
HAL Id: inria-00549539
https://inria.hal.science/inria-00549539

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two Linear Time Union-Find Strategies for Image
Processing

Christophe Fiorio, Jens Gustedt

To cite this version:
Christophe Fiorio, Jens Gustedt. Two Linear Time Union-Find Strategies for Image Processing.
Theoretical Computer Science, 1996, 154 (2), pp.165-181. �10.1016/0304-3975(94)00262-2�. �inria-
00549539�

https://inria.hal.science/inria-00549539
https://hal.archives-ouvertes.fr

ELSEVIER Theoretical Computer Science 154 (1996) 165S181

Theoretical
Computer Science

Two linear time Union-Find strategies for image processing

Christophe Fiorio”**, Jens Gustedtb, ’
’ LIRMM, UMR 9928 Universite Montpellier Il/CNRS, 161 rue Ada, 34392 Montpellier Cedex 5, France

b Technische Universität Berlin, Sekr. MA 6-1, Strasse des 17. Juni 136, D-l0623 Berlin, German>>

Received June 1994; revised October 1994
Communicated by M. Nivat

Abstract

We consider Union-Find as an appropriate data structure to obtain two linear time
algorithms for the Segmentation of images. The linearity is obtained by restricting the Order in
which Union’s are performed. For one algorithm the complexity bound is proven by amortizing
the Find operations. For the other we use periodic updates to keep the relevant part of our
Union-Find-tree of constant height. Both algorithms are generalized and lead to new linear
strategies for Union-Find that are neither covered by the algorithm of Gabow and Tarjan
(1984) nor by the one of Dillencourt et al. (1992).

1. Introduction and overview

An important Problem in image processing is to Capture the essential features of
a Scene. One way to do that is to extract (hopefully) significant regions from the image.
The technique for extraction used in this Paper is region growing first described in
[131. It consists of starting with the smallest regions (i.e. Pixels or Points of the image)
and merging them until they are considered to be optimal. The merging criterion is
some oracle that should guarantee the significance of the newly created region. The
specification of such oracles is not the subject of this Paper - for practical purposes we
have Chosen some classical threshold function.

As has already been observed by Dillencourt et al. [3], region growing as defined
above leads naturally to the disjoint set union problem, Union-Find for short.
Union-Find in general is not known to have a linear time Solution. The best
complexity known has been first obtained by an algorithm of Tarjan, see [15], that
has been shown to perform in O(cr(n, m)m) where a is a very slowly growing function

* Corresponding author. Email: fiorio@lirmm.fr.
’ Supported by a postdoctoral grant of the Graduiertenkolleg Algorithmische Diskrete Mathematik. Part
of this work was done during a visit to the LIRMM of the second author that was funded by the French
government. Email: gustedt@math.tu-berlin.de.

0304-3975/96/%09.50 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00262-2

166 C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) ?65-181

and n < m are the amounts of calls to a Union and Find Operation, respectively. In
[16,17,2] it has been proven that this bound is sharp for some classes of pointer
machines and recently this has been generalized to general pointer machines by La
Poutre in CS]. Whether or not an algorithm with better complexity on a random
access machine might exist is not known until now. If the sequence of Union and Find
operations is restricted there are algorithms due to Gabow and Tarjan [4] and
Dillencourt et al. [3] that perform in linear time.

Both types of algorithms are not well suited for our purposes: the first - apart from
being nonlinear - has tremendous constants of proportionality in the known bound
on the complexity; the algorithms of the second type are either too restrictive or do
not leave room for generalizations.

