is also performed, where input_T and
input_O are equal to their mean values given in Table 2 and in-
put_G vary in the parameter space S. This single-objective minimi-
zation of the drag coefficient is performed using the same genetic
algorithm as the one used for the bi-objective minimization of
(mean (CD),variance (CD)). The geometric parameters defining this
‘‘classical” optimum are reported in Fig. 17 along with the Pareto
fronts for strategy 1, 2 and 3 in the parameter space. It is interest-
ing to note this classical optimum seems to belong to these Pareto
fronts; however, it is mandatory to carry out the analysis in the
plane of the real (and not surrogate) objective functions, which is
done in Figs. 18 and 19, respectively, using SGM and QMC for com-
puting (mean (CD), variance (CD)). The nine individuals (three on
each Pareto front for strategy 1, 2 and 3) are numbered in Figs.
17–19, in order to see exactly how the Pareto points move in the
objective plane in Figs. 18 and 19 with respect to the optimization
of the surrogate functions in Fig. 17. Though all the optimal shapes
produced by Strategy 1, 2 and 3 as well as the deterministic opti-
mization dominate or are not dominated by the baseline configura-
tion, it must be noted the surrogate functions (f1, f2) introduce a
significant error level with respect to the ‘‘exact” objective func-
tions. In particular, the shapes corresponding to a Pareto set in
the (f1, f2) plane are no longer forming such a Pareto front in the
(mean (CD), variance (CD)) plane. A keypoint however is that a glo-
bal Pareto front can be obtained by gathering shapes produced by
the optimization strategies with uncertainties and the determinis-
tic shape. This latter solution correspond to a minimal value for
mean (CD) along the Pareto front but a maximal value for variance
(CD), where the deterministic CD is taken into account in the deter-
ministic optimization process. Strategy 2 and 3 provide in particu-
lar the same robust optimum corresponding to a minimal value of
variance (CD) along the Pareto front but to a maximal value for
mean (CD), remaining however below the mean value provided
by the baseline configuration. The same conclusions can be drawn
from both UDOE (O) (generated either by SGM or by QMC): the
maximum difference on the mean drag prediction is 6% and 4.5%
on the variance prediction. Moreover, the global Pareto fronts
featured in Figs. 18 and 19 are composed of the same individuals
(1, 4, 5, 7 and the classical optimum), though one is concave while



Fig. 17. Mean and variance of the drag coefficient (a), and position of Pareto front in the parameters plan y1–y3 (b) and y2–y3 (c), of the optimal individuals issued from the
different strategies.

Fig. 18. Comparison of different optimal individuals by using an UDOE based on the
Sparse Grid Method, connected points represent the global Pareto front.

Fig. 19. Comparison of different individuals by using an UDOE based on the Quasi
Monte Carlo Method, connected points represent the global Pareto front.
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the other is convex. This difference in the mean and variance drag
prediction can be explained by considering the specific behaviour
of dense gas flows. When uncertainties on thermodynamic model
and operating conditions are considered at the same time, the free-
stream Mach number can be close to the critical Mach number for
some particular uncertain inputs. In this case, values of CD can be



Fig. 20. Some geometries of interest: baseline sonic arc, optimal shape produced by
the classical (deterministic) optimization and optimal shape yielded by the robust
optimal design.
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strongly reduced, that makes statistics hard to compute. Then,
mean and variance computations depend on the size of UDOE, that
is why two strategies can give slightly different results. A Monte
Carlo computation would be necessary in order to have a reference
results for mean and variance, but it is unfeasible given the compu-
tational cost.

Several remarks can be made by comparing the different strat-
egies. Concerning strategies 1 and 2, enriching the DOE makes the
surrogate functions more predictive, then the approximation of
mean and variance (as function of parameters y1,y2 and y3) is im-
proved. In fact, with strategy 2 two individuals belonging to Pareto
front are obtained (individuals 4 and 5), as shown in Figs. 18 and
19. Seeing the complexity in mean and variance computations,
two strategies (1 and 3) can give slightly different results if few de-
sign points are considered. Geometries of the Pareto front are very
similar, with differences on y3 parameter, while y1 and y2 are the
same. The parameter y3 is equal to 0.0544 for individuals 4 and
7, to 0.0556 for 5, to 0.0565 for the classical optimum and to
0.0578 for individual 1. Along the Pareto front, lower y3 is linked
with an increase of mean (CD). Geometry of individual 5 is very
similar to geometries 4–7 (difference up to 0.4%, where difference
between two geometries A and B is computed using the formulaP

