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Abstract

We address the problem of matching two 3D shapes
by representing them using the eigenvalues and eigen-
vectors of the discrete di usion operator. This provides
a representation framework useful for both scale-space
shape descriptors and shape comparisons. We formally
introduce a canonical di usion embedding based on the
combinatorial Laplacian; we reveal some interesting
properties and we propose a unit hypersphere normal-
ization of this embedding. We also propose a prac-
tical algorithm that seeks the largest set of mutually
consistent point-to-point matches between two shapes
based on isometric consistency between the two embed-
dings. We illustrate our method with several examples
of matching shapes at various scales.

1. Introduction

Recent advancement in technology has enabled easy
acquisition and modeling of visual data, leading to
a vast amount of 3D shape data. A large part of
the existing databases usemeshrepresentations which
model a shape as a graph structure where vertices cor-
respond to points uniformly sampled from a continuous
surface lying on a Riemannian manifold, and edges de-
scribe the local topology of the surface. Hence shape
analysis heavily relies on local and global properties
associated with the underlying manifold.

Analyzing 3D data in a single framework is still
a challenging task considering the large variability of
the data gathered with dierent acquisition devices.
Matching two shapes is one such challenging shape
analysis task. Most of the previous attempts of shape
matching can be broadly categorized asextrinsic or
intrinsic approaches depending on how they analyze
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the properties of the underlying manifold. Intrinsic
approaches are a natural choice for nding dense cor-
respondences between articulated shapes, as they em-
bed the shape in some canonical domain which pre-
serves some important properties of the manifolde.g.,
geodesics and angles![ 29, 16, 31, 22, 24, 18, 1.

Interestingly, mesh representation also enables
adaptation of well established graph matching algo-
rithms that allow to combine intrinsic and extrinsic
(appearance) features and were previously successfully
applied for images feature matching [7, 11, 27, 30,

]. Some more recent approaches apply hierarchical
matching to nd dense correspondences 15, 32, 25].
But many of them su er with the problem of either
computational intractability or a lack of proper dis-
tance metric as Euclidean metric is not directly ap-
plicable to non-rigid shapes. A recent benchmarking
of shape matching methods was performed7]. Ac-
cording to the results summarized in [[] one of the
best performing shape matching algorithms is 77] that
uses Laplacian embedding and point registration based
on a variant of the expectation-maximization (EM) al-
gorithm [14] to register the two sets of points associ-
ated with the Laplacian embeddings of the two shapes.
The two embedded representations need to be correctly
aligned in order to properly initialize the EM algo-
rithm. This alignment is critical for the spectral match-
ing methods because the two isometric embeddings are
de ned up to the signs and orderings of the eigenvalues
of the Laplacian. The eigenvector histogram proposed
in [22] works well, provided that the embeddings of
the two shapes have approximately the same statisti-
cal properties. Therefore, it would be useful to investi-
gate alternative solutions based on some other intrinsic
shape properties that are more robust to discrepan-
cies in the statistical properties of the two embedded
shapes.

Another important criterion for shape matching is



the proper detection of interest points on the two
shapes. A benchmark for detection and description of
features on 3D shapes has been recently presented in
[6]. The benchmark concludes that the heat (or di u-
sion) kernel based features are robust and repeatably
detected. The di usion kernel is the fundamental solu-
tion to the di usion equation and can be represented
in terms of the eigenvalues and eigenfunctions of the
Laplacian operator. This leads to an important in-
trinsic shape representation known asdi usion-kernel
embedding[1]. The di usion kernel also allows the def-
inition of the di usion distance which is an interesting
alternative to the geodesic distance and which can be
used in various ways such as: building invariant shape
signatures, i.e., distance distributions pP1, 8], comput-
ing di erential properties of meshes and of point clouds
[19], or comparing shapes, 23]. One motivation for
using di usion signatures and di usion metrics is that
they are relatively robust to changes in topology. Nev-
ertheless, we remark that they are quite sensitive to
the choice of the scale (or time) parameter. At small
scales only local properties are captured while at large
scales all points on the shape are at equal distances.
When the scale parameter tends to in nity the heat
kernel collapses to zero, unless it is properly normal-
ized [1, 2€]. Also it is important to use some kind of
normalized representation for a proper comparison of
two shapes such as to avoid issues with sampling and
changes in size.