In this Paper we consider two different variants of Union-Find that solve region
growing and then give generalizations of them. For both we give an algorithm that
performs in linear time. They use classical scanning strategies as used for example in [121
for a preprocessing Step. The first algorithm scans the image line by line. For each line, we
examine each Pixel and we see if we tan merge it with the two regions to the left and
above. After we have processed a particular line we rescan it in a post-process to maintain
our data structures accordingly. The second algorithm, in its recursive variant, assumes
that the imageeis an (fi x x)- q n s uare and proceeds by dividing it into 4 subsquares of
size Jn/2 x Jn/2. After coming up from recursion the regions in the 4 subsquares are
merged together along the common boundary; i.e. for every pair of neighboring Pixels
that belong to different subsquares we perform a Union on the corresponding regions
if our decision oracle tells us so. This algorithm leads easily to a parallelization.

The linear time complexity of the first algorithm is due to the fact that we are able to
keep the tree of our data structure that is constructed for each region flat. The linearity
of the second is proven by amortizing the Find Operation. From both it is possible to
deduce a generic scheme of algorithms that solve restricted Union-Find’s in linear
time. The first generalizes to a so-called IntervalUnionFind where the sets that are
allowed for Union and Find operations form antichains of an interval Order. This
scheme is applied to solve a similar Problem on planar graphs in linear time, too. The
second generalizes to EquilibratedUnionFind where certain restrictions on the size of
the sets obtained are required. It leads to linear algorithms for data of higher
dimensionality, e.g. spatial bitmaps.

Both algorithms have been implemented for two-dimensional bitmaps. The theoret-
ical efficiency translates very well into short running times; in fact we achieve practical
real time interpretation of the image on today’s workstation, and as shown in Fig. 2 the
results are well suitable even with the simple oracle Chosen.

2. Basics of Union-Find

The general Union-Find Problem, or more precisely the disjoint set Union Problem,
tan be formulated as follows. Given is a set S, the groundset, of elements, Pixels in our

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 167

application, that form one-element subsets at the beginning. The goal is to perform
arbitrary sequences of Union and Find operations in the best time complexity
possible. Here a Union works on two disjoint subsets fusing them into one; a Find
identifies the subset a certain element belongs to. For an introduction and overview to
Union-Find see e.g. [lO]; for recent results see [9].

In the following we will only assume a straightforward implementation of
Union-Find that could easily be implemented on an arbitrary pointer machine. In
fact there exist Versions of Union-Find that are much more sophisticated, see e.g. [151
or [7], that perform in time O(a(n, m)m) and are thus optimal on pointer machines for
the general case where no restrictions to the Union? or Find3 apply. There is also
a Version that performs in linear time on a special case, first shown to work well when
implemented on a random access machine, see [4], and then generalized to pointer
machines in [9].

For these algorithms it is necessary to determine a tree of the elements in advance
such that all subsets form connected subtrees of that tree at any time of the algorithm.
For the application considered here this is not adequate because e.g. the number of
pairs of elements that may form two-element subsets would only be IZ - 1 where it
should be about 4n when considering all neighboring pairs of the matrix.

For our purposes it is sufficient that every set is represented by a rooted tree of the
members, the root being the unique representative of the set. This tan e.g. be done by
giving each element a pointer to another element, the parent in the tree. Find identifies
the root of the set by an iterative pointer search. The Union of two sets is done by
linking the root of one set to the root of the other one. The choice of which element to
link and of which to remain a root will be specified differently for each algorithm.

The tost of both operations, Union and Find, is dominated by the number of
pointer jumps of a Find Operation. We say that an element has direct access to its
region if it is linked directly to the root of the tree.

2.1. Flattening the Union-Find-tree

We give a simple refinement of the Find Operation that will be helpful for some
special cases; for an example see Fig. 1.

Algorithm 1. FindCompress(p)
(1) if isTop(p) then return p
(2) else return p. parent := FindCompress (p. parent)

We have
(2.1) After a cal1 FindCompress(p) all elements on the path from p to the root have

direct access to the root.
(2.2) FindCompress(p) performs with at most 1 pointer jumps where I is the length

of the path from p to the root.
Suppose now that we have an arbitrary subset S, of the groundset such that

168 C. Fiorio. J. Gustedt / Theoretical Computer Science 154 (1996) 165-181

root 0 44 0

P

Fig. 1. Updating the representation of a Set.

