
HAL Id: inria-00551509
https://hal.inria.fr/inria-00551509

Submitted on 4 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling more optimizations in GRAPHITE: ignoring
memory-based dependences

Konrad Trifunovic, Albert Cohen

To cite this version:
Konrad Trifunovic, Albert Cohen. Enabling more optimizations in GRAPHITE: ignoring memory-
based dependences. Proceedings of the 8th GCC Developper’s Summit, Oct 2010, Ottawa, Canada.
�inria-00551509�

https://hal.inria.fr/inria-00551509
https://hal.archives-ouvertes.fr

Enabling more optimizations in GRAPHITE: ignoring memory-based

dependences

Konrad Trifunovic

INRIA Saclay

konrad.trifunovic@inria.fr

Albert Cohen

INRIA Saclay

albert.cohen@inria.fr

Abstract

Data-dependences need to be analyzed to guarantee the

legality of a loop transformations and parallelization.

But many dependences are spurious memory-based de-

pendences: they are induced by storing values in the

same memory location. Spurious dependences reduce

the degrees of freedom in loop transformations and par-

allelization. The effective handling of spurious data-

dependences in GIMPLE is essential for the effective-

ness of polyhedral compilation in GCC.

We show that most memory-based-dependences in-

duced by the gimplification can be ignored, rather than

scalar/array expanded. Our method relies on an exten-

sion of the violated-dependence-analysis technique im-

plemented in GRAPHITE. It has a minimal impact on

compilation time and guarantees that we are not loosing

any transformation opportunity compared to a source-

to-source compilers. We will detail the algorithm, the

current state of the implementation and the future plans.

1 Introduction

Loop nest optimization and parallelization are two of

the most important program optimizations for perfor-

mance on multicore architectures. Each modern com-

piler needs a careful implementation of those transfor-

mations in order to achieve efficiency on current archi-

tectures.

Choosing the most effective loop nest optimiza-

tion and parallelization strategy is a huge and un-

structured optimization problem that compiler has to

face [9], [8], [3], [21], [20]. The well known approach

to this problem is the polyhedral compilation frame-

work [9] aimed to facilitate the construction and explo-

ration of loop transformation sequences and paralleliza-

tion strategies by mathematically modelling memory ac-

cesses patterns, loop iteration bounds, and instruction

schedules.

Each program transformation needs to be safe – the

semantics of the original imperative program can-

not be changed. In order to preserve legality, data-

dependences [1] need to be analyzed. Data-dependences

put constraints on the relative ordering of read and write

operations.

But many dependences are spurious memory-based de-

pendences1 : they are induced by the reuse of the same

variable to store multiple (temporary) values. Spurious

scalar dependences not only increase the total number

of dependences that need to be dealt with(having an im-

pact on compilation time), but, most importantly, they

reduce the degrees of freedom available to express ef-

fective loop transformations and parallelization.

They could be removed by introducing new memory lo-

cations, i.e. expansion of the data structures [4]. While

the expansion approaches might remove many spurious

dependences, they have to be avoided whenever possi-

ble due to their detrimental impact on cache locality and

memory footprint.

Polyhedral loop nest optimization and parallelization is

traditionally implemented on top of rich, high-level ab-

stract syntax trees. The Graphite pass in GCC is an ex-

ception, as it operates on GIMPLE intermediate code.

Designing a polyhedral compilation framework on 3-

address code exacerbates the problem of spurious mem-

ory dependences even further, since the gimplification

process introduces many temporary variables.

In this paper, we show a technique guaranteeing that

all the memory-based dependences induced by the low-

ering of a source program into GIMPLE can be ig-

nored, rather than removed through scalar/array expan-

1anti and output dependences [1]

1

sion. This is excellent news to many loop transforma-

tion experts, as it circumvents a well known difficulty

with polyhedral compilation techniques. Our method re-

lies on an extension of the violated dependence analysis

technique already implemented in Graphite.

2 State of the art

Spurious data dependences are known to hamper pos-

sible parallelization and loop transformation opportuni-

ties. A well known technique for removing spurious

data dependences is to expand data structures – assign-

ing distinct memory locations to conflicting writes. An

extreme case of data expansion is single-assignment [6]

form, where each memory location is assigned only

once.

Clearly, there is a trade-off between parallelization and

memory usage: if we expand maximally, we will get

the maximal degree of freedom for parallelization and

loop transformations, but with a possibly huge memory

footprint. If we choose not to expand at all, we will save

memory, but our parallelization or loop transformation

possibilities would be limited.

