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Abstract. Interdisciplinary efforts in modeling and simulating phenomena have

led to complex multi-physics models involving different physical properties and

materials in the same system. Within a 3d domain, substructures of lower di-

mensions appear at the interface between different materials. Correspondingly,

an unstructured tetrahedral mesh used for such a simulation includes 2d and 1d

substructures embedded in the vertices, edges and faces of the mesh.

The simplification of such tetrahedral meshes must preserve (1) the geometry and

the topology of the 3d domain, (2) the simulated data and (3) the geometry and

topology of the embedded substructures. Although intensive research has been

conducted on the first two goals, the third objective has received little attention.

This paper focuses on the preservation of the topology of 1d and 2d substruc-

tures embedded in an unstructured tetrahedral mesh, during edge collapse simpli-

fication. We define these substructures as simplicial sub-complexes of the mesh,

which is modeled as an extended simplicial complex. We derive a robust algo-

rithm, based on combinatorial topology results, in order to determine if an edge

can be collapsed without changing the topology of both the mesh and all embed-

ded substructures. Based on this algorithm we have developed a system for sim-

plifying scientific datasets defined on irregular tetrahedral meshes with substruc-

tures. The implementation of our system is discussed in detail. We demonstrate

the power of our system with real world scientific datasets from electromagnetism

simulations.

1 Introduction

In this paper we introduce a system that is able to robustly preserve surfaces and poly-

lines defined as substructures in a tetrahedral mesh simplified by repeated edge col-

lapses. This problem originates from an application in electromagnetism, as detailed in

the next section. The surfaces (resp. polylines) we are dealing with consist in a subset

of faces (resp. edges) of the tetrahedral mesh. Thus, collapsing an edge of the mesh

may result in modification of the surfaces and polylines. Preserving these substructures

during simplification is a new topic in the literature. There have several papers that

have tackled a more specific issue: the preservation of boundary surfaces in tetrahedral

meshes. The proposed solutions to boundary surface preservation, however, are often

too restrictive. Some systems reject any edge collapses in the neighborhood of bound-

aries, while others do not allow collapses between boundary and internal vertices.



Fig. 1. Electromagnetism simulation for furtivity studies on a large irregular tetrahedral mesh

where surface and linear substructures are the heart of the simulation as they influence the field

propagation.

In contrast our system is less restrictive: edges may be collapsed anywhere in the

mesh, even in the neighborhood of substructures, and even between a vertex in the

substructures and a vertex outside the substructures. This leads to higher simplification

rates. Furthermore the simplification is uniformly spread out across the mesh, regardless

of the underlying substructures.

The main contribution of our paper is a robust algorithm to detect if an edge can

be collapsed without modifying the topology of the mesh and of its substructures. Our

system combines this topological validity test with simple geometric and numeric error

measures in order to drive the simplification. However the focus of this paper is clearly

on preserving topology – not on preserving the geometry of the mesh or the numeri-

cal values attached to it. As a matter of fact, the numerous geometric error measures

proposed in other papers can be straightforwardly extended to take into account sub-

structures in a mesh, whereas the preservation of the topology of the substructures is

the real challenge.

In a previous work [14] we introduced a topological test for preserving polylines

in non-manifold triangular meshes. Our current work extends the algorithms of [14]

to tetrahedral meshes with 2D and 1D substructures. This extension is not trivial, both

from a theoretical point of view and for the implementation. The latter is done very care-

fully in our system. Efficient data structures and algorithms are precisely described. Fol-

lowing [14], the mesh is modeled as a simplicial complex extended by new simplices

connecting the substructures to a dummy vertex. The validity of the edge collapse is

checked in the extended complex using results from [4]. Thus there is only one con-

sistent test to ensure the preservation of the topology of the mesh and of all embedded

substructures. In particular we do not rely on heuristic solutions that would treat the

mesh and the substructures independently.

The remainder of the paper is structured as follows. Section 1.1 and 1.2 give some

additional motivation for this work. Section 2 reviews related work. Section 3 presents

the theory and Section 4 describes the implementation in detail. Section 5 presents



Fig. 2. (le f t) Detail of a substructure shown at high resolution only inside a volume of interest.

The topology of the mesh and the substructures is preserved everywhere. (right) Multiresolution

visualization of a thin layer of material with the associated electromagnetic field magnitude.

the integration of the topological test in our visualization system, with examples of

application on real world datasets.

1.1 Strength of the Topological Criteria

Geometric error metrics in simplification are coupled with a threshold value that one

can adapt to coarsen or refine the data. No matter how good the error computation is,

the decision of removal greatly depends on this threshold which is application depend in

order to handle unexpected cases often met in Scientific Visualization. In contrast, topo-

logical tools guaranty the integrity of the data after simplification without integrating

global information or any metric between elements. Combinatorial Topology criteria

are general to any application domain that uses meshes.

