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Abstract: Let f(k) be the smallest integer such that every f(k)-chromatic digraph contains every oriented tree of
order k. Burr proved that f(k) < (k—1)? and conjectured f(k) = 2n — 2. In this paper, we give some sufficient
conditions for an n-chromatic digraphs to contains some oriented tree. In particular, we show that every acyclic
n-chromatic digraph contains every oriented tree of order n. We also show that f(k) < k*>/2 —k/2+ 1. Finally,
we consider the existence of antidirected trees in digraphs. We prove that every antidirected tree of order & is
contained in every (5k —9)-chromatic digraph. We conjecture that if |E(D)| > (k—2)|V(D)|, then the digraph
D contains every antidirected tree of order k. This generalizes Burr’s conjecture for antidirected trees and the
celebrated Erd6s-Sos Conjecture. We give some evidences for our conjecture to be true.
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Arbres orientés dans les digraphes

Résumé : Soit f(k) le plus petit entier tel que tout digraphe f(k)-chromatic contienne un arbre orienté d’ordre k.
Burr a prouvé que f(k) < (k—1)? et a conjecturé f(k) = 2n — 2. Dans ce rapport, nous donnons des conditions
suffisantes pour qu’un digraphe n-chromatique contiennent un arbre orienté. En particulier, nous montrons que
tout digraphe acyclique n-chromatique contient tous les arbres orientés d’ordre n. Nous montrons également que
f(k) <k*/2—k/2+ 1. Enfin, nous considérons ’existence d’arbres antidirects dans les digraphes. Nous prouvons
que tout arbre antidirect d’ordre k est contenu dans tous les digraphes (5k — 9)-chromatiques. Nous conjecturons
que si |[E(D)| > (k—2)|V(D)], alors le digraphe D contient tous les arbres antidirects d’ordre k. Ceci généralise la
conjecture de Burr pour les arbres antidirects et la célebre conjecture d’Erdds-Sés. Nous montrons notre conjecture
dans quelques cas particuliers.

Mots-clés : graphe orienté universel, orientation de graphe, coloration de graphe orienté
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1 Introduction

All the graphs and digraphs we will consider here are simple, i.e. they have no loops nor multiple arcs. We rely on
[3]] for classical notation and concepts. An orientation of a graph G is a digraph obtained from G by replacing every
edge uv of G by exactly one of the two arcs uv or vu. An oriented graph is an orientation of a graph. Similarly an
oriented tree (resp. oriented path) is an orientation of a tree (resp. path).

A k-colouring of a digraph is a mapping ¢ from its vertex into {1,2,...,k} such that c(u) # ¢(v) for all arc
uv. A digraph is k-colourable if its admits a k-colouring. The chromatic number of a digraph D, denoted (D), is
the least integer k such that D is k-colourable. A digraph is k-chromatic if its chromatic number equals k.

The celebrated Gallai-Hasse-Roy-Vitaver Theorem [16} [18] 23| 26] states that every n-chromatic digraph
contains a directed path of length n — 1. More generally, one can ask which digraphs are contained in every n-
chromatic digraph. Such digraphs are called n-universal. Since there exist n-chromatic graphs with arbitrarily
large girth [13]], n-universal digraphs must be oriented trees. Burr [6] considered the function f such that every
oriented tree of order k is f(k)-universal. He proved that f(k) < (k — 1)? and conjecture f(k) = 2k — 2 remarking
that f(k) > 2k — 2 since a regular tournament (orientation of a complete graph) of order 2k — 3 has no vertex of
out-degree at least k — 1 and thus does not contain the oriented tree S,j consisting of a vertex dominating k — 1
leaves.

Conjecture 1 (Burr [6]]). f(k) =2k —2i. e. every oriented tree of order k is (2k — 2)-universal.

Conjecture (1| is a generalization of Sumner’s conjecture which states that every oriented tree of order k is
contained in every tournament of order 2k — 2. The first linear bound was given by Higgkvist and Thomason [17]].
The best bound so far, 3k — 3, was obtained by El Sahili [12]], refining an idea of [20]].

Regarding the universality of oriented trees, there is no better upper bound than the one given by Burr for
oriented trees. Very few special cases are known, only about universality of paths. El-Sahili proved [[11] that every
oriented path of order 4 is 4-universal and that the antidirected path of order 5 is 5-universal. Recently, Addario-
Berry, Havet and Thomassé [[1]] showed that every oriented path of order k > 4 with two blocks is k-universal. In
Section [2| we give different results which imply the one of Burr. In particular, we show that every k-chromatic
acyclic digraph contains every oriented tree of order n. We then derive f(k) < k?/2 —k/2+ 1.