In this paper we propose to nd a sparse set of
matches between two shapes using the intrinsic prop-
erties of the di usion embeddings of the shapes. First
we analyze in detail the canonical di usion embedding
that is based on the combinatorial graph Laplacian,
we show that it has interesting statistical properties,
and we propose a unit hypersphere intrinsic represen-
tation. This allows us to devise a simple method to esti-
mate a global scale factor between the two embeddings
whenenver the two shapes to be matched correspond
to di erent samplings. Then we present a method to
detect feature (or interest) points on shapes at di erent
scales using these di usion embedding representations.
Next, we describe a sparse shape matching method.
We propose a method that nds the largest set of mu-
tually consistent features between the two shapes. Fi-
nally, we present sparse shape matching results along
with a discussion on the choice of the scale parameter
for the feature detection and matching.

2. Diusion Embeddings

In this section we will introduce di erent intrinsic
representations of shapes using the di usion (heat) op-

erator. Analysis of diusion processes on graphs will
provide many time-dependent and time-invariant in-

trinsic representations of shapes as well as dierent
spectral distance metrics applicable to them.

2.1. Heat Diffusion on an Undirected Graph

In the case of a undirected graphG = fV ; Egwhere

the edge set, the heat or di usion equation writes:

@

@t+ L f()=0 Q)
where L denotes the combinatorial graph Laplacian
(section 2.2) [9, 28] and f (t) = (f (vy;t) i (vnit))”
isan 1 vector of real-valued functions: Each such
function associates a real number to a graph vertex
f : VI R which can be interpreted as a set ofheat
values at each graph vertex at timet > 0. We de-
note by f (0) the initial heat distribution. Notice that
both the Laplacian and heat operators map real valued
functions, i.e. f, de ned on the graph onto other such
functions. The fundamental solution of the discrete
di usion equation is given by:

Hi)=e " )
where the exponential of a matrix is de ned by:
b3 AKX
et = W 3)
k=0

2.2. The Combinatorial Graph Laplacian Operator

A combinatorial Laplacian (also known as un-
normalized Laplacian) of a undirected graph G can be
written as :

L=D 4)

where is the n n weighted adjacency matrix of
G with positive entries and D is thg, degree matrix
D = Diag[d;:::di:::dy] whered, = | Pl (i ]

denotes the set of verticesv; which are adjacent to
vi). The spectral decomposition of the combinato-
rial Laplacian is L = UU >. The eigenvectoruy =

(Ugk I::Ujk :::upk)” is a column of U. From (4) we
obtain 1 =0 and u; = 1, henceuy ,1 = 0. Using
ug ux =1 we obtain the following properties:

Pn
i=1 Uik =0; 2 k n

jUikj < 1; 1 i n2 Kk n

(%)
(6)



2.3. The Combinatorial Diffusion Operator

Using the spectral decomposition of the Laplacian
matrix, we further obtain the spectral decomposition
of the graph di usion operator:

H(t) = Ue' U~ (7)
with e ' = Diag[e ! *:::e ! n]. Notice that from
the properties of the eigenvalues of the Laplacian we
obtain

1= 1> > n>0

Each entry h(i;j ;t) of the di usion operator is a di u-
sion kernel function that estimates the amount of heat
at vertex v; and at time t, starting from a heat distribu-
tion located at a single vertexv;. From above and by
omitting the constant eigenvector associated ; = 0,
we obtain:

X
h(ij;ty= e
k=2

K Uik Ujk (8)

The diagonal terms of the heat operator correspond to
the auto-di usion function de ned at each vertex, i.e.,
h(i;i;t).

2.4. The Diffusion-Kernel Distance

By interpreting ( 8) as an inner product we obtain
a close-form expression for the distance between two
graph vertices, which can be interpreted as an Eu-
clidean metric:

d?(i;j )

h(i;i;t)+ h(;jit)  2h(isj ;)

1 2
e ' K(uk Uyk) 9

k=2

2.5. Canonical Diffusion Embedding

We start by de ning the canonical embeddingasso-
ciated with the combinatorial di usion operator which
can be decomposed as:

H(t)= Ue 2t  Ue 2! (10)
The rows of then n matrix Ue ' =2 can be viewed as
the coordinates of the graph's vertices in somdeature
space Indeed, one can de ne a mappingk : V! R" !
(omitting the constant vector correspondingto 1 =0)
to obtain:
e 2t nujp, (11)

— 1t
Xi= € 2" 2Uj

From (6) we obtain bounds on the coordinate values
for all k> 1:

1< e ftrayxy <e ztx<1 (12)
It is practical to use only a subset of the operator's
eigenvectors, namely the eigenvectors corresponding to
the K smallest non null eigenvalues of the Laplacian,

K n 1. Therefore we obtain the following represen-
tation, where Uk is an K sub-matrix of U formed

X =[X1::Xi:::Xn]= Uge 2t « (13)
Therefore, the canonical embeddedcoordinates of a
graph vertex v; correspond to thei-th column of the

K n matrix X. Itis worthwhile to notice that in this
case the embedded (or feature space) is an Euclidean
space. Hence, there is a straightforward interpretation
of the heat-kernel signature (HKS) [26] (or of the auto-

di usion function (ADF) [ 13]), namely:

kxi k2 = h(ii;t) (14)

2.6. Maximum-variance embedding

In this paragraph we show a useful property of the
embedding of a graph based on the spectrum of the
combinatorial heat operator, namely that the eigen-
vectors of H are the directions of maximum variance
of the the embedded pointsX .

Let's compute the K K covariance matrix of X:

1 X

Sx = = i

X n (Xi
i=1

X)(xi  X)” (15)

Using (13) and (5), i.e., the entries of each row ofU}
sum to zero, we obtain:

]_X1
X = = X
0 P, 1
1 . =1 Uiz
= 7e’t'<
el
i=1 Uik +1
0 1
0
- Bk (16)



Hence, the covariance:

Sx = —

I
\
X
X
\

et « (17)

is a diagonal form with entries e ' 2=n i

e ' «x+ =n. Therefore, the non null eigenvectors of the
combinatorial heat-kernel matrix correspond to the di-

rections of maximum variance P]. Moreover, using this
result in conjunction with ( 12) we obtain the following

proposition (see [L7] for an alternative proof):

Proposition 1.  The set of points X, corresponding to
the spectral embedding of the combinatorial heat-kernel
matrix, and de ned by (13) admits the eigenvectors of
H dened by (7) as the axes of maximum variance.
The embedded representation is strictly bounded by an
ellipsoid whose center coincides with the origin of the
axes and with eccentricitiese ' 2;:::;e ' K+,

2.7. Alignment of Two Different Embeddings

Consider the task of aligning the embedded repre-
sentations of two di erent shapes. The covariance ma-
trix of an embedding, that we just characterized, pro-
vides a principled framework to align two distributions
of points drawn from two di erent manifolds. Indeed,
one prerequisite to align two distributions of points is
to ensure that they occupy the same volume in space.
This can be easily done using the covariance matrix.
Let Sx and Sx o be the covariance matrices of two dif-
ferent embedding X and X ° with respectively n and
n® points. The volume of X can be computed using
the determinant of the covariance matrix. Hence, the
following constraint:

det(Sx ) = det( Sx o) (18)

Using (17) one can easily derive the following relation-
ship:
t°Trace( )= tTrace( )+ Klogn=n®  (19)
This allows to choose the parametert® associated
with X% as a function of the free parametert. Notice
that if the two sets of points have very di erent cardi-

nalities, namely if n  n% t® may take negative values.
In practice one should choosé such that t°> 0.

2.8. Unit Hyper-Sphere Normalization

One disadvantage of the standard embeddings using
di usion is that, when t tends to in nity, the embed-
ded representation collapses to 0. In order to avoid the
collapsing on (0:::0) we can "re-normalize" the em-
bedding such that the embedded vertex coordinates lie
on a unit sphere of dimensionK , which yields:

Xi

kXi k

In more detail, the k-th coordinate of ®; writes as:

B = (20)

(21)

The di usion distance is equivalent to the geodesic dis-
tance on a unit sphere:
h(i;j ;t)

ds(i;j ;t) = arccos h( 1 D2h( | D2

(22)

2.9. Scale-Space Detection of Features Points

Here we present a method that uses di usion em-
beddings to obtain a scale-space representation of 3D
shapes in order to detect salient feature points. We
detect salient features on shapes by nding the local
extrema of (14) using the two ring neighborhood at
each vertex. When analyzing two shapes, we choose a
time scalet and computet®using the method proposed
in section 2.7.