1.2 Electromagnetic Simulation

Electromagnetism is a wide field used in many applications such as electromagnetic

compatibility, furtivity, or the modeling of new absorbing media. Stealth technology

relies on the conception and simulation of new absorbing materials in order to decrease

the signals reflected from the target to the radar receiver. This ability to reflect radar sig-

nals is characterized through Radar Cross Section (RCS) represented as a single scalar.

However, to minimize this value, designers need to fully understand the electromag-

netic field behavior on the object surface and in its interior. Numerical simulations of

this phenomenon often use volumetric finite element methods coupled with a domain

decomposition.

The main challenges when simplifying these data for multiresolution visualization

come from the complex topology of the embedded structures and the large amount

of data. Material boundaries (e.g. interfaces) and various substructures of different di-

mensions (possibly point sources and polylines) that exist in specific layers introduce

a complex topology. The multiple crossing interfaces can be represented as one non-

manifold surface embedded in the volume mesh. The union of all polylines can also be



seen as a unique linear structure which intersects the non-manifold surface. Figures 1

and 3 illustrate such data.

Also, due to the high frequency of the incident electromagnetic field, the mesh needs

to be subdivided to the scale of the wave length leading to millions of cells. Because of

the thin domain decomposition required by the numerical simulation and the design of

specific objects, current tetrahedral meshes have only a few tetrahedra in the thickness

of a layer (see Figure 7) even though the entire mesh may be composed of a hundred of

millions of cells.

Fig. 3. (le f t) Polyline emerging from an orthogonal base plan. The mesh is subdivided around

this structure. (center) Linear structure with multiple self intersections twisted around a cylindri-

cal mass with orthogonal interfaces. (right) Multiple crossing interfaces of thin material layers

and polylines of the structure.

Although we introduced our method on electromagnetism simulations, the exact

same topological test can be apply to any domain where the topology of embedded

structures need to be preserved trough simplification of the tetrahedral mesh (geology,

medical imaging ...

2 Related Work

Multiresolution approaches provide techniques to efficiently and accurately explore

large unstructured polygonal and volume data in Computer Graphics and Scientific

Visualization. In order to create a multiresolution representation, many mesh simpli-

fication algorithms have been proposed over the last decade ranging from surface to

volume based methods. As we focus on topology criteria, we will only survey these

criteria used in previous algorithm and dismissed geometry/attribute error metrics and

surface/volume mesh simplification algorithm [10, 2]. In fact any error metrics can be

combined to our algorithm without any side effect in order to improve the attribute or

geometric quality of the simplified mesh.

Among the wide range of simplification methods, only a few of them introduce

specific topological tests and almost none of them tackle the problem of linear/surface

features in a volume mesh. Early work on topological criteria has been done on sur-



face simplification in [13] where the vertices candidate to the removal are classified by

analyzing their local neighborhood.

With notions taken from the computational topology, [8] has proven that the topol-

ogy of a triangular mesh can be preserved, through simplification, if the 3 tests intro-

duced in the paper are fulfilled. Later, in the PM method [7], these tests are completed

with local heuristics in order to preserve the topology of discontinuity curves defined on

a surface. The author proposes 6 rules based on an enumeration of the vertices around

an edge representing a linear feature.

[9] successfully simplify non-convex tetrahedral meshes by triangulating the non

convex regions. The authors check for tetrahedron flipping avoiding topological and

geometrical problems only at the boundary. However, the authors point out that some

topological problems can still be undetected with their test during the simplification.

All these previous topological criteria are not general enough to preserve the topology

of both 1D and 2D structures in a 3D mesh.

[4] is the groundbreaking paper on topology preservation. It has introduced the link

conditions to robustly check if an edge collapse preserves the topology of a 3-complex.

Our paper makes extensive use of these link conditions (reviewed in Section 3).

Intuitively, the link of a simplex u is the subset of simplicies being in contact with

all adjacent simplicies of u and the rest of the mesh. In a 3-complex without boundary,

[4] has proven that an edge collapse uv preserves the topology of the complex if the

intersection of the vertex links is equal to the edge link. This condition is known as

the link condition. For general 3-complexes, this link condition has to be evaluated in

a succession of complexes built by iteratively filtering the simplicies having a simpler

topological neighborhood.

Extending the multiresolution representation of [3], [1] first integrates the link con-

ditions to preserve the topology of both the interior cells and the boundary of the mesh.

