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Abstract

When establishing and analyzing model-parameter dependent mixed formulations, it is
common to consider required ellipticity and inf-sup conditions for the continuous and discrete
problems. However, in the modeling of some important categories of problems, like in the
analysis of plates and shells, the ellipticity condition usually considered does not naturally
hold, and the inf-sup condition can only be stated in an abstract form and can hardly
be evaluated analytically. In this paper we present a new and practical ellipticity condition
which together with the inf-sup condition guarantees that (i) when the model parameter goes
to zero, the limit problem solution is uniformly approached, and (ii) an optimal finite element
discretization has been established (for the interpolations used). In practice, a numerical
test might be performed to see whether the proposed ellipticity condition is satisfied.

Keywords: Mixed method, coercivity, inf-sup, small parameter dependence, finite element

1 Introduction

For the modeling and numerical solution of various problems in engineering and the sciences,
like in the analysis of (almost) incompressible solids, fluids, thin structures, electro-magnetic
effects, and multiphysics phenomena, it is most effective to use mixed formulations. In these
analyses, it is natural and frequently necessary to use two (or even more) fields to formulate the
governing equations. Indeed, optimal finite element discretizations can mostly only be obtained
if mixed formulations are used [1, 2, 3, 4, 5, 6].

In this paper we consider two-field mixed problems in which a small physical parameter is
present, like frequently encountered in the analysis of (almost) incompressible solids and fluids,
and in the analysis of beams, plates and shells, see [3, 2, 4, 1]. The conditions to be satisfied
in the modeling of the continuous and discrete problems are the associated ellipticity and inf-
sup conditions. However, for important categories of problems, and notably the analysis of
plates and shells, the ellipticity condition that is usually considered does not naturally hold.
Furthermore, the inf-sup condition can only be stated in abstract form and can hardly be
evaluated analytically. Numerical tests have therefore been proposed [7, 8, 9].

In the cases when the ellipticity condition does not naturally hold, and also in other cases, the
approach is frequently to use a stabilization technique, and concentrate on the inf-sup condition
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to be satisfied. However, in practice, it is important that the relevant ellipticity condition not
be violated without stabilization constants.

The importance of satisfying the ellipticity condition is illustrated in ref. [2, page 474]
with an example. The lowest frequencies of a cantilever bracket that are calculated when the
ellipticity condition is not satisfied do not include spurious zero frequencies but – actually worse
– non-zero spurious (or ghost) frequencies. In a dynamic step-by-step solution the mode shapes
corresponding to these non-zero frequencies would capture energy in a non-physical manner.
This kind of error is difficult to identify in an actual analysis.

These ghost frequencies may in general also be present when stabilization techniques are
used, but then usually correspond to higher frequencies. Clearly, such frequencies and mode
shapes should best not be present in the finite element model. The key therefore is to satisfy
the ellipticity condition directly in a natural manner and without any stabilization technique
– like in the displacement-based formulations (using full numerical integration [2]).

Of course, before formulating a finite element discretization, it is necessary to establish
the formulation of the continuous problem with the appropriate spaces, ellipticity and inf-sup
conditions. In the case of model-parameter dependent problems, it is important to identify
the “best” ellipticity condition to practically work with and show that, when the model pa-
rameter approaches zero, the solutions converge to the solutions of the limit problem (the
model-parameter is zero) . Thereafter, we can discretize the continuous problem with appropri-
ate finite element spaces and identify the appropriate and corresponding ellipticity condition,
which together with the relevant inf-sup condition assures that the finite element discretization
is optimal.

While very important results regarding ellipticity and inf-sup conditions have been pub-
lished, the results so far given – see specifically ref. [3] – are not giving the “best” practical
ellipticity condition to work with.

Our objective in this paper is to propose an ellipticity condition that is natural and sharp
– that is, cannot be improved upon – for the convergence of continuous parameter-dependent
problems and the uniform convergence of associated finite element procedures. We show that
this new ellipticity condition is applicable to quite general parameter-dependent problems, and
specifically those mentioned in the paper, and can be tested for in practice. In the next sections
we first consider the generic continuous problem, then the associated discrete problems (typically
obtained using finite element methods), and thereafter we briefly comment on the numerical
evaluation, in practice, of the developed coercivity condition.

Throughout the paper we use the notation of refs. [4, 5].