(2.3) every RES,, has direct access to the root of its corresponding tree.
Suppose in addition that we perform some arbitrary Find and Union operations
exclusively on the set S,,. Clearly after several Union operations (2.3) might be
violated. But then we may perform FindCompress(p) for all ~~~~ which we denote by
Flatten(S,,) and we get:

(2.4) After Hatten&) all elements of SO have direct access to their region.
(2.5) Flatten(S,) performs with at most 2(Sol pointer jumps.

3. Image Segmentation by merging regions

A major Problem in image processing and particularly in Scene analysis is to
describe information compactly and to Capture the essential feature of a Scene. An
approach is Segmentation, e.g. dividing the image into regions (see Fig. 2). Several
techniques for image Segmentation have been described, see e.g. [S] for an overview.
In this Paper we are concerned with region growing. This approach searches for areas
of the image presenting some homogeneous features.

In Fig. 2 we show two examples of segmented images each produced with the
algorithms presented here. The images on the left-hand side show the original images,
the middle ones show the borders of the regions obtained and the left ones show the
images that result if we replace the original grey tone of each individual Pixel with the
average value of its particular region.

There are two dual approaches to region Segmentation: the Split and the merge, see
e.g. [14]. In this Paper we are working with the merge technique. It consists of starting
with the smallest regions (i.e. Pixels or Points of the image) and merging them until
they are optimal. This scheme is also called Region Growing.

The result and the complexity of this grouping depends much on the Order in which
the merging operations are done. Some criteria we want all grouping strategies to
fulfill are the following:

(3.1) Every pair of neighboring Pixels should only be considered at least once but at
most a bounded number of times.

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 169

Fig. 2. Examples of Segmentation.

This is to guarantee a linear number of questions to our grouping criteria and to
ensure that no artificial borders between objects remain.

(3.2) The size of the regions should be equilibrated during the algorithm.
This is to avoid that certain regions dominate artificially before others had a Chance to
constitute themselves. This requirement excludes some simple graph searching tech-
niques as e.g. depth-first search.

A commonly used representation is the region adjacency graph (RAG), proposed by
Zucker [19]. This representation associates a vertex to each region and links two
vertices with an edge if the two corresponding regions are adjacent. So region growing
is the process of joining neighboring vertices into one, subject to some conditions as
the predicate Oracle. For practical purposes this has the disadvantage that a relatively
complicated data structure for the RAG must be maintained. This in general leads to
algorithms with nonlinear complexity as in [12]. Our approach is a little different. We
consider a region as a set of Pixels and instead of grouping two vertices into one, we
group them into a set of vertices. Thus we are led to the Union-Find Problem.

3.1. Incorporating the oracles

For the Overall complexity of a Segmentation algorithm that uses Union-Find it
will not only be important to perform Unions and Find’s efficiently but also to
guarantee that the oracle used will increase the complexity only by some factor. For

170 C. Fiorio, J. Gustedt / Tkeoretical Computer Science 154 (1996) 165-181

the simple oracles that we used this is easily achieved; they are threshold functions on
(1) the absolute differente between the average colors,2
(2) the differente between the minimum and maximum color of a potentially

created region,
(3) the variance of the color values of a potentially created region,

and any combinations of these. Such oracles tan be calculated in constant time per
cal1 if at every Union Operation the minima, maxima, sums of the color values and
sums of the squares of the color values are maintained properly.

4. A line by line strategy

In the following we will describe an algorithm that we denote ScanLine. A similar
algorithm for a related Problem, namely finding the connected components in a
black and white image, also running in linear time has been developed by Dillencourt
et al. [3]. Besides that it uses a quiet involved data structure for Union-Find, it
does not lead to the same generalization as ours, namely planar graphs, as will be
given below.

4.1. Scanning a raster image

ScanLine scans the image line by line and applies Union-Find on the encountered
regions. For the following let us assume that the image is a w x 1 rectangle.