In Section[3] we study the universality of antidirected trees, that are oriented trees in which every vertex has
in-degree 0 or out-degree 0. Burr [[7] showed that every digraph D with at least 4(k — 1)|V(D)| arcs contains all
antidirected trees of order k. He deduces that every antidirected tree of order k is (8k — 7)-universal. We first
improve this bound to (5k —9) (for k > 2) in Subsection Then, in Subsection we prove Conjecture for
antidirected trees of diameter 3.

We then consider the smallest integer a(k) such that every digraph D with more than a(k)|V (D)| arcs contains
every antidirected tree of order k. The above-mentionned result of Burr asserts a(k) < 4k — 4. We conjecture that
a(k) =k—2.

Conjecture 2. Let D be a digraph. If |E(D)| > (k—2)|V(D)], then D contains every antidirected tree of order k.

The value k — 2 for a(k) would be best possible. Indeed the oriented tree S,‘: is not contained in any digraph in
which every vertex has outdegree k — 2. It is also tight because the complete symmetric digraph on k — 1 vertices
Ki_1 has (k—2)(k— 1) arcs but does trivially not contains any oriented tree of order k.

Observe that there is no analog of Conjecture [2] for non-antidirected tree. Indeed, a bipartite digraph with
bipartition (A, B) such that all the arcs have tail in A and head in B contains no directed paths of length two. Hence
for any oriented tree T which is not directed and any constant C, there is a digraph D with at least C x |V (D)]| arcs
that does not contain 7.

Conjecture [2| for oriented graphs implies Burr’s conjecture for antidirected trees. Indeed, every (2k —2)-
critical digraph D is an oriented graph and has minimum degree at least 2k — 3 and so at least L2*3\V(D)| >
(k—2)|v(D)| arcs.

RR n° 7502
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Conjecture 2] may be seen as a directed analog of the following well-known Erdos-Sés conjecture reported in
[14].

Conjecture 3 (Erdos and S6s, 1963). Let G be a graph. If |E(G)| > 1 (k—2)|V(G)
order k .

, then G contains every tree of

In fact, Conjecture [2|for symmetric digraphs is equivalent to Conjecture[3] Indeed, consider a graph G and its
corresponding symmetric digraph D (the digraph obtained from G by replacing each edge uv by the two arcs uv
and vu). Then G has more than § (k —2)|V(G)| edges if and only if |E(D)| > (k—2)|V(D)|. Furthermore, if T is a
tree and 7' one of its (two) antidirected orientations, then it is simple matter to check that G contains T if and only
if D contains 7.

Conjecture [3] has been proved in particular cases: when the graph has no C, in [24]); and for trees with
diameter at most four [21]]. Finally, using the Regularity Lemma, Ajtai et al. [2] proved that Conjecture [3|is true
for sufficiently large k.

In Subsection we settle Conjecture [2| for antidirected trees of diameter at most 3. We then derive that
every antidirected tree of order k and diameter at most 3 is (2k — 4)-universal.

2 General upper bounds

2.1 Constructing the tree iteratively

Let T be an oriented tree. The in-leaves (resp. out-leaves) of T are the vertices v of T such that d; (v) = 1 and
dr (v) =0, (resp. df (v) =0 and dy (v) = 1). The set of out-leaves (resp. in-leaves) of T is denoted by Out(T)
(resp. In(T)) and its cardinality is denoted by our(T) (resp. in(T)).

An out-star is an oriented tree T such that T — our(T) has a single vertex x. Hence x dominates all the other
vertices which are out-leaves. The out-star of order k is denoted S,’:. An in-star is the directional dual of an out-star;
the in-star of order k is denoted S . A star is either an out-star or an in-star.

Lemma 4. Let D be a digraph with minimum in- and out-degree k — 1 and T a tree of order k. For any vertex x of
D and vertex t of T, D contains a copy of T in which x corresponds to t.

Proof. We prove the result by induction on £, the result holding trivially when k = 1. Assume now that k > 2. Letv
be a leaf of T distinct from ¢. By directional duality, we may assume that v is an out-leaf. Let u be its in-neighbour
in T. By the induction hypothesis, D contains a copy T’ of T — u in which x corresponds to ¢. Let y be the vertex
corresponding to u in T’. Since d*(v) > k — 2, there is an out-neighbour z of y not in V(7’). Hence adding the
vertez z and the arc yz to T’, we obtain the desired copy of T. O

Lemma 5. Let D be an oriented graph with minimum in- and out-degree k —2 and T a tree of order k. If T has
two out-leaves which are not dominated by the same vertex, then D contains T.