2 Continuous formulation

In this paper, we are concerned with mixed formulations of the type
Find (U ε,Σε) in V × T + such that{

A(U ε, V ) +B(V,Σε) = F (V ), ∀V ∈ V
B(U ε,Ξ)− ε2D(Σε,Ξ) = 0, ∀Ξ ∈ T + (1)

where A, B and D denote bilinear forms defined on the Sobolev spaces V and T + – with A and
D symmetric – F is a linear form defined on V, and ε represents a small dimensionless model
parameter with

0 < ε ≤ εmax,

and e.g. related to the thickness of the structure in structural mechanics, or to the inverse of
the bulk modulus in nearly-incompressible formulations. Note that we use ε as a superscript in
the unknowns of (1) to emphasize that the solution depends on the parameter ε.
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Under certain assumptions to be specified, this sequence of solutions parametrized by ε can
be shown to converge – when ε tends to zero – to the solution of the following limit mixed
formulation
Find (U,Σ) in V × T such that{

A(U, V ) +B(V,Σ) = F (V ), ∀V ∈ V
B(U,Ξ) = 0, ∀Ξ ∈ T (2)

where T is another Sobolev space less regular than T +, namely

T + ⊂ T , ‖ · ‖T ≤ C‖ · ‖T + , (3)

and such that T + is dense in T , meaning that any element of T has elements of T + arbitrarily
close to it, namely,

∀Ξ ∈ T , ∀η > 0, ∃Ξη ∈ T + s.t. ‖Ξ− Ξη‖T < η.

In our class of models T + will be L2, whereas the larger space T will be dependent on the
specific type of formulation considered. In particular, for plate formulations the space T can
be explicitly characterized, while for shell formulations in general only a definition based on
an abstract norm is at hand, see [5]. The complexity of the space T is seen when considering,
specifically, the singularities at corners of skew plates [10] and shells, and boundary layers and
internal layers of shells [5, 11]. In some other cases such as beam formulations and nearly-
incompressible elasticity, the space T is also (essentially) L2.

Defining the subspace

V0 = {V ∈ V | B(V,Ξ) = 0, ∀Ξ ∈ T }, (4)

we can see that the second equation in (2) expresses that the displacement solution U lies in
V0. Hence, the limit mixed formulation considered in (2) corresponds to a constrained problem.
We then have the following result, as shown in [3, 5].

Proposition 1
Assume that

• A is symmetric and coercive on V0, i.e. there exists γ > 0 such that

A(V, V ) ≥ γ‖V ‖2V , ∀V ∈ V0, (5)

• there exists δ > 0 such that

inf
Ξ∈T , Ξ 6=0

sup
V ∈V, V 6=0

B(V,Ξ)

‖V ‖V‖Ξ‖T
≥ δ. (6)

Then (2) has a unique solution (U,Σ) and this solution satisfies

‖U‖V + ‖Σ‖T ≤ C‖F‖V ′ (7)

for some constant C.

Remark 1
Condition (6) is known as the continuous inf-sup condition. This condition and the ellipticity
condition (5) appear as sufficient conditions for the mixed formulation (2) to be well-posed,
but by the Banach theorem it is straightforward to see that they are also necessary conditions
[12]. Namely, given some bilinear forms A and B with A symmetric positive, in order to have
existence and uniqueness of a solution (U,Σ) for any choice of F in (2), we indeed must have
the conditions (5) and (6) satisfied. Hence, the existence and uniqueness of a solution (U,Σ) is
in general only assured if and only if the ellipticity and inf-sup conditions are satisfied. �
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In this paper, our objective will be to obtain sharp conditions to guarantee the convergence of
the solutions of the parameter-dependent formulation (1), and the uniform convergence of asso-
ciated discrete solutions. Indeed, it was soon realized in the development of mixed methods that
the conditions pertaining to the limit problems – namely, (5) and (6) for the continuous formu-
lation – are not in general sufficient to guarantee the convergence of the parameter-dependent
problems. Therefore, the classical convergence results have been established under stronger
conditions, such as the coercivity of A over the whole space V, or the restrictive assumption
T + = T , see [3] and references therein.

However, for some important categories of physical problems such conditions and assump-
tions do not hold. In particular, for plate and shell formulations A typically represents the
bending energy – which does not control the total energy – and we do not have T + = T as
already mentioned. And of course, more generally, obtaining sharp convergence conditions is
of fundamental significance, and also of practical interest if these conditions can be tested for
specific formulations.