Algorithm 2. ScanLine
Input: A bitmap bm of size w x 1

(1) special treatment of the Jirst line
(2) for i:= 2 to 1 do begin

(3) special treatment of the jirst Pixel of line i
(4) for j:= 2 to w do begin

(5) lef := FindCompress(bm [i, j - 11);
(6) up:= FindCompress(bm[i - l,j]);
(7) this := FindCompress(bm[i, j]);
(8) if Oracle(l& this) then this:= Union(lef, this);
(9) if Oracle(up, this) then Union(up, this);

(10) end

(11) Flatten(line i)
(12) end

2All definitions given here are formulated for grey-scaled images. It is easy to see that they tan be
generalized to real color images when considering e.g. each color plane separately.

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 171

current line
--m-m___

previous line
----__-___

Fig. 3.

At the beginning all the regions consist of exactly one Pixel. Initially we process on the
first line, then line by line regarding the previous one (see Fig. 3). For each line, we
examine each Pixel and see if we tan merge it with the two regions corresponding to
the Pixels to the left and above. Clearly in the first line we only deal with the Pixel to
the left. After we have processed a particular line we rescan it and make a cal1 to
Flatten for the set of Pixels of this line.

To guarantee the Overall complexity, Union links the region that occurred first on
the line to the later one. This tan easily be realized by a counter that is incremented for
each new region. Since Union is done by linking one region to the root of the other
we may assume that Union is performed in constant time. As a result we have
Theorem 4.1.

Theorem 4.1. Algorithm ScanLine touches every pair of neighboring Pixels and per-
forms in linear time.

It is easy to see that every pair of Pixels is touched. To prove the complexity we need
Proposition 4.2 and Lemma 4.3.

Proposition 4.2. At the beginning of the process on a line, each Pixel of the previous line
has direct access to its region.

Proof. This is guaranteed by invariant (2.4) of Flatten. 0

With Proposition 4.2 we are able to prove the next lemma:

Lemma 4.3. For each FindCompress realized when processing a line we haue to do at
most 4 pointer jumps.

Proof. At the beginning all the Pixels of the line and the previous one have direct
access to their regions. When one of the regions consists simply of one Pixel and
a Union is necessary, we only have to add the Pixel to the region. Things get more
complicated when we need to realize the Union of two regions each including more
than one Pixel since the depth of the tree increases.

172 C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181

Fig. 4. The two possibilities to have 3 links.

Now we Show that we will never meet a Pixel which needs more than one extra
pointer jump to find the root of its region. Therefore let us suppose that we just
merged two regions, denote them Boss and Clerk. If we have to do a Union between
this newly formed region and another one, Candidate say, we will risk creating a chain
of length 3 in the tree. As we see in Fig. 4, there are only two possibilities3 to do that:
either linking Candidate directly to Clerk or linking the Boss directly to Candidate.

The first case is impossible. Indeed, before doing a Union we always do a FindCom-
press and perform a Union Operation only on the root of the regions. Since these are
Boss and Candidate, Clerk will never be involved directly in such a Union. In the
second case all Pixels which are linked directly to Clerk need 3 pointer jumps to
retrieve the root of their region, i.e. Candidate. But we will never meet such Pixels when
continuing on this particular line: since Boss was linked to Candidate, the later
occurred first on the line. Furthermore Candidate is connected, so it is surrounding
Boss and Clerk, see Fig. 5. Therefore we will never meet any Pixel linked directly to the
other two regions. So with invariant (2.2) we have at most 4 pointer jumps for each
FindCompress. Cl

Proof of Theorem 4.1. We will assume that the tost of the algorithm is dominated by
the number of pointer jumps. First we scan the line and perform 2 FindCompress’s for
each Pixel: one for the Pixel above and one for the Pixel to the left. Moreover we
perform at most 2 Unions, but these are realized in constant time and do not use
pointer jumps.