Proof. Let vi and v, be two out-leaves of T which are dominated by the two distinct vertices u; and u;. By
Lemma D contains a copy T’ of T —vy. Let x1, x2 and y be the vertices corresponding to respectively u1, uy and
vy in T’. If x; has an out-neighbour z; in V(D) \ V(T”), then adding z; and the arc x;z; to 7/, we obtain a copy of
T.

So we may assume that all the out-neighbours of x; are in V(7). Since d (x1) > k — 2, x; dominates all the
vertices of T/ — x;. In particular, it dominates x, and y. Hence the tree 7" obtained from 7' by removing the arc
x>y and adding the arc x1y is a copy of T — v,. Now x; has out-degree at least k 4+ 2 and it does not dominated x;
because D is an oriented graph. So x; has an out-neighbour z, in V(D) \ V(T"). Thus adding z; and the arc x;z; to
T", we obtain a copy of 7. O

INRIA
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A (di)graph is k-degenerate if all its sub(di)graphs have a vertex of degree at most k. It is well-known that
every k-degenerate (di)graph is (k+ 1)-colourable.

A (di)graph is k-critical if its chromatic number is k and all its proper sub(di)graphs are (k — 1)-colourable. It
is folklore that every k-critical graph has minimum degree at least k — 1.
Loevi)d(v)  2|E(G)|
The average degree of a (di)graph G, denoted Ad(G) is =
V(G)] V(G)|

degree of G, denoted Mad(G), is max{Ad(H),H subgraph of G}.

. The maximum average

Lemma 6. Let k > 3 be an integer and G be a graph of maximum average degree at most k. Then ¥(G) =k or G
contains a complete graph on k+ 1 vertices.

Proof. Assume that x(G) > k, then G contains a (k+ 1)-critical graph H. This graph has minimum degree at least
k and so Ad(H) > k. Since H is a subgraph of G and Mad(G) < k, we have that Ad(H) = k. So every vertex
has degree k and so A(H) = k. Because X(H) = k+ 1, by Brooks’ Theorem, H is a complete graph on k + 1
vertices. O

Lemma 7. Let T be an oriented tree of order k > 3 which is not S;". If T — Out(T) is l-universal then T is
(14 2k —4)-universal.

Proof. Since T # S;", then T — Out (T') has more than one vertex and thus [ > 2. If Out(T) = 0, the results holds
trivially so we assume that our(T) > 1.

Let D be an (I + 2k — 4)-chromatic digraph. Without loss of generality, we may assume that D is connected.
Let S be the set of vertices of D with out-degree at most k — 2.

Assume first that (D — S) > [, then D — S contains a copy T’ of T — Out(T). Let vi,v2,...,v, be the out-
leaves of T and wy,w»,...,w), be their respectives in-neighbours in 7. Now for 1 <i < p, since the out-degree
of wj, the vertex corresponding to w; in 7’, is at least k — 1 in D, one can find an out-neighbour v; of w} in
V(D)\ (V(T")U{v;| 1< j<i}). Hence D contains T

Assume now that x(D — S) < [, then y(DI[S]) > 2k — 3, because ¥(D) = [ + 2k — 4. Let H be a subdigraph
of D[S]. Then ¥,cy ) d(v) = 2E(H) <2Y,eymydp (v) < (2k—4) x |V (H)|. Hence Mad(D|S]) < 2k — 4. Thus
by Lemma@ DIS] contains a tournament R of order 2k — 3. Furthermore, since the out-degree in R is at most the
out-degree in D[S] and thus k — 2, every vertex of R has both in- and out-degree equal to kK —2 in R. Since all
vertices in R have out-degree at most k — 2 in D, each vertex of R has no out-neighbour in V(D) \ V(R). Now, since
D is connected, there is an arc xy withx € V(D) \ V(R) and y € V(R).

If T contains an in-leaf v, then let u be its out-neighbour in 7. By Lemmald] R contains a copy of 7' — v such
that u corresponds to y. This copy together with the vertex x and the arc xy is a copy of T in D.

If T contains no in-leaf, then it contains only out-leaves. Moreover, since T # St then T has two leaves
which are dominated by different vertices. Thus by Lemma|[5} R contains 7. O

Let s¢(T) be the minimum number of successive removal of the in-leaves or out-leaves after which the oriented
tree is reduced to a single vertex. Since such a removal remove one or two edges of a path, we have [diam(T) /2] <
st(T) < diam(T).

Proposition 8. Every oriented tree T of order k is [(2k — 3 — st(T))st(T) + 2]-universal.