[12] also uses the link conditions but simplifies them by assuming that the tetrahedral

mesh is manifold. The link condition is computed for a 3-complex without boundary

for the interior tetrahedra and if a boundary tetrahedron is encountered a second link

condition for the 2-complex at the boundary is added.

Because none of these papers fullfil our needs we introduced a new algorithm which

successfuly simplifies general simplifical 3-complex in preserving both the topology of

this complex anf the topology of sub-complexes embedded into it. The strength of this

new algorithm comes from: (i) its locality, (It only uses the direct neighborhood of the

simplicies) (ii) its unicity, (It can handle any complicated topological neighborhood

regardless of its dimension lower than 3.) and (iii) its exactness (It is based on theorical

results taken from combinatorial topology rather than local heuristics).

3 Topology preserving edge collapse in an extended 3-complex

3.1 Link conditions in a 3-complex

The link conditions introduced in [4] can be used in a tetrahedral mesh to test if an

edge e between two vertices u and v can be collapsed without modifying the topology

of the mesh. The mesh is modeled as a simplicial complex K. The link conditions are



expressed using basic operators from algebraic topology. We assume the reader is fa-

miliar with elementary notions in this field. Precise definitions of the link Lk T , the star

St T and the closure T of a set T of simplices can be found in [11] and illustrated in

[14].

If K is a manifold 3-complex, the link conditions reduces to:

Lk u∩Lk v = Lk e (1)

If the 3-complex is non-manifold, the condition (1) has to be tested in three succes-

sive smaller complexes of dimensions 3, 2 and 1. This is detailed in Section 3.3.

3.2 Extending the mesh with the substructures

In order to use this link condition to our setting, the embedded structure need to be

visible from the surrounding mesh. To do so, we increase the neighborhood complexity

of simplicies defining the sub-structures as follow. The tetrahedral mesh is modeled as

a simplicial complex K. The 2D (resp. 1D) substructures are defined as a set L f (resp.

Le) of faces (resp. edges) in K. We define an extended complex K̃ by adding to K the

cones from a dummy vertex ω to each simplex in the closure of the substructures, as

illustrated in Figure 4. The key idea is to consistently encode the topology of the mesh

Fig. 4. Construction of the extended complex. The red simplicies correspond to the substructures

L f and Le. The yellow simplicies represent the elements added to the original complex K (shown

in blue) in order to extend K to K̃.

and its substructures in a single extended complex.

3.3 Link conditions in the extended complex

To preserve the topology of the mesh and its substructures, we apply the link conditions

in the extended complex defined in Section 3.2. Even if the original mesh is manifold,

the extended complex is non manifold. Thus, the link condition (1) must be evaluated

respectively in the following complexes:

K̃ω = K̃ ∪ (ω ·Bd1 K̃)

G̃ω = Bd1 K̃ ∪ (ω ·Bd2 K̃)

H̃ω = Bd2 K̃ ∪ (ω ·Bd3 K̃)

(2)



where Bdi K̃ is the set of all simplicies of order i or less in K̃. The link of a simplex in

K̃ω , G̃ω and H̃ω is respectively noted as Lkω

0 , Lkω

1 and Lkω

2 . The precise definition

of the order of a simplex is given in [4]. Simplicies of dimension k in a 3-complex

have an order not greater than 3− k. Therefore K̃ω is a 3-complex, while G̃ω contains

only edges and H̃ω only vertices. Note that our algorithm can deal with non-manifold

tetrahedral meshes. However for clarity reasons, the following discussion is restricted

to the case where the tetrahedral mesh is a manifold with boundary.

In this case, Bd1 K̃ contains the boundary faces of K and the faces of L f . It con-

tains also the edges and vertices of these faces. Bd2 K̃ contains the edges of Le and

the edges adjacent to exactly one, or else three or more faces of L f (i.e., the boundary

and the non-manifold edges of L f ). It contains also the vertices of these edges. Finally

Bd3 K̃ contains the vertices adjacent to one or else three or more edges of Bd2 K̃ (i.e.

the boundary and non-manifold vertices of Bd2 K̃). This includes vertices at the inter-

sections created when a polyline in Le crosses a surface in L f .

By experience, the simplicies of high order correspond to regions of interest that

the user visualizes in detail. Important features in the mesh (detected by cells marked

as simplices of high order) are usually correlated with high variations in the data. This

point is clearly illustrated in the electromagnetic simulations where the field greatly

varies around the linear structure or the points of contact in between this element and a

mass plan.