We will now compute the total number of pointer jumps. Flatten is repeated on
each line, so with invariant (2.5) we tan compute its total tost: 2. w. 1 = 2n. For each
Pixel we make at most 2 pointer jumps for each of the two FindCompress’s, so in total
4. w. 1 = 4n. Overall the number of pointer jumps is 6~. 0

3 Note that you tan reverse Boss and Clerk in Fig. 4 without changing the argumentation

C. Fiorio. J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 173

Fig. 5.

4.2. A generalization to planar graphs

In our algorithm it was important that we did not increase the distance of elements
still to come on a line from their regions, and that we were able to update the whole
line in a second run via a cal1 to Flatten. A generic algorithm IntervalUnionFind that
captures these features is

(4.1) for i:= 1 to 1 dO Genera& Ei; Flatten X(Ei); Process Ei.
Here every Ei is a set of pairs of elements subject to a possible Union and X(Ei)
denotes the set of elements involved in these pairs. We require

(4.2) X(Ei) n X(Ej) C. X(E,) for all i < k < j and
(4.3) Process Ei performs Union and Find operations exclusively on the

Union-Find sets of the elements in X(Ei).
Observe that (4.2) means that the sets X(Ei) a particular element belongs to appear
consecutively. Thus we may associate an interval to each element that represents the
period in our algorithm during which we have the right to access it. Invariants (2.4)
and (2.5) then translate into:

(4.4) At the beginning of Process Ei in IntervalUnionFind each element of X(Ei)
has direct access to the root of its region.

(4.5) The running time for all calls to Flatten in IntervalUnionFind is
O(Cf= 1 IX(Ei)l).

Now suppose we have a planar graph G = (V, E) that is equipped with some
data on the vertices and where we want to perform a similar task as Segmentation,
i.e. where we want to cluster vertices into connected regions according to some

174 C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181

Fig. 6.

homogeneity criterion on the data. We assume that the graph is given together with
a combinatorial embedding and has a designated outer face. We may then find
a shelling V,, . . . , yS of the graph as follows. Let V0 be some consecutive part of the
outer face and V, = NG(Vp- l)\Uq:i 5, i.e. the sets of equal distance to VO. We may
assume that the VP are given as lists in the natura1 Order prescribed by the embedding.

Algorithm 3. PlanarShelling
Input: Planar Graph G = (V, E), shelling V,, . . . , K

(1) for p := 1 to begin
(2) for all UE V, do Process all edges joining u and u$‘zi 5
(3) Process internal edges of VP

(4) end

Here Phase (2) connects the vertices of V, to U;zi I$ in the natura1 Order. This part
is a direct generalization of ScanLine to this Situation and does not need further
explanation. Now in Phase (3) we have to process all internal edges of VP, i.e. that have
both endpoints in V,. Let E, denote the set of such internal edges with one endpoint
being vertex DE V,, see Fig. 6. We may assume that all vertices of V, lie on a line, all
vertices yet processed lie above that line, and all vertices still to come he below.
Observe also that there are no internal edges crossing that line since everybody is
connected to the part above the line, so V, is outerplanar.

Now let El be the lower cover of the set of internal edges, i.e. that are visible from
below. Remove El and obtain a new lower cover E2. Repeat this procedure until no
internal edges remain and collect the edges in sets El, . . . , El and let V(Ei) be the set of
vertices being endpoint of an edge in Ei.

In the figure the numbers at the edges indicate the set Ei they belong to. The Ei have
the following properties:

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 175

(4.6) Every Ei is a collection of paths.
(4.7) For every DE V, there is an interval [1,, r,] s.t. E, n Ei # 0 o 1, < i < rv.

Clearly the interval in (4.7) may also be empty. Now we may process the internal edges
by starting with EI and proceeding with EI_ 1 and so on.

Algorithm 4. ProcessInternalEdges
Input: Sets E,, EL of edges that fulfill (4.6) and (4.7).