Proof. Let T =Ty, Ti,..., Ty(r) be a sequence of oriented trees such that 7; = T \ Out(T;—1) or T; = T;—1 \
In(T;—1) and Ty(7)—1 is an out-star or an in-star and thus is (2|7},(T), 1| — 2)-universal. By successive application
of Lemmal[7} T is contained in every oriented tree of chromatic number at least £ with X = 2|Tp| —4+2|T;| — 4+
2Ty 2l =442 Ty 1| =2 = 2500 | Ti| = 4st(T) +2. Now for all 0 < i < st(T) — 1, |Ti| < k—1i, so
Y < (2k—3—st(T))st(T)+2. Hence T is [(2k — 3 — s¢(T))st (T ) + 2]-universal. O

Proposition [8|implies directly Burr’s result.

RR n° 7502
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Corollary 9 (Burr [6]). Every oriented tree T of order k is (k* — 3k + 4)-universal.

Proof. LetT be atree of order k. If T is a directed path, then it is k-universal by Gallai-Hasse-Roy-Vitaver Theorem
Theorem. If T is not a directed path, then st(T) < k — 2. So, by Proposition 8} it is (k* — 3k 4-4)-universal. O

In order to find an oriented tree 7" in digraphs of sufficiently large chromatic number, it would be useful to find
a sequence of few removal of the in-leaves or out-leaves after which the tree is reduced to a single vertex. However,
we do not know if finding such a sequence with the minimum number of steps can be done in polynomial time.

Problem 10. What is the complexity of determining s¢(7) for a given an oriented tree 7?

2.2 Oriented trees in bikernel-perfect digraphs

Let D be a digraph. A set S of vertices is dominating if every vertex v in V(D) \ S is dominated by a vertex in S.
Similarly, a set S is antidominating if every vertex v in V(D) \ S dominates a vertex in S. A dominating stable set
is called a kernel and an antidominating stable set an antikernel. If every induced subdigraph of D has a kernel
(resp. antikernel), then D is said to be kernel-perfect (resp. antikernel-perfect). A digraph which is both kernel-
and antikernel-perfect is said to be bikernel-perfect.

Theorem 11. Every oriented tree of order k is contained in every k-chromatic bikernel-perfect digraphs.

Proof. Let us prove the result by induction on k, the result being trivially true if k = 1.

Let T be an oriented tree of order k and D be a k-chromatic bikernel-perfect digraph. Let v be a leaf of T and
w its unique neighbour in 7'. By directional symmetry, we may assume that v — w. Since D is bikernel-perfect, T
has a kernel S. The digraph D — S has chromatic number at least (k— 1), so by induction it contains a copy T’ of
T —v. Now by definition of kernel, the vertex w’ in T’ corresponding to w is dominated by a vertex v’ of K. Hence
D contains 7. O

Several classes of bikernel-perfect digraphs are known. It is easy to show that symmetric digraphs are
bikernel-perfect. Richardson [22]] proved that acyclic digraphs and more generally, digraphs without directed
cycles of odd length are also bikernel-perfect. Several extensions of Richardson’s Theorem have been obtained
[8, 9} 110, [15]. Sands, Sauer and Woodrow [25] showed that a digraph whose arcs may be partitionned into two
posets is bikernel-perfect.

An approach to find a better upper bound for f(k) would be to prove that every digraph with not too large
chromatic number contains an acyclic (or more generally bikernel-perfect) k-chromatic digraph.

Problem 12. What is the minimum integer g(k) such that every g(k)-chromatic digraph has an acyclic k-chromatic
subdigraph?

What is the minimum integer g’ (k) such that every g’ (k)-chromatic digraph has a bikernel-perfect k-chromatic
subdigraph?

An easy consequence of Theorem|[I1]is that f(k) < g'(k) < g(k).
Proposition 13. g(k) < k*> — 2k +2.

Proof. Let D be a (k* — 2k 4 2)-chromatic digraph. Let vy, vs,...,v; be an ordering of the vertices of D. Let D;
and D, be the digraphs with vertex set V(D) and edge-sets E(D;) = {v;v; € E(D),i < j} and E(Dy) = {viv; €
E(D),i > j}. Clearly, Dy and D5 are acyclic and x(D;) x y(D2) > x(D) = k* — 2k 4 2. Hence either D; or D; has
chromatic number at least [m—‘ =k. O

The above proposition implies directly that f(k) < k* — 2k +2. We now give a better upper bound for f(k).

INRIA
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Theorem 14. f(k) <k?/2—k/2+ 1.

Proof. Let us prove that f(k) < f(k—1)+k— 1. Then an easy induction will give the result as f(1) = 1.