We first define the mapping Σ(·) from V into T + such that

D(Σ(V ),Ξ) = B(V,Ξ), ∀Ξ ∈ T +, (8)

which is a well-defined continuous linear mapping since D is coercive on T +. We next define
the new bilinear form

A0(U, V ) = B(U,Σ(V )), (9)

which is symmetric since

A0(V,U) = B(V,Σ(U)) = D(Σ(V ),Σ(U))

= D(Σ(U),Σ(V )) = B(U,Σ(V )) = A0(U, V ).

It is also positive since
A0(U,U) = D(Σ(U),Σ(U)).

Now, assuming that (1) has a solution, the second equation can be rewritten as

Σε = ε−2Σ(U ε). (10)

Hence, substituting in the first equation of (1) we obtain

A(U ε, V ) + ε−2A0(U ε, V ) = F (V ), ∀V ∈ V, (11)

namely, we have eliminated Σε from the variational formulation using in essence “static conden-
sation” – see e.g. [2] – but here in the continuous problem. Therefore, the mixed formulation
(1) is strictly equivalent to (11) together with the relation (10). Since (11) involves in solid me-
chanics only displacements (and in fluid mechanics only velocities), the formulation looks like
the displacement formulation of solids (velocity formulation of fluids). Clearly, for this problem
to be well-posed we need to require the coercivity of the bilinear form “A+ε−2A0”, which holds
for all values of 0 < ε ≤ εmax if and only if it holds in particular for ε = 1. In general, this
coercivity property is a very natural feature of the displacement-based formulation. We then
have the following result.

Proposition 2
Assuming that A+A0 is coercive on V and that (6) holds, recalling also that D is a symmetric
bilinear form bounded and coercive on T +, the problem (1) has a unique solution (U ε,Σε) in
V × T +, and this solution satisfies

‖U ε‖V + ‖Σε‖T + ε‖Σε‖T + ≤ C‖F‖V ′ , (12)
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for some constant C independent of ε. In addition, (U ε,Σε) converges to the solution of (2),
namely,

‖U − U ε‖V + ‖Σ− Σε‖T
ε→0−→ 0, (13)

and
ε‖Σε‖T +

ε→0−→ 0. (14)

Proof. Since (11) is a so-called penalized formulation, we will use classical results pertaining to
such formulations, see e.g. [5]. In order to apply these results, let us first note that

A0(V, V ) = 0 ⇐⇒ D(Σ(V ),Σ(V )) = 0

⇐⇒ Σ(V ) = 0

⇐⇒ B(V,Ξ) = 0, ∀Ξ ∈ T +

⇐⇒ B(V,Ξ) = 0, ∀Ξ ∈ T
⇐⇒ V ∈ V0

where we have used the fact that T + is dense in T . Then, taking V ∈ V0 as a particular choice
of test function in (2), we can see that U is the solution of

A(U, V ) = F (V ), ∀V ∈ V0,

with U also in V0 as already noted, hence this is the candidate limit problem for the penalized
formulation. And since A+A0 is coercive on V, classical results (see [5] and references therein)
entail that Problem (11) has a unique solution (for every value of ε), satisfying

‖U ε‖V ≤ C‖F‖V ′ , ‖U − U ε‖V
ε→0−→ 0, ε−2A0(U ε, U ε)

ε→0−→ 0. (15)

Then, defining Σε by (10), we have that (U ε,Σε) satisfies (1), hence

B(V,Σε) = F (V )−A(U ε, V ), ∀V ∈ V,

and with (6) we obtain
‖Σε‖T ≤ C‖F‖V ′ .

In addition, taking V = U ε in (11) we obtain

ε2D(Σε,Σε) = ε−2A0(U ε, U ε) ≤ F (U ε) ≤ C‖F‖2V ′ ,

hence, by using the coercivity of D,

ε‖Σε‖T + ≤ C‖F‖V ′ .

To obtain the convergence of Σε we subtract the first equation of (1) from the first equation of
(2), which gives

B(V,Σ− Σε) = A(U − U ε, V ), ∀V ∈ V,

and we can again use the inf-sup condition (6) to obtain

‖Σ− Σε‖T ≤ C‖U − U ε‖V
ε→0−→ 0.