NjyAi
� yBi

j=yAi

� �
=N and N is the number of discretization points

equally spaced along x (see Fig. 20)), while geometries 1-6-8 are
similar to the classical optimum (differences up to 0.3%). Even if
y3 of individual 8 is close to those ones of individual 1 and of the
classical optimum, individual 8 does not belong to the Pareto front.
This means there is a non-linear behaviour in the proximity of y3 of
the classical optimum. This fact could be confirmed by means of
Monte Carlo in order to have a better estimate for statistical quan-
tities. The shapes corresponding to the classical optimum and the
robust optimum (individuals 4 and 7) are plotted in Fig. 20, along
with the baseline sonic arc (owing to the upstream/downstream
and upper/lower symmetries of the airfoil only the upper upstream
quarters of the airfoils are displayed). The mean and variance of the
pressure contours are computed for each of these shapes using the
UDOE (O) based on the Sparse Grid Method with a fourth-order
polynomial: the superior stability offered by the robust optimum
can be clearly observed in Fig. 21, with a 36% reduction of the max-
imum standard deviation with respect to the baseline sonic arc
(against a 26% reduction offered by the classical optimum).
The computational costs of the various optimization processes
(including or not the uncertainties) investigated in this work are
reported in Table 4, with the unit cost taken as the CPU time
needed to perform a single CFD run over an airfoil shape. The ex-
tra-cost associated with the detection of robust optimal shapes,
ensuring a minimization of the variance of the deterministic objec-
tive, varies between two and four times the cost of a standard sin-
gle objective.
5. Conclusions and perspectives

The predictive numerical simulation of a dense gas flow
through an ORC turbine must take into account two types or
sources of physical uncertainties: the physical properties of the
fluid and the operating conditions at the turbine inlet. When
designing the geometry of the turbine so as to optimize its effi-
ciency, the geometrical uncertainties on the manufactured shape
must also be accounted for. Shape optimization including the
quantification of the effect of uncertainties means solving a mul-
ti-objective problem where, typically, the mean value and the var-
iance of the initial objective are computed using uncertainty
quantification tools. In this paper, the feasibility of performing
such an optimization for realistic computational costs has been as-
sessed on a simplified configuration (drag minimization under
uncertainties for the BZT flow over an isolated symmetric airfoil)
and a general procedure applicable to more complex problems
has been proposed. Note that the present work did not investigate
the uncertainty on the strongest BZT effects in the inversion region
where rarefaction shock waves may occur because such effects are
not relevant for the dense gas turbine design constituting the final
long-term objective of the study. A polynomial chaos non-intrusive
approach has been retained to take into account the different
sources of uncertainties, with a Sparse Grid Method to further re-
duce the number of CFD evaluations needed for the UQ analysis.
The global cost of the uncertain optimization has been reduced
by using a three-step strategy: in a first preliminary step, the con-
tributions of the uncertainties to the variance of the objective have
been analyzed for the baseline configuration so as to retain only
the parameter with the most important effects in the shape opti-
mization process; in the second step, surrogate functions or meta-
models have been derived for the mean value and variance of the
objective and a fast minimization of these functions was per-
formed to obtain a set of optimal geometric parameters; in the
third and last step, selected individuals along the pseudo-(since
defined in the plane of surrogate functions) Pareto fronts are a pos-
teriori analyzed using the UQ tools. The mean value and variance of
the drag coefficient associated with these shapes are compared
with these same quantities for the baseline airfoil and for the so-
called classical optimal shape obtained by performing a drag min-
imization without taking into account any uncertainty. A reliable
Pareto front is then obtained in the (mean (CD), variance (CD))
plane, which includes at its upper left end (minimum mean value,
maximum variance along the front) the classical optimum and at
its lower right end (maximum mean value, minimum variance
along the front) a robust optimum which reduces the drag of the
baseline airfoil while minimizing the variance of this drag when
uncertainties exist on the operating conditions. The price to pay
for obtaining such a complete description of optimal shapes mini-
mizing the drag coefficient with nine uncertainties initially taken
into account is the sum of the number of CFD evaluations needed
for the preliminary ANOVA screening (about 6000) and the number
of CFD evaluations (about 6000) needed to build the surrogate
functions once the most influential parameters have been selected
and to perform the a posteriori UQ analysis on the potentially
optimal shapes. Since the deterministic optimization, without



Table 4
Global number of CFD evaluations for the different strategies.

Global number of CFD evaluations

Classical optimization 600
Strategy 1 1909
Strategy 2 2752
Strategy 3 1494

Fig. 21. Mean solution and standard deviation for the base sonic airfoil, individual of the classical optimization and optimization issued from the approach using surrogate
models, uncertainty computed with Sparse Grid Method.
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uncertainty, requires typically 600 CFD evaluations, the cost of an
optimization including uncertainty can be estimated, in the pres-
ent study, to 20 times the cost of a classical optimization, which
remains perfectly acceptable. For the present study, with a unit
CFD cost of 15 min, the overall computational cost for obtaining
a set of robust optimal shapes is about 125 days, translated into
a few days of processing when the fully independent CFD evalua-
tions are performed on a parallel machine. The computer system
available for the study allowed a typical number of eight parallel
CFD computations, reducing the total optimization time to a bit
more than two weeks. In future work, the present efficient
approach and the fully coupled approach described in Section
2.3.2 will be tested on an even simpler quasi-1D configuration to
further assess the reliability of the strategy followed in this study;
besides, this strategy will also be applied to the optimal design of a
2D BZT turbine including thermophysical, operating and geometric
uncertainties.
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