Let D be an (f(k— 1)+ k — 1)-chromatic digraph and T be an oriented tree of order k. Let A be a maximal
acyclic induced subdigraph of D. If x(A) > k, then by Theorem[11} A contains 7', so D contains 7. If (A) <k—1,
then (D —A) > f(k—1). Let v be a leaf of T. The digraph D — A contains T —v. Now, by maximality of A, for
every vertex x of D — A, there are vertices y and z of A such that xy and zx are arcs. So we can extend 7 —v to T by
adding a vertex to A. O

Another approach will be to prove the existence of a dominating set with not too large chromatic number in
any k-chromatic digraph.

Problem 15. What is the minimum integer A(k) such that every k-chromatic digraph has an A (k)-chromatic domi-
nating set?

2.3 Acyclic partition and labelled oriented trees

Let D be a digraph. An acyclic partition of D is a partition of its vertex set (Vi,Va,...,V,) such that the digraph
DI[V;] induced by each of the V; is acyclic. The acyclic number of D, denoted ac(D), is the minimum number of
parts of an acyclic partition of D. Note that a colouring is an acyclic partition since a stable set is acyclic. So
x(G) > ac(G).

Theorem 16. Let T be an oriented tree with vertices vi,...,vr and D a digraph with acyclic number k. Then for
any acyclic partition of D in k sets V1, ..., Vi, D contains a copy of T such that v; € V; forall 1 <i<k.

Proof. We prove the result by induction on k, the result being trivial for k = 1. Let v be a leaf of T. Free to relabel
the vertices and the sets of the acyclic partition, we may assume that v = v and the neighbour of v in T is v;_;.
Moreover, by directional symmetry, we may assume that vg_1 — vx. Let us now consider D' = D[V, U---UV;_4].
Obviously ac(D') = k—1, so (Vq,...,Vx_1) is an acyclic partition of D’ in ac(D’) sets. Hence, by the induction
hypothesis, D' contains copies of 7/ = T — v such thatv; € V; forall 1 <i<k—1.

Let S be the set of vertices of V;_; that correspond to v;_ in such a copy of T/ in D’. Let us show that a
vertex s of S dominates a vertex ¢ in Vi, which gives the result. Suppose for a contradiction that no vertex of S
dominates a vertex of V. Then D[V, US] is acyclic. Let us consider D" = D'\ S. Then ac(D") =k — 1. Indeed
an acyclic partition of D” in less than k — 1 sets together with SUV; would be an acyclic partition of D in less
than k sets which is impossible. In particular, S # Vy_1. So (V1,...,Vk—2,Vi—1 \ S) is an acyclic partition of D" in
ac(D") sets. Thus, by the induction hypothesis, D” contains a copy of T’ such that v; € V; for all 1 <i < k—2 and
Vk—1 € Vk—1 \ S. But this contradicts the definition of S. O

Theorem (16|and Theoremyield that f(k) < (k—1)?41. Indeed let D be a ((k— 1)? 4+ 1)-chromatic digraph
D and T be an oriented tree of order k. If ac(D) > k, by Theorem D contains T. If not, in an acyclic partition in
ac(D) < k sets, one of the sets induces a digraph with chromatic number at least k and by Theorem |11} D contains
T.

3 Universality of antidirected trees
In [7], Burr proved that every antidirected tree of order k is contained in every digraph D with at least 4(k— 1)|V (D)|

arcs. This implies trivially that every antidirected tree of order k is (8k — 7)-universal since every (8k —7)-critical
digraph D has minimum degree at least 8k — 8 and thus has at least 4(k — 1)|V (D)| arcs.

RR n° 7502



8 Louigi Addario-Berr}[r], Frédéric Havet[?], Cldudia Linhares SalesE], Bruce Reed Efl’ Stéphan Thomassé E]

In this section, we will first improve Burr’s result by showing that every antidirected tree of order k is (5k—9)-
universal. We then settle Conjecture [2] for antidirected trees of diameter at most 3 and deduce that every such tree
is (2k — 4)-universal.

3.1 Improved upper bound

Let T be an antidirected tree. Let V(T (resp. V~(T)) be the set of vertices with in-degree (resp. out-degree) 0
in T. Clearly (V~(T),V*(T)) is a partition of V(T). We set m(T) = max{|VH(T)|,|V—(T)|}.

Theorem 17. Let T be an antidirected tree and D = (V,E) a digraph with at least (4m(T) —4)|V| arcs. Then D
contains T.

The proof of this theorem is based on the following three lemmas :

Lemma 18 (Burr [[7]). Let G = (V,E) be a bipartite graph and p be an integer. If |E| > p|V| then G has a subgraph
with minimum degree at least p + 1.

Proof. Let us prove it by induction on |V|. If |V| = 4p, then G is the complete bipartite graph K>, >, and we have
the result.