Finally, (14) directly follows from ε2D(Σε,Σε) = ε−2A0(U ε, U ε) and (15). �

Remark 2
Of course, when A is coercive on the whole space V, then we automatically have the coercivity
of A+A0, since A0 is a positive bilinear form. �
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3 Discrete formulation and convergence analysis

We now introduce Galerkin discretizations of the model-parameter dependent problem (1).
Therefore, we consider the discrete problem
Find (U εh,Σ

ε
h) in Vh × Th such that{

A(U εh, V ) +B(V,Σε
h) = F (V ), ∀V ∈ Vh

B(U εh,Ξ)− ε2D(Σε
h,Ξ) = 0, ∀Ξ ∈ Th

(16)

where Vh and Th denote finite-dimensional – typically finite element based – subspaces of V and
T +, respectively. Here the second finite element space Th must be a discretization space for T +

due to the presence of D in the formulation, and then Th also gives an admissible discrete space
for T , since we have the dense inclusion T + ⊂ T (namely, T + is more regular).

In this discrete system we can eliminate the unknown Σε
h from the variational formulation

– similarly to what we did in the continuous setting – by defining the mapping Σh(·) from V
into Th such that

D(Σh(V ),Ξ) = B(V,Ξ), ∀Ξ ∈ Th. (17)

This clearly defines a continuous linear mapping, and in fact we have

Σh(V ) = Πh
DΣ(V ), (18)

where Πh
D denotes the projection operator onto Th for the scalar product associated with the

bilinear form D. We can also define the bilinear form

Ah0(U, V ) = B(U,Σh(V )), (19)

which is again symmetric and positive, and we infer that (16) is equivalent to

A(U εh, V ) + ε−2Ah0(U εh, V ) = F (V ), ∀V ∈ Vh, (20)

together with
Σε
h = ε−2Σh(U εh). (21)

We will now be concerned with the convergence of the discrete mixed problem (16) under the
assumptions of Proposition 2, namely, assuming A+ A0 is coercive, in particular. Considering
(20) involving only displacements, we clearly need to have A + ε−2Ah0 coercive on Vh for all
admissible values of ε – which is equivalent to A + Ah0 coercive. However, this coercivity
property does not follow from the coercivity of A + A0, as it depends on the specific choice
of the discrete spaces Vh and Th. Hence, this is a condition that we need to require from the
discrete spaces, namely,

A(V, V ) +Ah0(V, V ) ≥ γ‖V ‖2V , ∀V ∈ Vh, (22)

for some γ > 0 independent of h. Of course, we will also require the classical discrete inf-sup
condition

inf
Ξ∈Th, Ξ 6=0

sup
V ∈Vh, V 6=0

B(V,Ξ)

‖V ‖V‖Ξ‖T
≥ δ. (23)

In order to analyze the convergence under the discrete coercivity condition (22) we will use
the auxiliary discrete problem:
Find (Ũ εh, Σ̃

ε
h) in Vh × Th such that

M̃ε(Ũ
ε
h, Σ̃

ε
h;V,Ξ) = F (V ), ∀(V,Ξ) ∈ Vh × Th, (24)

6



with
M̃ε(V,Ξ;W,Γ) = Mε(V,Ξ;W,Γ) + αD

(
Σ(V )− ε2Ξ,Σ(W )− ε2Γ

)
, (25)

for some positive constant α, where Mε denotes the mixed bilinear form naturally associated
with the system (1), namely,

Mε(V,Ξ;W,Γ) = A(V,W ) +B(V,Γ) +B(W,Ξ)− ε2D(Ξ,Γ).

We first note that (U ε,Σε) satisfies

M̃ε(U
ε,Σε;V,Ξ) = F (V ), ∀(V,Ξ) ∈ V × T , (26)

since we have by construction

Mε(U
ε,Σε;V,Ξ) = F (V ), ∀(V,Ξ) ∈ V × T ,

and the additional term in M̃ε(U
ε,Σε;V,Ξ) vanishes due to Σ(U ε) = ε2Σε. Therefore, (24)

represents a consistent discretization of the continuous mixed formulation. We will now establish
the convergence of this discretization procedure.