In gure 1 rst row, we show the modulo of (14)
computed at di erent time scales. We use 130 eigen-
values and corresponding eigenvectors of the combina-
torial Laplacian to approximate the heat kernel at each
vertex. In the second row of gure 1, we show the de-
tected local extrema of the modulo of (L4) (with the
colored spheres where red corresponds to maxima and
blue corresponds to minima) as the function oft. At
small value oft we capture local geometry and hence
large number of extrema while at large value oft we
capture global geometry and hence small number of
extrema. We observe that the detection of maxima is
more stable in case of real meshes and so we propose
to use these maxima to select a subset of points onto
the given shape. For two di erent shapes with embed-
ded representationX and X %, we detect two subsets of
pointsY X andY? X°O

3. Mutually Consistent Matches

In this section we address the problem of matching
two sets of points detected onto two di erent shapes in
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Figure 1. Modulo of (14) plotted over the shape ( rst row ) and corresponding local extrema (second row) for di erent
choice oft parameter. (Red and blue colors corresponds to higher and lower function values.

section 2.9. We formulate the point-to-point matching
problem in the framework of association-graph The
association-graph models the pairwise consistency of
all possible point-to-point matches between two set
of points [3]. Each node of the association-graph
represents a point-to-point match and every (positive
weighted) edge represents the mutual isometric consis-
tency between two point-to-point matches. Two mutu-
ally consistent graph nodes are strongly connected (i.e.
have high edge weights) if the corresponding points
onto the two shapes have similar spectral distances.

Thus, a set of mutually consistent point-to-point
matches can be obtained by nding a subset of strongly

Figure 2. Association graph structure: Each node represent

a point-to-point matching and every edge represents the

mutual consistency between two nodes measured as positive
weight. The edges with low score are depicted with dashed
line as opposed to the ones with high consistency score.

connected nodes of thassociation-graph This is an in-
stance of largest maximal clique problem which is aNP
hard problem. There are many algorithms that nd ap-
proximate solutions by enforcing di erent constraints.
In [17], a spectral relaxation and one-to-one matching
constraint were employed to nd such solution.

We propose to nd an approximate solution for the
point-to-point matching problem by iteratively search-
ing the graph node with the largest degree (i.e. a node
strongly connected to other nodes). This corresponds
to selecting a point-to-point match which is the most
consistent with the other matches. In each iteration,
after selecting a node, we eliminate all the other nodes
from our search space that violates one-to-one match-
ing constraint w.r.t. the selected node. In the end, ev-
ery node is either selected or eliminated and we obtain
a subset of mutually consistent point-to-point matches
as the set of selected nodes. It can be easily shown
that our algorithm is equivalent to nding a solution
similar to [17] but using the principal eigenvector cor-
responding to the largest eigenvalue (in this case 1)
of the normalized weighted adjacency matrix of the
association-graph Our method is e cient in the sense
that we do not require an eigen decomposition step.

3.1. Association Graph Construction

We nd point-to-point matching between two sets
of points Y and Y in section 2.9 For the simplic-
ity of notation, let's refer these subsets using indexes
and we can write : Y =
YO = :
will have a set of nodes ad (i;j 9g 8 2 Y and 8j°2
Y % Each node ;] 9 represents a point-to-point match
betweeni 2 Y andj®2 Y?©



Let p = (i;i9 and g = (j;j 9 be two association-
graph nodes. LetW = fwpg be the weighted adja-
cency matrix of the association-graphwherew,, be the
edge weight between node and g and wy, = 0. If the
two nodes violated the one-to-one matching constraint
(i.e. a single point on a shape matches to multiple
points on another shape), we set corresponding edge
weight to a very small positive value . For all the
other edges we compute a positive weightvi,q) de ned
strictly between 0 and 1. We call it mutual consistency
score between two nodes and this score is high (close to
1) when the spectral distance betweeri and j on the
rst shape is similar to the spectral distance between
i%and j ° on the second shape.

In order to compute the edge weights, we need to
compare two distance measures computed on di erent
shapes. We propose to align the two di erent shapes by
representing them with unit hyper-sphere normalized
embeddings (sectiorn2.8) and computing di erent time
scalest and t°for each of them (section2.7). The edge
weights are given by:

|
ds(izj ;1) ds(i%j%19) *

W = &P om0+ ds(i%i %1

(23)

whereds is computed by (22) and t and t° are obtained
by (19). The sum of distance term in the denominator
ensures that the score is not biased for the small dis-
tances and the parameter controls the sensitivity of
the consistency score.

Figure 2 shows the construction of association-
graph. We consider association-graph as a complete
graph but for the simplicity of visualization, we have
shown only the strong edges and some weak edges. A
subset of strongly connected nodes shown in the g-
ure represent mutually consistent set of point-to-point
matches that are weakly connected to the other nodes.