Suppose now that |V| > 4p + 1. If G has minimum degree at least p + 1 then G itself is the desired subgraph.
Otherwise, there is a vertex v with degree at most p. Then G — v is bipartite and has at least p(|V| — 1) edges.
Then, by the induction hypothesis, it has a subgraph with minimum degree at least p + 1. 0

Remark 19. This result is tight : for any € = m%;p > 0, the complete bipartite graph K, ,, has pm = p|V|(1 —¢€)
edges but every subgraph has minimum degree at most p.

Let (A, B) be a bipartition of the vertex set of a digraph D. We denote by E(A, B) the set of arcs with tail tail
in A and head in B and by e(A, B) its cardinality.

Lemma 20 (Burr [[7]). Every digraph D contains a partition (A, B) such that e(A,B) > |E(D)|/4.

Proof. Let (A, B) be a partition that maximizes the number of arcs between A and B in any direction. Then every
vertex v has at least d(v) /2 neighbours in the opposite part. So e¢(A,B) +e(B,A) > |E(D)|/2. It follows that either
e(A,B) or e(B,A) is at least |E(D)|/4. O

Lemma 21. Let T be an antidirected tree and D = ((A,B),E) be a bipartite graph such that every vertex in A has
out-degree at least m(T) and every vertex in B has in-degree at least m(T). Then D contains T.

Proof. Let us show by induction on |T| that one may find a copy of T such that every vertex of V*(T) (resp.
V~(T))isin A (resp. B).
Let v be a leaf of T. By directional symmetry, we may assume that v is an out-leaf so v € V™ (T). Let u be
the out-neighbour of v in 7. Then u is V™ (T). T — v satisfies m(T —v) < m(T) so one can find a copy of T —v
such that every vertex of V(T —v) (resp. V(T —v)) is in A (resp. B). In particular, u is in B. Now u has at least
m(T) in-neighbours in A, so one of them is not in the copy of T —v since V(T —v) < m(T). So adding a vertex
in A\ N~ (u) to the copy of T — v, we get the desired copy of 7.
O

Proof of Theorem[17}, By Lemma 20} it contains a bipartite subdigraph D' = (V = (A, B),E(A, B)) with at least
(m(T) — 1)|V| edges. By Lemma[18] D’ has a bipartite subdigraph such that D" = ((A”,B"),E") such that every
vertex of A” has out-degree at least m(T') and every vertex of B” has in-degree at least m(T'). Hence, by Lemma
D" (and so D) contains 7. O

INRIA
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Corollary 22. Every antidirected tree T is (8m(T) —7)-universal.

Proof. Bvery (8m(T) — 7)-chromatic digraph D contains an (8m(T) — 7)-critical digraph D’ which has minimum
degree at least 8m(T) — 8. So D' has at least (4m(T') —4)|V| arcs. Hence, by Theorem[17} D contains 7. O

Note that Corollary [22|is rather good when m(T) is close to |T'|/2). We will now improve Corollary 22| when
m(T) is big.

Lemma 23. Let T be an antidirected tree. Then T has at least Exc(T) = |V (T)| — |V~ (T)| out-leaves.

Proof. Let us prove it by induction on the order of T'.

Note that if Exc(T) < 0, the result is trivial. Suppose now that Exc(T) > 0. Let v be a leaf of T.

If v is an out-leaf then Exc(T —v) = Exc(T) — 1. By induction T — v has Exc(T) — 1 out-leaves. These leaves
and v are the Exc(T) out-leaves of T.

If v is an in-leaf then Exc(T —v) = Exc(T)+ 1. By induction T — v has Exc(T) + 1 out-leaves and at most
one of them dominates v. So T has at least Exc(T') out-leaves. O

Theorem 24. Let T be an antidirected tree of order k which is not a star. Then T is (10k — 8m(T) — 11)-universal.

Proof. By directional duality, we may assume that Exc(T) > 0. Let F be a set of Exc(T) out-leaves and U be
the antidirected tree T — F. Then Exc(U) =0, so m(U) = |U|/2 = k—m(T). Hence, by Corollary U is
(8k —8m(T) — 7)-universal. Now, by Lemmal[7] T is (10k — 8m(T) — 11)-universal. O

Corollary 25. Every antidirected tree T of order k > 2 is (5k —9)-universal.

Proof. If T is a star, then it is (2k — 2)-universal, so we may assume that 7 is not a star.

Corollary 22 and Theorem 24] yield that T is (min{8m(T) — 7; 10k — 8m(T) — 11})-universal. The first func-
tion increases with m(7T') and the second decreases with m(T). They are equal when m(T) = %k - %. In this case,
the value of the two functions is 5k —9. O

3.2 Antidirected trees of diameter 3

In this subsection, we give evidence for Conjecture 2] We settle it for antidirected trees of diameter at most 3.