Proposition 3
Under the assumptions of Proposition 2 and supposing that (23) also holds, then for any given
α ∈ ]0, 1/(εmax)2[ used in the definition of M̃ε, for 0 < ε ≤ εmax the problem (24) has a unique
solution (Ũ εh, Σ̃

ε
h) and this solution satisfies

‖U ε − Ũ εh‖V + ‖Σε − Σ̃ε
h‖T + ε‖Σε − Σ̃ε

h‖T +

≤ C inf
V ∈Vh,Ξ∈Th

{
‖U ε − V ‖V + ‖Σε − Ξ‖T + ε‖Σε − Ξ‖T +

}
,

(27)

for some constant C independent of ε.

Proof. Since consistency is ensured – recall (26) – we can focus on establishing the stability of
M̃ε for the norm

‖V,Ξ‖ε =
(
‖V ‖2V + ‖Ξ‖2T + ε2‖Ξ‖2T +

) 1
2 .

We decompose the proof into two steps.

i) Stability in V and ε‖Ξ‖T +. Taking (W1,Γ1) = (V,−Ξ), we have

‖W1,Γ1‖ε = ‖V,Ξ‖ε, (28)

and

M̃ε(V,Ξ;W1,Γ1) = A(V, V ) + αD(Σ(V ),Σ(V )) + ε2(1− αε2)D(Ξ,Ξ)

= A(V, V ) + αA0(V, V ) + ε2(1− αε2)D(Ξ,Ξ)

≥ γ1(‖V ‖2V + ε2‖Ξ‖2T +), (29)

using the coercivities of A+A0 and D, and the fact that

1− αε2 ≥ 1− α(εmax)2 > 0.

ii) Stability in ‖Ξ‖T . We again use the discrete inf-sup condition (23) to find W2 in Vh such
that

‖W2‖V = ‖Ξ‖T , B(W2,Ξ) ≥ δ

2
‖Ξ‖2T ,
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and with Γ2 = 0 we have
‖W2,Γ2‖ε = ‖Ξ‖T ≤ ‖V,Ξ‖ε.

This choice gives

M̃ε(V,Ξ;W2,Γ2) ≥ γ2‖Ξ‖2T − C2(‖V ‖2V + ε2‖Ξ‖2T +), (30)

and we conclude the stability proof by using convex combinations of the test functions (W1,Γ1)
and (W2,Γ2). �

Note that, if we eliminate Σ̃ε
h from the modified problem (24) we obtain

A(Ũ εh, V ) + αA0(Ũ εh, V ) + (ε−2 − α)Ah0(Ũ εh, V ) = F (V ), ∀V ∈ Vh, (31)

with
Σ̃ε
h = ε−2Σh(Ũ εh). (32)

Remark 3
With the formulation (31), it is quite straightforward to interpret why stability is more eas-
ily obtained in the augmented mixed formulation (24) than in the original mixed formulation
associated with (20). Namely, in (31) we retain the coercivity contribution provided by the
unperturbed form A0 in the term A + αA0. This strategy is quite natural and has been ex-
perimented with, see [13, 14, 15, 16, 2] and the references therein. We can also say that the
additional term introduced in M̃ε is a “stabilization term”. In fact, the modified formulation
(24) is an “augmented Lagrangian” formulation as defined and discussed in [17]. However, this
construction involves the rather arbitrary numerical factor α, and formulations not using such
factors are clearly preferable in practice as we mentioned already above. �

Using the auxiliary problem (24), we can now prove the convergence of the original discrete
mixed problem (16).

Proposition 4
Under the assumptions of Proposition 2 and supposing that (22) and (23) also hold, then (16)
has a unique solution (U εh,Σ

ε
h) and this solution satisfies

‖U ε − U εh‖V + ‖Σε − Σε
h‖T + ε‖Σε − Σε

h‖T +

≤ C inf
V ∈Vh,Ξ∈Th

{
‖U ε − V ‖V + ‖Σε − Ξ‖T + ε‖Σε − Ξ‖T +

}
, (33)

for some constant C independent of ε.

Proof. The existence and uniqueness directly follow from the equivalence of (16) with (20) and
(21), and from the coercivity of A+ε−2Ah0 on Vh. As regards convergence, we will take advantage
of the convergence result established in Proposition 3 for the particular choice

α = (2εmax)−2.