There are many works trying to find the best compro-

mise between two extremes. They basically take two

general approaches:

• Perform a maximal expansion, do a transformation,

and then do an array contraction which minimizes

the memory footprint. Approaches like [12], [11],

[5] fall into this category. This approach gives the

maximal degree of freedom for parallelization or

loop transformation, but an array contraction phase

is not always capable of optimizing the memory

footprint.

• Control the memory expansion phase by impos-

ing constraints on the scheduling. Approaches

like [4], [14] fall into this category. This category

of approaches tries to optimize the memory foot-

print, but it might restrict schedules, thus loosing

optimization opportunities.

Our approach takes the following strategy: we do not

expand memory before scheduling. We simply ignore

all memory based dependences, and we accept any pro-

posed schedule. Only after, we perform a violation anal-

ysis to check which memory based dependences might

Figure 1: matrix multiplication

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

{
S1: A[i][j] = 0;

for (k = 0; k < N; k++)

S2: A[i][j] += B[i][k] ∗ C[k][j];

}

Figure 2: after PRE

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

{
t = 0;

for (k = 0; k < N; k++)

{
t += B[i][k]∗C[k][j];

}
A[i][j] = t;

}

have been violated, and we propose to expand memory

or to change a schedule.

By taking our new approach, we are combining the best

from two mentioned approaches: we do not perform a

full expansion and we do not restrict the schedule. But

there is a limitation to this: we are not able to compute

schedules automatically by using linear programming

approach as in [8], [3]. We must fall back to iterative

enumeration of possible schedules as it is done in [16].

3 Motivating example

Consider a simple numerical kernel – the famous matrix

multiplication – given in a Figure 1. A classical source-

to-source polyhedral optimizer would see a simple static

control loop with two statements only. A dependence

graph is simple as well – it is shown in Figure 7. It

contains both true (dataflow, read-after-write) depen-

dences, and memory-based (write-after-write and write-

after-read) dependences. The data dependence graph

does not prevent loops ’i’ and ’j’ to be interchanged.

If we want to compile this source code in GRAPHITE,

things become more complicated. After source code

2

Figure 3: GIMPLE and CFG as seen by Graphite

i_14 = i_28 + 1;

if (i_14 <= 999)

bb 8

j_29 = PHI <j_13(3), 0(10)>

k_30 = PHI <k_12(6), 0(4)>

prephitmp.3_34 = D.1979_35;

D.1969_10 = D.1967_8 * D.1968_9;

D.1970_11 = D.1969_10 + prephitmp.3_34;

k_12 = k_30 + 1;

bb 4

bb 6

goto <bb 5>

bb 7

if (k_12 <= 999)

T F

j_13 = j_29 + 1;

if (j_13 <= 999)

bb 10

T F

T
F

i_28 = PHI <0(2), i_14(9)>

phi_out_of_ssa.6[0] = 0.0;

A[i_28][j_29] = 0.0;S0

S1

bb 5

S2

S3

S4

S5

S6

D.1979_35 = phi_out_of_ssa.6[0];

D.1967_8 = B[i_28][k_30];

D.1968_9 = C[k_30][j_29];

Close_Phi.7[0] = D.1970_11;

phi_out_of_ssa.6[0] = D.1970_11;

A_I_I_lsm.5_39 = Close_Phi.7[0];

A[i_28][j_29] = A_I_I_lsm.5_39;

S7

S8

Figure 4: Legal execution order

execution order

dependences

i

j

(1,1)

(1,2) (2,2)

(2,1)

Figure 5: Illegal execution order

execution order

dependences

i

j

(1,1)

(1,2)

(2,1)

illegal execution

 order

(2,2)

Figure 6: Data Dependence Graph

S1

S2

S6

S5

S7

S8

S0

δ
WAR
S2→S1

δ
RAW
S2→S6δ

WAR
S6→S2

δ
WAW
S1→S1

δ
WAW
S5→S5

δ
RAW
S1→S2

δ
RAW
S5→S7

δ
WAR
S7→S5

δ
WAW
S8→S0

δ
WAW
S6→S6

3

Figure 7: Matmult Data Dependence Graph

S1

S2 δ
WAW
S2→S2

δ
RAW
S1→S2

δ
RAW
S2→S2

δ
WAR
S2→S2

δ
WAW
S1→S2

is transformed into GIMPLE it goes through many op-

timization passes until it reaches GRAPHITE. One of

those passes is PRE(Partial Redundancy Elimination)

which does the following scalar optimization: instead

of accumulating a values into an array, it initializes a

scalar value, accumulates values into that scalar and

then stores the scalar into an array element. Concep-

tually, the idea is shown in Figure 2. That is a very good

scalar optimization, but it makes things much harder for

GRAPHITE to analyze. The code seen by GRAPHITE is

shown in Figure 3.