4 Implementation of the Topology preservation test

4.1 Datastructure of the embedded simplices

The implementation of the link condition requires to iterate through all adjacent sim-

plicies around a vertex and an edge. For memory requirement and efficiency we do not

store explicitly all simplicies (faces, edges and vertices) of our substructures. Instead,

as both the substructures and the link simplicies are embedded in cells of the original

tetrahedral mesh, all of them are encoded as relative element indices in a tetrahedron.

For each tetrahedron 4 bits (resp. 6 bits) are used to indicate which faces (resp. edges)

support a 2D (resp 1D) substructure. Both the triangle mesh connectivity of the 2D sub-

structures and the linear mesh connectivity of the 1D substructures are retrieved through

the tetrahedron mesh connectivity without using additional memory. Moreover, during

the simplification process, such a datastructure eases and optimizes the updates of the

substructures after an edge collapse. A modification on the tetrahedral mesh will be

directly passed on to the substructures, without any additionnal treatment.

4.2 Algorithmic implementation

The algorithm 1 describes the evaluation of the link conditions in order to detect if the

collapse of the edge e = uv preserves both the topology of the mesh and the topology

of any embedded structure. The extraction of the link of a simplex is the most repeated

operation when evaluating the link conditions. It is also time consuming as the star of

the reference simplex has to be exhaustively visited.



Algorithm 1 IsEdgeCollapsePreservingTopology(K, u, v, e)

1: # Lines 2 to 21: Compute Lkω

0 u, Lkω

1 u and Lkω

2 u

2: for all T in St(u) do

3: Add to Lkω

0 u the 2-face of T opposite to u, its 3 edges and its 3 vertices

4: for all adjacent face fu to u in T do

5: if fu is a face of a substructure then

6: A dummy tetrahedron is defined as T ω = ω · fu
7: Add to Lkω

0 u the face of T ω opposite to u, its 3 edges and its 3 vertices

8: Add to Lkω

1 u the edge of fu opposite to u and its 2 vertices

9: end if

10: end for

11: for all adjacent edge eu to u in T do

12: if eu is an edge of a polyline then

13: A dummy triangle is defined as tω = ω · eu

14: Add to Lkω

0 u and Lkω

1 u the edge of tω opposite to u and its 2 vertices

15: Add to Lkω

2 u the vertex of eu opposite to u

16: end if

17: end for

18: if u is an order 3 vertex then

19: Add ω to Lkω

2 u

20: end if

21: end for

22: # To compute Lkω

0 v, Lkω

1 v and Lkω

2 v apply lines 2 to 21 after changing u in v.

23: # Lines 25 to 37: Compute Lkω

0 e and Lkω

1 e (Lkω

2 e is alway empty)

24: for all Te in St(e) do

25: Add to Lkω

0 e the edge of Te opposite to e and its 2 vertices

26: for all f of Te adjacent to e do

27: if f is a face of a substructure then

28: A dummy tetrahedron is defined as T ω = ω · f

29: Add to Lkω

1 e the edge of T ω opposite to e and its 2 vertices

30: Add to Lkω

1 e the vertex of f opposite to e

31: end if

32: end for

33: if e is an edge of a polyline then

34: Add to Lkω

0 e and Lkω

1 e the vertex ω

35: end if

36: end for

37: # Lines 39 to 41: Evaluate the link conditions

38: if Lkω

0 u∩Lkω

0 v 6= Lkω

0 e then return FALSE

39: if Lkω

1 u∩Lkω

1 v 6= Lkω

1 e then return FALSE

40: if Lkω

2 u∩Lkω

2 v 6= /0 then return FALSE

41: return TRUE



Fig. 5. Contribution to the links from the extended simplicies around a reference simplex (u or

e shown in green). ω represents the dummy vertex. The substructures are shown in red and the

simplicies to insert into the links in yellow.

The links are directly obtained without explicitly building the extended complex.

In order to understand this optimized implementation, one has to associate the dif-

ferent members of equation (2) to the algorithm steps. For example, starting at line 5

and illustrated on figure 5 le f t, if fu is a face of a substructure then the dummy tetrahe-

dron T ω increases the order of fu to 1. Thus, fu is included in Bd1 K̃ and contributes to

Lkω

0 but also to Lkω

1 because of the member ω ·Bd1 K̃ of G̃ω (line 8). The simplices

represented in yellow on the figure 5 middle are the contribution of the triangle tω de-

fined on line 13 to Lkω

0 and Lkω

1 . This extension increases the order of the edge eu to 2

making it visible in Bd2 K̃. Thus, line 15 of the algorithm implements the contribution

of the simplicies present in the member Bd2 K̃ of H̃ω . A last example, shown on figure

5 right, illustrates the contribution of the dummy tetrahedron T ω introduced on line 29.