Then (27) holds, and using this auxiliary solution, we will establish the convergence in three
steps.

i) Convergence in U εh.
The discrete solution U εh satisfies (20), while Ũ εh instead satisfies[

A+ αA0 + (ε−2 − α)Ah0
]
(Ũ εh, V ) = F (V ), ∀V ∈ Vh.
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Subtracting the two variational equations yields, for any V ∈ Vh,

(A+ ε−2Ah0)(U εh − Ũ εh, V ) = α(A0 −Ah0)(Ũ εh, V )

= α
[
(A0 −Ah0)(U ε, V ) + (A0 −Ah0)(Ũ εh − U ε, V )

]
.

Choosing as a particular test function V = U εh − Ũ εh and using the coercivity (22) with the
continuities of A0 and Ah0 , we obtain

‖U εh − Ũ εh‖V ≤ C
[
‖U ε − Ũ εh‖V + sup

V ∈Vh

(A0 −Ah0)(U ε, V )

‖V ‖V

]
.

Then, a simple triangle inequality gives

‖U ε − U εh‖V ≤ C
[
‖U ε − Ũ εh‖V + sup

V ∈Vh

(A0 −Ah0)(U ε, V )

‖V ‖V

]
. (34)

In order to bound the consistency error term in the right-hand side, we use (9) and (19), then
(10) and (18) to write

(A0 −Ah0)(U ε, V ) = B(V,Σ(U ε)− Σh(U ε)) = ε2B(V, (I −Πh
D)Σε).

Therefore,

|(A0 −Ah0)(U ε, V )|
‖V ‖V

≤ Cε2‖(I −Πh
D)Σε‖T + ≤ Cε2 inf

Ξ∈Th
‖Σε − Ξ‖T + ,

since D provides a norm that is equivalent to ‖ · ‖T + , and then (34) yields

‖U ε − U εh‖V ≤ C
[
‖U ε − Ũ εh‖V + ε2 inf

Ξ∈Th
‖Σε − Ξ‖T +

]
. (35)

ii) Convergence in ‖Σε
h‖T .

Recalling that Σε satisfies

A(U ε, V ) +B(V,Σε) = F (V ), ∀V ∈ V,

we have, for any given Γ ∈ Th,

B(V,Γ) = F (V )−A(U ε, V ) +B(V,Γ− Σε), ∀V ∈ V,

while Σε
h satisfies

B(V,Σε
h) = F (V )−A(U εh, V ), ∀V ∈ Vh.

Subtracting the two equations, we obtain

B(V,Σε
h − Γ) = A(U ε − U εh, V ) +B(V,Σε − Γ), ∀V ∈ Vh.

Using the discrete inf-sup condition (23) and the continuities of A and B, we infer

‖Σε
h − Γ‖T ≤ C

(
‖U ε − U εh‖V + ‖Σε − Γ‖T

)
,

which yields, combined with a triangle inequality,

‖Σε − Σε
h‖T ≤ C

[
‖U ε − U εh‖V + inf

Ξ∈Th
‖Σε − Ξ‖T

]
. (36)
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iii) Convergence in ε‖Σε
h‖T +.

We have by construction
ε2D(Σε,Ξ) = B(U ε,Ξ), ∀Ξ ∈ T +,

and
ε2D(Σε

h,Ξ) = B(U εh,Ξ), ∀Ξ ∈ Th.

From this we infer, for any given Γ ∈ Th,

ε2D(Σε
h − Γ,Σε

h − Γ) = B(U εh − U ε,Σε
h − Γ) + ε2D(Σε − Γ,Σε

h − Γ),

and – recalling the coercivity of D on T + – standard manipulations then give

ε‖Σε
h − Γ‖T + ≤ C

(
‖U ε − U εh‖V + ‖Σε

h − Γ‖T + ε‖Σε − Γ‖T +

)
,

hence, with the help of triangle inequalities,

ε‖Σε − Σε
h‖T + ≤C

(
‖U ε − U εh‖V + ‖Σε − Σε

h‖T

+ inf
Ξ∈Th

{
‖Σε − Ξ‖T + ε‖Σε − Ξ‖T +

})
.

(37)

In order to obtain the final error estimate (33), it now just remains to gather the intermediate
bounds (27), (35), (36) and (37). �

Remark 4
Note that we have used the solution of the discrete stabilized formulation (24) only as an
intermediary in the convergence proof, and that no such stabilization is actually included in the
mixed formulation (16). �

Remark 5
Regarding the coercivity assumption (22), we note that

Ah0(V, V ) = D(Σh(V ),Σh(V )) = D(Πh
DΣ(V ),Πh

DΣ(V )),

while A0, which provides the desired coercivity in A+A0, satisfies instead

A0(V, V ) = D(Σ(V ),Σ(V )).