It is easy to show that Conjecture |2| holds for antidirected trees of diameter 2 because there are only two
antidirected trees of order k and diameter 2: the tree S,j with a vertex v which dominates the k — 1 others and its
directional dual S, .

Proposition 26. Let D be a digraph. If |E(D)| > (k—2)|V (D)

, then D contains Sk+ and S .

Proof. Let D be a digraph with more than (k —2)|V(D)] arcs. Since ¥,cy(pyd” (v) = E(D) > (k—2)|[V(D)|, D
contains a vertex of out-degree at least k — 1. So it comtains S:. Similarly, D contains S, . O

Henceforth, we now restrict our attention on antidirected trees of diameter 3. An antidirected tree of order k
and diameter 3 is made of a central arc uv such that u dominates the in(T) > 1 in-leaves of T and v is dominated
by the out(T) = k —2 —in(T) out-leaves of T. In particular, k > 4.

Lemma 27. Let D be a digraph, T an antidirected tree of diameter 3 and uv € E(D). If
a) dt(u) >k—1andd=(v) > out(T)+1, or
b) d(u)>k—2,d (v)>out(T)+1and N~ (v) ¢ N*(u) U{u},

then D contains T.
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Proof. Set out(T) = p. Since its in-degree is at least p+ 1, the vertex v has at p in-neighbours vy, ...,v, distinct
from u with vi € N~ (v) \N T (u) U{u} in case b). Since d* (u) > k—1orv; ¢ N*(u), the vertex u has k—2 — p =
in(T) out-neighbours in V(D) \ {v,v1,...,v,}. Hence D contains T O

We will now show a statement which is slightly stronger than Conjecture [2] for antidirected trees of diameter
3.

Theorem 28. Let D be a connected digraph. If |[E(D)| > (k—2)|V(D)| and D # Ki_,, then D contains every
antidirected tree of order k and diameter 3.

Proof. Let T be an antidirected tree of order k and diameter 3. Let us prove the result by induction on |V (D).

Let V' (resp. V™) be the set of vertices of out-degree (resp. in-degree) at least k — 1.

Assume first that V* =V~ = 0. Then every vertex v satisfies d*(v) = d~(v) = k—2. If D is not K;_i,
then it is not complete symmetric and has at least k vertices. Thus there exists three vertices u, v and v such that
uv € E(D), viv € E(D) and uv ¢ E(D). So u and v satisfies the condition b) of Lemma[27} Hence D contains 7.

Hence, by symmetry, we may assume that V' # 0. If V™~ = 0 then every vertex has in-degree k — 2. Picking
a vertex u € V' and one of its out-neighbour v, since k —2 > out(T), Lemma gives the result.

Hence we may assume that V' and V™~ are nonempty.

Let u be a vertex of out-degree at least k — 1 and v an out-neighbour of u. If d~(v) > out(T) + 1, then
Lemma gives the result. So we may assume that every out-neighbour of u has in-degree at most d— (v) < out(T).
In particular, the set V; of vertices of in-degree at most out(T') has cardinality at least k — 1.

Analogously, we may assume that the set V, of vertices of out-degree at most in(7') has cardinality at least
k—1.

Suppose first that Vi NV, has a vertex v. Then d(v) < in(T) + out(T) = k —2. Hence |E(D —v)| > (k—
2)|V(D —v)| and by induction hypothesis, T is contained in D — v and so in D unless D —v = K;_;. But in this
case, d(v) = k—2 and it is simple matter to check that D contains 7. Hence we may assume that V; NV, = 0.

Suppose that there is v € Vi and v, € V; such that vyv, is not an arc. Then consider the digraph D’ obtain
by replacing the two vertices v; and v, by a vertex ¢+ dominating the out-neighbours of v; and dominated by
the in-neighbours of v,. Then D' has one vertex less than D and at most d~(vq) +d ™ (v,) arcs less than D (the
d~(v1) ingoing vy, the d*(v;) outgoing v, and viv, ¢ E(D)). Now d~(vi) +d ™ (v2) < in(T) + out(T) = k — 2,
so |[E(D')| > (k—2)|V(D')|. If D' # K;_,, by induction hypothesis, D’ contains a copy of T. This copy may be
transformed into a copy of T in D, by replacing ¢ by vy (resp. v,) if ¢ is a source (resp. a sink) in T. If D' = K
then D — {vi,v2} = K;_». Since d* (v;) > in(T)+ 1 and d~ (v2) > out(T) + 1, one can easily check that D contains
T.