In this case only the opposite edge (yellow) to e (green) is inserted to the link of Lkω

0 e

as no face can be present in the link of an edge.

One has to note that due to the strong theoretical background, the topological criteria

is insensitive to the complexity of the neighborhood of the collapse (multiple surfaces

and polylines).

5 Applications

5.1 Volumetric Simplification

This section presents various applications of the topology preserving visualization sys-

tem introduced in the present paper.

The example on figure 6 shows the simplification of a mesh used in electromag-

netism simulation. The object is composed of approximatively twenty thin layer of

materials encapsulated in each others. The geometry is meshed with about 2 millions of

tetrahedra. In order to study the circulation of the electromagnetic field at the boundary

of each materials, all interfaces are explicitely described as embedded surfaces. Ad-

ditional linear structures with self intersections are inserted in the model. Figure 6(b)

shows the simplified mesh after removing 90% of the vertices with edge collapses. This

example illustrates the strength of the algorithm on data composed of a large amount of



(a) Original mesh (b) After 90% of simplification

Fig. 6. Volumetric simplification of a model with multiple substructures. A few material layers

are shown as opaque triangle mesh and all interfaces as semi-transparent surfaces. The linear

features are in red and their self intersections marked by yellow shperes.

substructures of different dimension with multiple self intersections (e.g. increasing the

topological complexity).

Achieving aggressive simplification rates becomes challenging when dealing with

large volumetric mesh organised in thin material layers. Figure 7 shows a detail of such

(a) Original mesh (b) After 98% of simplification

Fig. 7. Aggressive simplification of a volume mesh composed of thin material layers. The topo-

logical criteria preserve both the thickness of the layers and the topology of the substructures

while allowing collapses of edges on the substructures.

data where the material layers have no more than 5 tetrahedra in their thickness. Lin-

ear features are also defined on specific boundaries. Figure 7(b) shows the result after a

massive simplification where 98% of the vertices have been removed by edge collapses.

In this example the simplification stopped when all candidate edges are rejected due to

the topological criteria. It is important to note that the topological constraints on the 2D

interfaces insure the preservation of the volume of each layer (at least 1 tetrahedron in

the thickness and usually no more). Another interesting aspect of this example shows



that strong constraints on the substructure topology do not disturb or prevent an high

simplification rate of the substructures. The arrow drawn along a linear feature living

on an interface covers about 16 edges on the initial mesh but only 4 edges after simpli-

fication. Thus many edges of the interface and of the polyline have been collapsed.

5.2 Multiresolution Visualization

Fig. 8. (le f t) Variable resolution visualization of a volume mesh with multiple linear features.

The topology of the substructures is guaranteed to be preserved. (right) Snapshot of the mul-

tiresolution visualization tool to explore simulation data with embedded structures on a desktop

PC.

In order to provide a visualization system taking advantage of the substructure

topology preserving criteria, the algorithm has been integrated to an existing multireso-

lution framework. The MT library [5], freely available and based on the formal approach

of [6], provides the tools to build and exploit a multiresolution representation from a

sequence of valid transformation on a mesh. MT stores a partial order amongst the mod-

ifications into a DAG which can then be querried with static or dynamic criteria to

produce various resolutions. Global or local extractors allow the user to extract meshes

at variable resolution centered around a volume of interest (VOI). Figures 8 and 1 show

a multiresolution mesh at high resolution only inside a VOI interactively moved by

a user. The mesh at low resolution reduces the use of the graphic processor allowing

the application to maintain an interactive frame rate even with an original mesh of sev-

eral millions of cells. As the substructure preserving topology criteria have been used to

build this representation, the topology of the substructures is guaranteed to be preserved

on the multiresolution visualizations.

6 Conclusion

This paper has introduced new results for simplifying tetrahedral meshes with 2D and

1D substructures. As a specific application our system can simplify multi-material tetra-

hedral meshes while accurately preserving the topology of the material parts. To the



best of our knowledge, this is the first paper that deals with the simplification of multi-

material tetrahedral meshes. Our system can also handle more general 2D and 1D sub-

structures. An application in the field of electromagnetism simulation, from which the

system originates, has been shown. This application and the technology explained (mul-

tiresolution) are part of the strategy of the CEA in order to visualize large data computed

on a remote super-computer. While focusing on topology preservation, our system can

accommodate any geometric and numeric error measures as well. Once the simplifica-

tion is computed, the system uses the MT library to visualize the mesh with higher preci-

sion inside a VOI. In future work we plan to optimize the VOI extraction by developing

algorithms specifically designed for handling tetrahedral meshes with substructures as

well as better attribute and geometric attribute metrics to drive the simplification.
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