Hence, in order for A+Ah0 to remain coercive, we need to have Th “sufficiently large” to avoid
losing the coercivity in the projection Πh

D. However, this may be difficult to accommodate
with the inf-sup condition (23), which is more easily satisfied when Th is “sufficiently small”.
Nevertheless, we point out that the coercivity assumption (22) can be numerically tested by
computing the smallest eigenvalue in the eigenproblem

A(Φ, V ) +Ah0(Φ, V ) = λ(Φ, V )V , ∀V ∈ Vh.

In the first instance, a single element should not display a zero eigenvalue (spurious mode),
but the same should also hold for increasingly refined meshes, like in the numerical inf-sup test
presented in [18]. �

In some cases, we will have that T + = T . This holds, in particular, for nearly incompressible
formulations where T and T + correspond to L2 (with the mean value of the function subtracted
in the norm of T when considering homogeneous boundary conditions all over the boundary for
the displacements, since the pressure is then defined up to a constant), see [2, 3]. Another such

10



example is the mixed formulation corresponding to the Timoshenko beam model, see [2, 5]. In
such cases the convergence analysis can be directly performed – see in particular [3, 19] – but
it is quite illuminating to see that it can also be inferred from our above discussions. Hence, we
will show that in this case the partial coercivity (5) implies the coercivity of A+A0, by which
we have the following well-posedness and convergence result.

Proposition 5
Consider the case when T + = T . Assume that (5) and (6) both hold, that the bilinear form A
is positive, namely,

A(V, V ) ≥ 0, ∀V ∈ V, (38)

and that D is a symmetric bilinear form coercive on T . Then the problem (1) has a unique
solution and this solution satisfies

‖U ε‖V + ‖Σε‖T ≤ C‖F‖V ′ , (39)

for some constant C independent of ε. In addition, (U ε,Σε) converges to the solution of (2),
namely,

‖U − U ε‖V + ‖Σ− Σε‖T
ε→0−→ 0. (40)

Proof. It suffices to show that A+ A0 is coercive in this case, in order to apply Proposition 2.
For any V ∈ V we have

A0(V, V )
1
2 = D(Σ(V ),Σ(V ))

1
2 = sup

Ξ∈T

D(Σ(V ),Ξ)

D(Ξ,Ξ)
1
2

= sup
Ξ∈T

B(V,Ξ)

D(Ξ,Ξ)
1
2

,

by the definition of Σ(V ), recall (8). Of course, we have D(Ξ,Ξ)
1
2 ≤ C‖Ξ‖T + , and we now use

the fact that T + = T to infer

A0(V, V )
1
2 ≥ C sup

Ξ∈T

B(V,Ξ)

‖Ξ‖T
. (41)

On the other hand, we have
V = V0 ⊕ V⊥0 ,

and for any V ∈ V we can write the decomposition

V = V0 + V1, V0 ∈ V0, V1 ∈ V⊥0 .

Then
(A+A0)(V, V ) = A(V0, V0) +A(V1, V1) + 2A(V0, V1) +A0(V1, V1),

and we can combine (41) with the classical alternative inf-sup bound (see [3, 5])

inf
V ∈V⊥0 , V 6=0

sup
Ξ∈T , Ξ 6=0

B(V,Ξ)

‖V ‖V‖Ξ‖T
≥ δ, (42)

to obtain
A0(V1, V1) ≥ γ‖V1‖2V .

Furthermore, since A is positive we can apply the Cauchy-Schwarz inequality and infer

(A+A0)(V, V ) ≥ (1− η)A(V0, V0) + (1− 1/η)A(V1, V1) + γ‖V1‖2V ,

for any 0 < η < 1. Then we can choose η so that

(1− 1/η)A(V1, V1) + γ‖V1‖2 ≥
γ

2
‖V1‖2V ,

and since A is coercive on V0 we obtain the desired coercivity of A+A0. �
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Remark 6
The assumption T + = T was crucially used in this proof to obtain (41). In the general case,
we only have

‖Ξ‖T ≤ C‖Ξ‖T + , ∀Ξ ∈ T ,

and (41) cannot be inferred from the previous equation. �

We can then show the following result for corresponding finite element discretizations.