Hence V| — V,. Then any vertex u € V| has degree at least k — 1 and dominates any vertex v € V, which has
in-degree at least k — 1. So by Lemma[27] D contains 7. O

Theorem [28]implies that every connected digraph D with minimum degree at least 2k — 4 which is not K;_
contains every antidirected tree of order k and diameter 3. In particular, this is the case if D is (2k — 3)-critical.
Hence antidirected trees of order k and diameter 3 are (2k — 3)-universal. We will now improve slightly this result
by showing that such trees are (2k — 4)-universal.

Proposition 29. Let D be an oriented graph with minimum degree at least 2k — 5. Then D contains every antidi-
rected tree of order k of diameter 3.

Proof. Suppose for a contradiction that there is an antidirected tree 7' of order k and diameter 3 which is not
contained in an oriented digraph D with minimum degree 2k — 5.

Assume first that k = 4.

We claim that D contains a vertex of out-degree 2. Suppose not. Then there is a vertex x of out-degree 3.
By Lemma [27] each out-neighbour of x has in-degree 1 and thus out-degree at least 2 and so at least 3. Then the
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oriented graph induced by the vertices of out-degree at least 3 contains a vertex of in-degree at least 3. So there is
an arc uv such that d* (u) > 3 and d~ (v) > 3. This contradicts Lemma 27}

Let a be a vertex of out-degree 2, and b and c its two out-neighbours. We claim that there is no arc between
b and c. Indeed suppose there is one, say bc. Since d(b) > 3, b has a neighbour u distinct from a and c. If u is an
in-neighbour then (u,b,a,c) is a copy of T otherwise (a,c,b,u) is.

It follows that d~ (b) =d~(¢) = 1 sod™(b) =d ™ (c) = 2.

Hence the oriented graph induced by the vertices of out-degree 2 contains a vertex of in-degree at least 2. So
there is an arc uv such that d* (u) > 2 and d~(v) > 2. Moreover by the above claim, N~ (v) "Nt (u) = 0. This
contradicts Lemma

Assume now that k > 5.

By symmetry, we may assume that out(T) < in(T), so out(T) < k—4. Let V* be the set of vertices of
out-degree at least k — 1.

We claim that V* = 0.

Suppose not. If there is no arc uv with u € V' and v ¢ V™, then each vertex of V* has its out-neighbour in
V. So the digraph D™ induced by V' has at least |[V1|(k — 1) arcs and thus has at least a vertex v of in-degree
k—1in D". Let u be any in-neighbour of vin D". As d* (u) > k — 1, uv contradicts Lemma
Hence we may assume that there is an arc uv withu € V" andv ¢ V', thend* (v) <k—2sod (v) > k—3. Since
out(T) < k—4, uv contradicts by Lemma[27} This proves the claim.

So every vertex has out-degree at most k — 2 and thus in-degree at least k — 3. We claim that there is a vertex
u of out-degree k — 2 dominating a vertex of in-degree at least kK — 2. Suppose not. Then every vertex of out-degree
k — 2 has its out-neighbours with in-degree at most k — 3 and thus out-degree at least k — 2. So V; the set of vertices
of out-degree k — 2 has no outgoing arcs and thus there is a vertex v in V» with in-degree at least k — 2 in D[V2].
Picking any in-neighbour u of v in V, we get the desired vertices, a contradiction.

By Lemma 27} for every out-neighbour w of u, N~ (w) C N (u) U{u}. Since each vertex has in-degree at
least k — 3 and v has in-degree k — 2, the digraph D[N (u)] has at least (k—2)(k—4)+1 > (kgz) arcs which is
impossible since D is an oriented graph.

O

Note that Proposition [29| does not holds for digraphs instead of oriented graphs. Indeed there are connected
digraphs such that d(v) > 2k — 5 for every vertex v that do not contain every antidirected tree of order k of diameter
3. Indeed let G = (A,B),E) be a regular bipartite graph of degree k — 3. Let D the digraph obtained from G by
orienting all the edges from A to B and adding for each a € A (resp. b € B) a copy of K;_, dominating a (resp.
dominated by b). One can easily check that for every vertex d™ +d~ > 2k — 5 and that D does not contain the
antidirected tree of order k and diameter 3 with one out-leaf.

Corollary 30. Every antidirected tree of order k and diameter 3 is (2k — 4)-universal.

Proof. Let D be a (2k — 4)-chromatic digraph. It contains a (2k — 4)-critical oriented graph D', in which every
vertex has degree at least 2k — 5. Hence D', and so D, contains every antidirected tree of order k of diameter 3 by
Proposition [29] O

Corollary [30|and Proposition [29| are tight. Indeed a regular tournament of order 2k — 5 is (2k — 5)-chromatic
and is an oriented graph in which each vertex with minimum degree 2k — 6 but does not contain the antidirected
tree with k — 3 out-leaves because no vertex has in-degree k — 2 or more.
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