(1) for i := 1 downto 1 do hegin
(2) Flatten(V(Ei))
(3) scan Ei from left to right
(4) End

Theorem 4.4. PlanarShelling runs in linear time.

Proof. With what is said above it is clear that all phases (2) of PlanarShelling together
run in linear time.

Esch particular ProcessInternalEdges fulfills the requirements for IntervalUnion-
Find and, moreover, the same topological argument as above ensures that we do not
have to follow long chains of references to find a root of a particular region. So
provided we are able to generate the sets Ei of edges in linear time each such Phase
also runs in linear time. But this is easy to achieve, since the internal edges of V, may
be seen as a System of parentheses and the levels edges belong to tan be found by
a scan from left to right. 0

5. A divide and tonquer strategy

Now we are going to present an algorithm that will also perform in linear time, but
has the additional feature that it allows a straightforward parallelization. To get
a good upper bound of its complexity it will be necessary to amortize the Find
Operation over the complete run of the algorithm; the number of pointer jumps for
a particular Find might well be logarithmic and not constant any more. To achieve
logarithmic time for every Find we use a variant of the Union Operation, the so-called
weighted Union rule, that always links the smaller region to the larger one. Because of
that choice we have the following invariant, see e.g. [lO], that we will need later:

(5.1) Every Find Operation tan be done with logs pointer jumps
where s is the cardinality of the set in question.

5.1. The recursive algorithm

For the following algorithm we assume that the image is an (& x $)-Square,
& a power of 2, and proceed recursively by dividing it into 4 subsquares of size
$$2 x &/2. After coming up from recursion the regions in the 4 subsquares are

176 C. Fiorio, J. Gustedt / Theoretieal Computer Science 154 (1996) 165-181

<!>

SW <(, SE

(1)
I

Fig. 7.

merged together along the common boundary; i.e. for every pair of neighboring Pixels
that belong to different subsquares we perform a Union on the corresponding regions
if our oracle tells us so.

For the following formulation of the algorithm we assume that we have easy access
to the four subsquares of our bitmap (See Fig. 7). If the bitmap is called bm we denote
by bm[NW] the northwestern submatrix, by bm[NE] the northeastern, etc.

Algorithm 5. MergeSquares
Input: An integer k and a bitmap bm of size 2k x 2k

(1) if k = 0 theo return;
(2) h- := 2k-’ - 1; h+ := 2k-1;
(3) for DIR := NW to SE do MergeSquares(bm[DZR], k - 1);
(4) for i:= 0 to 2k do begin

(5) lef := Find(bm[i, h-1); right:= Find(bm[i, h+]);
(6) if Oracle(lef, right) then Union(left, right);
(7) end
(8) for i:= 0 to 2k do begin

(9) up:= Find(bm[K, i]); down:= Find(bm[h+, i]);
(10) if Oracle(up, down) then Union(up, down);
(11) end

Theorem 5.1. MergeSquares touches all neighboring pairs of pixels of the bitmap and
performs in total in linear time.

Proof. It is easy to see that MergeSquares visits all neighboring pairs exactly once.
For the complexity let us analyze a cal1 to MergeSquares for the size of the Square
being 2k x 2k. We have 4 recursive calls and 2 x 2k = 2k+ ’ possible merging operations.

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 111

_$J__@-_@J--_
_&__&_fi$--_
&-&__&J:--_

I I I
I I I

I I I

v 9 9
Fig. 8.

We will assume that the tost of such a merging Operation is dominated by the length
of the pointer jumps to perform when looking for the roots of the corresponding sets
via two Find’s.

The regions that might be merged together have a size bounded by 2k x 2k. So by
(5.1) we know that each such merging Operation needs at most 2 log 22k = 4k pointer
jumps. So in total we perform with at most 8k2k pointer jumps.