Proposition 6
Under the assumptions of Proposition 5 and supposing that (23) also holds and that A is
coercive on

Vh0 = {V ∈ Vh | B(V,Ξ) = 0, ∀Ξ ∈ Th},

then Problem (16) has a unique solution (U εh,Σ
ε
h). Moreover this solution satisfies, for 0 < ε ≤

εmax,

‖U ε − U εh‖V + ‖Σε − Σε
h‖T

≤ C inf
V ∈Vh,Ξ∈Th

{
‖U ε − V ‖V + ‖Σε − Ξ‖T

}
, (43)

for some constant C independent of ε.

Proof. Similarly to the proof of Proposition 5, we will simply show that A+ Ah0 is coercive on
Vh in order to apply Proposition 4, and we just sketch this proof. We first directly obtain the
discrete counterpart of (41), namely,

Ah0(V, V )
1
2 ≥ C sup

Ξ∈Th

B(V,Ξ)

‖Ξ‖T
, ∀V ∈ Vh, (44)

using similar arguments. Then, the coercivity proof can be concluded by employing the decom-
position

Vh = Vh0 ⊕ V⊥h0 = Vh0 ⊕ Vh1,

and the alternate discrete inf-sup condition (see [3, 5])

inf
V ∈V⊥h0, V 6=0

sup
Ξ∈Th, Ξ6=0

B(V,Ξ)

‖V ‖V‖Ξ‖T
≥ δ, (45)

combined with (44) to show that

Ah0(V1, V1) ≥ γ‖V1‖2V , ∀V1 ∈ Vh1.

�

4 Remarks on numerical assessment

In practice, when a formulation (1) is solved with a discretization scheme using (16), it is
expedient to employ static condensation on the variables Σε

h. This results into the governing
equation (20). The condition is then that the smallest eigenvalue of this problem (for any h)
be bounded from below.

We note that this coercivity condition is required for all problems governed by formulation
(1), that is, irrespective of whether the space T or T + is applicable, and in the development of
new finite element discretization schemes, this condition can easily be tested for.
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As examples, considering the displacement-pressure formulation of almost incompressible
2D analysis of solids, the discretization based on elements with 9 nodes for the displacements
and a linear pressure assumption (the 9/3 element or Q2/P1 element [2, 3]) of course satisfies
the condition.

However, using an axisymmetric element with the usual 8 nodes for the displacement inter-
polation and a constant pressure assumption (the 8/1 element or Q2’/P0 element) this ellipticity
condition is violated. For example, a single element test shows that we obtain a zero eigenvalue
by considering the displacements

v = crs+ 3cs, w = −3cr − c

2
(r2 − s2 + 1),

where (r, s) denote the local coordinate system of the 2x2 element with the element center
located at radius R = 3, (v, w) are the corresponding displacement components, and c is a
constant. Note that, regarding Proposition 6, in this case the inf-sup condition (23) is passed
but A is not coercive on Vh0.

Considering the analysis of plates and shells, the formulations of the various MITC elements
that have been proposed have always been tested for this coercivity condition, see e.g. [20, 21, 22],
and a general single element test has so far been found sufficient.

5 Conclusions

We proposed in this paper – for continuous model-parameter dependent problems – a sharp
ellipticity condition which when satisfied together with the inf-sup condition guarantees the
convergence of the formulation for the parameter approaching zero. The ellipticity condition
is quite natural, and for associated discrete formulations, if the corresponding ellipticity and
inf-sup conditions hold, uniform convergence of the discretization procedure with best approx-
imation properties is obtained.

An important point is that this approach of analyzing the quality of discretization schemes
is quite general in that it does not depend on the space in which the constraint variables
are measured (T or T +). For optimal approximation quality, the inf-sup condition and given
ellipticity condition need be satisfied.

The proposed condition can also be tested for easily in practice – and should be tested for
– when developing new discretization schemes.

Finally, it is rather natural to conjecture that this ellipticity condition is also applicable in
dynamic analysis in order to have – together with the inf-sup condition – sufficient conditions to
ensure the uniform and optimal convergence of the eigenvalues and eigenspaces of the associated
discretized spectral problem, thereby extending the results of [23].
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