A new dependence graph for the GIMPLE code is

shown in Figure 6. Not only has the data dependence

graph become more complex, but it is structurally dif-

ferent from the dependence graph seen by a source-

to-source compiler. After introducing a scalar into the

loop, a new write-after-write dependence on statement

S1 has been introduced: δWAW
S1→S1

. This dependence stems

from the fact that the same temporary scalar value is

overwritten in each iteration of the containing loop.

A dependence theory tells us that this dependence has

to be respected. thus it enforces a sequential order on

the code. Figure 4. shows that if we execute the code

in a sequential manner, according to original loop nest-

ing (loop i as outermost, loop j as innermost), then de-

pendences would be preserved. If we try to interchange

loops i and j, we would invert a dependence constraint,

thus violating the write-after-write dependence on the

scalar. This is shown in Figure 5. Currently GRAPHITE

would not allow interchanging loops i and j.

But our intuition tells us that it is legal to interchange

loops i and j and still have a correct output code. An

essential observation is that some memory based depen-

Figure 8: A flow of violation analysis based polyhedral

compilation

INPUT: a SCoP

1. compute dataflow dependences

2. compute live range interval sets

3. choose a transformation

4. if dataflow dependence is violated

(a) go to step 3.

5. if live range interval is violated

(a) if we do not want to expand

i. go to step 3.

(b) if we want to expand

i. perform an expansion of variable whose

live range interval is violated, keep a

schedule transformation and go to step

6.

6. generate the code

dences (write-after-write and write-after-read) could be

ignored when performing some transformations. But

how do we determine when it is safe to ignore some

dependences?

In the following sections we show how to formally

prove which dependences could be ignored and which

could not. We show an instance-wise variable live range

analysis used to collect the information on memory

usage patterns and violated dependence analysis used

for checking whether a transformation destroys variable

live ranges.

4 Framework

Polyhedral compilation traditionally takes as an input

a dependence graph with all dependences, constructs a

legal transformation using a mathematical framework

(usually based on linear programming) and generates

code.

The other class of so called violation analysis based

compilation flow [18] takes as an input a dependence

graph with all dependences as well, it constructs a trans-

formation (without legality check), and only then it

4

checks whether the transformation is legal. If it is, then

it proceeds with code generation. If it is not, then it re-

iterates and proposes a next transformation until it finds

a legal one.

We take the violation analysis approach a step further:

we do not take into the account all the dependences. We

split the dependence graph into those dependences that

are true data-flow dependences and those that are mem-

ory based.

When checking for legality of rescheduling, we assure

that all true dependences are satisfied, and we do not

check memory-based dependences for scheduling con-

straints. Instead, we construct live range sets for all

the memory locations that are operated on. We check

whether a transformation would destroy the live ranges.

If not, then the transformation is legal.

If a transformation destroys live range set for a memory

location, we could choose to expand those memory lo-

cations so as to repair the legality of live ranges, or we

could abandon that transformation and choose another

one. The choice on whether to expand could be based

on a cost-model (what is a footprint) or it could be just

a compilation parameter.

4.1 Some notation

The scope of the polyhedral program analysis and ma-

nipulation is a sequence of loop nests with constant

strides and affine bounds. It includes non-perfectly

nested loops and conditionals with boolean expressions

of affine inequalities [9].

The maximal Single-Entry Single-Exit (SESE) region of

the Control Flow Graph (CFG) that satisfies those con-

straints is called a Static Control Part (SCoP) [9, 3].

GIMPLE statements belonging to the SCoP should not

contain calls to functions with side effects (pure and

const function calls are allowed) and the only mem-

ory references that are allowed are accesses through ar-

rays with affine subscript functions. SCoP control and

data flow are represented with three components of the

polyhedral model [9, 3, 13]:

Iteration domains capture the dynamic instances of

instructions — all possible values of surrounding loop

induction variables — through a set of affine inequali-

ties. Each dynamic instance of an instruction S is de-

noted by a pair (S, i) where i is the iteration vector con-

taining values for the loop induction variables of the sur-

rounding loops, from outermost to innermost. If an in-

struction S belongs to a SCoP then the set of all iteration

vectors i relevant for S can be represented by a polytope:

DS =
{

i | DS× (i,g,1)T ≥ 0
}

which is called the itera-

tion domain of S, where g is the vector of global param-

eters whose dimension is dg. Global parameters are in-

variants inside the SCoP, but their values are not known

at compile time (parameters representing loop bounds

for example).