If we fix k for a moment, this is done n/(22k) times for subsquares of size 2k x 2k. So
for all such subsquares we need at most

(5.2) 8k2kn/(22k) = 8(k/2k)n

pointer jumps. In total all pointer jumps are now bounded by

10gJ#

(5.3) kg, 8(k/2k)n < 8n f k+jk.
k=l

For - 1 < x < 1 we have the well-known identity

(5.4) & = $i kXk.

This tan e.g. easily be seen when expanding the function x/(l - x)~ in a Taylor series
at 0. Thus the right-hand side of (5.3) evaluates to 16n which is linear in the size n of
our bitmap. 0

5.2. An iterative formulation

If we look at all merging operations that are done on a specific recursion level 1 we
see a characteristic Pattern (see Fig. 8). That is if we cover the whole bitmap with all
2’ x 2’ subsquares we see that the pairs of Pixels that are possibly subject to a Union

.autfi (d/,,z)o uf J x J az~s jo dvuwq v uo sunr y JVZ/I yms srossasord
rZ > d qpM Jqvxd v uo @ua!3@ paluau4aldut~ aq uv3 .sa.mnbSaB.h9~ ‘CS uoy!sodold

rep&n?l3aJ drt?qyq.n? uo sq.10~ Jeq$ urq$!.IoZ@ UI? u!s$qo put? @Agt?.IaJ~ paaDold
Lmu ah4 1 = 1 laaal ql!M Oug~e~s Aq $33~ UI .JapJo ke.wqle UB u! suorufl asaqj Ilt3
moJlad Atm aM OS ~,z/~‘**~‘o =A .IOJ r_,~ +,z.A =[put! u‘*.*‘r =i aJaqM
((1 + [‘1) ‘([‘l)) UIJOJ aql JO pm 24‘““~ = [put! ,z/uf‘*.* ‘0 = .i JoJ r_Iz +]z..i =!
alaqm (([‘I + F) ‘(j-Q)) ~IJOJ aql JO sJ!ed .IOJ a.m 1 IaAal uo op 01 suorun 11” laql
aas 01 ha SF $f ku.un~o~ pue SMOI DgDads awos 61~0 u! punoJ a.n? 1 IaAaI uo uogmado

5.4. A

For
would

C. Fiorio. J. Gustedt / Theoretical Computer Science 154 (1996) 165-181

generalization to higher dimensions

179

MergeSquares it was important that we had the guarantee that the regions
not grow too fast, and that the number of Find% to perform was small

compared to the possible size of the regions. This is best generalized by introducing
a logarithmic number of phases. If each Phase i guarantees

(1) no subset is larger than O(2’) and
(2) no Phase makes more than 0(210g”-i) Find operations,

then the complexity is bounded by

(

logn

0.5) 0 C log2i.210gn-t

i=l

)=O(xi.2pi.n)=OtnJ.

We cal1 such a strategy EquilibratedUnionFind. One application of Equilibrated-
UnionFind could be the case where the elements are considered to be vertices of
a planar graph G of bounded maximum degree. Then balanced separator techniques
could be used to obtain again a linear time Union-Find strategy. We do not go into
further details since this Problem is already covered by PlanarShelling. Another more
important application is to bitmaps of higher dimensions, e.g. spatial data. If we
denote the natura1 generalization of MergeSquares to dimension d by MergeOctants,
we easily get

Theorem 5.3. Let d be some$xed dimension, then MergeOctants, runs in linear time.

6. Notes on implementation

Both algorithms have been implemented straightforwardly in C++. They Show
suprisingly good results both in the quality of the Segmentation as well as in time
Performance. Compiled with g ++, the C++ Compiler of the GNU project, we achieve
a running time of about 12 l.~s per Pixel. For example, for a small image with 256 x 256
Pixels like the boat in Fig. 2 we had a processing time of 0.8 s. Certainly these times
will improve when the implementation becomes more sophisticated or if the algo-
rithms are realized on an appropriate hardware.