3.2. Mutually Consistent Matching Algorithm

Let D be the degree matrix of theassociation-graph
Then according to [28], the principal eigenvector of the
normalized weighted adjacency matrixD zWD z is
the vector z = Dz1, which implies z(p) = % for
each nodep. The vector z is the null space ofnormal-
ized Laplacian of the association-graph

Now, let's de ne a vector y as then 1 indicator
vector such thaty(p) = 1 if pis labeled as a consistent
point-to-point match and y(p) = 1 if p is labeled
as an inconsistent point-to-point match and y(p) = 0
otherwise. We initialize y with the zero vector. We
summarize our algorithm as follows:

1. Find p = argmax, z(l) while considering only
those nodes for whichy (I) = 0 (i.e. nd unlabeled
node with the largest degree).

2. Label p as a consistent point-to-point match by
setting y(p) = 1.

3. Sety(g) = 1 for all the g's that violate one-to-
one matching constraintw.r.t. the selected match

p.

4. If y has more zero elements then go to step 1 else
stop and return y.

However, our method does not perform well if the
association-graph does not have a single strongly con-
nected cluster. This can happen if the detected feature
points (i.e. extrema of 14) are uniformly distributed
on shapes causing similar consistency scores for all the
association-graph edges or due to existence of large
number of symmetry in two shapes.

4. Results

We show the point-to-point matching results ob-
tained with our algorithm on synthetic and real meshes.
We use the di usion embedding to perform scale-scale
detection of feature points on two shapes (sectior2.9).
We compute the unit hyper-sphere normalized embed-
ding representation (section2.8) for every shape using
the rst 130 eigenvalues and eigenvectors of the di u-
sion operator. We align two embeddings to nd appro-
priate time scale t and t° for each shape (see section
2.9), while matching two di erent shapes. We set pa-
rameter to 0:5 while computing the association-graph
edge weights £3) for all the experiments.

We perform two sets of experiments. In the rst ex-
periment we show the sensitivity of our method to the
choice of time scale parameter. Figure3 shows match-
ing results for two synthetic horse meshes (approxi-
mately 19,000 vertices) and two real human meshes
(approximately 1,500 vertices). In gure 3(a-c) we
chooset = t% = 200 for the feature point detection.
While in gure 3(d-f) we chooset = 30 and t%is almost
same ast the two shapes have similar sampling and
almost the same number of vertices. Next we choose
several dierent scales for matching. In case of syn-
thetic meshes, where two shapes are strictly isometric
(same eigenvalues)t and t° are same (see gure 3(a-
c)). For the second row of gure 3, we get almost the
same time scale and t°as the two shapes have similar
size and sampling.
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Figure 3. Mutually consistent matches obtained at di erent time scales.

(€) tma = 200; t9,, =201:5

(f) tmar = 2000; t9,, = 2005:1

Feature points were detected at xed time scale for

each row. Heretna and td, is the time scale at which feature points were matched.

Results in gure 3(c,f) can be understood by the fact
that at a very large time scale features points have a
similar representation, so the association-graphis not
able to capture the correct mutual consistency between
matching pairs, resulting in incorrect matching. In case
of smaller scales, such as = 0 in gure 3(d) the dif-
fusion embedding reduces to Laplacian embedding. In
this case di usion distance between two feature points
detected at large scale is dominated by local surface
noise (in real meshes) instead of global shape structure,
and is not useful to get correct consistency score. This
leads to wrong matching results. However, at small
scale our method performs well if the two shape are
strictly isometric (see gure 3(a)).

In the second experiment we show matching results
between two shapes with di erent sampling and size.
In gure 4(a,b), we show matching result on two di er-
ent real meshes with approximately 16000 and 1 500
vertices. As we can see, we obtain signi cantly di er-
ent time scales for the two shapes. In gure4(c), we
show robustness of our method to signi cant topologi-
cal noise in the real mesh.

5. Conclusion

We presented discussion on shape representation
based on discrete di usion operator, a normalized em-
bedding and a practical way to nd appropriate times
scale for two di erent shapes with their application for

sparse shape registration. As part of future work it will
be interesting to combine matching obtained at multi-
ple scales. The problem of intrinsic shape symmetry
can be addressed by including complementary infor-
mation like texture and other extrinsic features while
de ning the association-graph
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