Even more surprising for the authors than the running time has been the quality of
the Segmentation. In Order to reduce the data to be considered both algorithms
originally were thought to form a preprocessing Step to some other treatment. But
seeing that the output is already competitive we believe now that they tan be
immediately followed by an interpretation step that tries e.g. to group regions into
objects. One indication that our approach reaches the limits of what tan be achieved
with Segmentation by itself is that iterating the algorithms does not Change the picture
very much.

For example, if we apply the divide and tonquer algorithm on the boat in Fig. 2
several times we obtain the regions shown in Fig. 10. On the left we see what is given

180 C. Fiorio. J. Gustedt / Theoretical Computer Science 154 (1996) 165-181

Fig. 10. Three iterations of the Segmentation algorithm.

by the first iteration (3223 regions), in the middle the second (2622 regions) and on the
right the fourth (2574 regions). Then in any further iteration no additional improve-
ment is made and the Situation stabilizes with that number of regions. So the most
important reduction of the complexity from 65 536 regions (= number of Pixels) to
3223 is already done in the first iteration.

References

Cl1

Pl

c31

c41

c51

Cs1

c71
Pl

c91

Cl01
Cl11
Cl21

Cl31

Cl41

Cl51

A. Aggarwal et al., eds., Proc. Ist Arm. ACM-SIAM Symp. on Discrete Algorithms (SIAM, Philadel-
phia, PA, 1990).
L. Banachowski, A complement to Tarjan’s result about the lower bound on the complexity of the set
Union Problem, Irrform. Process. Lett. 11 (1980) 59-65.
M.B. Dillencourt, H. Samet and M. Tamminen, A general approach to connected-component labeling
for arbitrary image representations, .r. ACM 39 (1992) 253-280, Corr. pp. 985-986.
H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set Union, J.
Comput. System Sei. 30 (1984) 209-221.
R.M. Haralick and L.G. Shapiro, Survey: image Segmentation techniques, Comput. Vision Graphits
Image Process. 29 (1985) 100-132.
J.A. La Poutre, Lower bounds for the Union-find and the Split-find Problem on pointer machines,
RUU-CS-89-21, 1989.
J.A. La Poutre, New techniques for the Union-find Problem, RUU-CS-89-19, 1989.
J.A. La Poutre, New techniques for the Union-find Problem, [l] (1990) 54-63, extended abstract of

c71.
J.A. La Poutre, Dynamit graph algorithms and data structures, Ph.D. Thesis, Rijksuniversiteit te
Utrecht, 1991.
K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching (Springer, Berlin, 1984).
K. Mehlhorn and A. Tsakahdis, Data structures, in [18], Ch. 6, pp. 301-314.
0. Monga and B. Wrobel-Dautcourt, Segmentation d’images: vers une methodologie, Traitement du
Signal 4 (1987) 169-193.
J.L. Muerle and D.C. Allen, Experimental evaluation of techniques for automatic Segmentation of
objects in a complex Scene, in: G.C. Cheng et al., eds., Pictorial Pattern Recognition (Thompson,
Washington, 1968) 3-13.
M. Popovic, F. Chantemargue, R. Canals and P. Bonton, Several approaches to implement the
merging step of the Split and merge region Segmentation, in: F.H. Post and W. Barth, eds., EURO-
GRAPHICS’91 (Elsevier, Amsterdam, 1991) 399-412.
R.E. Tarjan, Efficiency of a good but not linear set Union algorithm J. ACM 22 (1975) 215-225.

C. Fiorio, J. Gustedt / Theoretical Computer Science 154 (1996) 165-181 181

[16] R.E. Tarjan, A class of algorithms which require non-linear time to maintain disjoint Sets, J. Comgut.
System Sei. 18 (1979) 110-127.

[17] R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms, J. ACM 31 (1984)
245-281.

[18] J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity
(Elsevier, Amsterdam, 1990).

[19] SW. Zucker, Survey: region growing: childhood and adolescence, Comput. Grnphics Image Process.
5 (1976) 382-399.