Data references capture the memory locations of ar-

ray data elements on which GIMPLE statements op-

erate. In each SCoP, by definition, the memory ac-

cesses are performed through array data references. A

scalar variable can be seen as a zero-dimensional array.

The data reference polyhedron F encodes the access

function mapping iteration vectors in DS to the array

subscripts represented by the vector s: F =
{

(i,s) |
F× (i,s,g,1)T ≥ 0

}

.

Scheduling functions are also called scattering func-

tions inside GRAPHITE following CLooG’s terminology.

While iteration domains define the set of all dynamic in-

stances of an instruction, they do not describe the execu-

tion order of those instances. In order to define the ex-

ecution order we need to give to each dynamic instance

the execution time (date) [8, 10]. This is done by con-

structing a scattering polyhedron representing the rela-

tion between iteration vectors and time stamp vector t:

θ =
{

(t, i) |Θ× (t, i,g,1)T ≥ 0
}

.

Dynamic instances are executed according to the lexico-

graphical ordering of the time-stamp vectors. By chang-

ing the scattering function, we can reorder the execution

order of dynamic iterations, thus performing powerful

loop transformations.

A dependence graph G = (V,E) is the graph whose ver-

tices are statements V = S1,S2, . . . ,Sn and whose edges

e ∈ E from Si to S j are representing scheduling con-

straints between statement instances of Si and S j. Those

scheduling constraints are caused by data dependences.

Dependence edges e are labelled by dependence poly-

hedra δ Si→S j . Dependence polyhedra describe, in a

5

Figure 9: Read/Write instruction interleaving and vari-

able live ranges

R

W

R W R W R WW

.....

i=0,j=0

k=0 k=1 k=N−1

R W R W R WW

W

S2

S6

......

.....

k=0 k=1 k=N−1

i=0,j=1

S1

live range

execution order

closed form linear expression, pairs of statement in-

stances whose relative execution order should be pre-

served: an instance of statement Si should be executed

before an instance of statement S j [17].

4.1.1 Live ranges

Execution trace of a sequential program can be seen as

an interleaving of read and write instructions. This inter-

leaving is encoded in a scheduling function of the poly-

hedral model, while memory accesses are encoded as

data reference polyhedra.

We define a live range of a variable as the span of

instructions in an execution trace between the first

write(definition) of the variable and the last use (before

it is killed). Given a GIMPLE code in Figure 3 we can

model the execution trace and instances of live ranges

as shown graphically in Figure 9.

Essentially, for a given scalar variable or memory cell in

an array, there will be multiple instances of live ranges,

since one scalar value might be overwritten and read

multiple times inside some loop. Thus, we need a com-

pact way to represent all instances of live ranges for each

memory cell.

We use polyhedral representation to represent, in a com-

pact manner, a set of instances of live ranges for a given

memory location. Each instance of a live range is a tuple

describing an instruction instance that is defining (writ-

ing) a value and an instance of last read instruction that

is consuming (reading) a value before it is killed:

(< SLW , iLW >,< SLR, iLR >)

We consider a set of live range tuples:

L = {(< SLW , iLW >,< SLR, iLR >)}

This set represents an instancewise set of live ranges.

We want to have a closed form expression that summa-

rizes all the instances of live ranges.

We can decompose the set L into a set of convex poly-

hedra, each polyhedron describing live range instances

for a pair of statements:

λ
SLW→SLR = {(iLW, iLR) : Λ× (iLW, iLR,g,1)

T ≥ 0}

.

We define the set of live range instances for a given

memory location M as the set of all non-empty live

range instance polyhedra for each pair of statements that

might form at least one live range:

LM = {λ SLW→SLR : SLW ,SLR start/end stmts of intervals}

Each convex polyhedron λ SLW→SLR represents instances

of statements that form a definition/last use pairs. This

polyhedron is constructed by enforcing the following

conditions:

Conflict condition: the definition statement instance

and the last use statement instance refer to the same

memory location: FSLW
(iW) = FSLR

(iR).

Causality condition: the read instruction is scheduled

after write instruction: θSw
iW ≺ θSr

iR.

Liveness condition: a live range is closed by a read

instruction that is the latest read instruction before the

variable is killed (by a subsequent write instruction). In

polyhedral terms, this is expressed as:

{

iLR = lexmax(iR)
∧ iLR ≺ iKW = lexmin[iW](I : iW ≺ I)

}

6

The rest of this section will detail an algorithm for the

computation of live ranges. All the necessary polyhe-

dral operations are shown in details, so as to give a de-

tailed implementation plan and a computational com-

plexity estimate.

4.2 Algorithm details

There are four major algorithmic components we need

to provide in order to support the idea of violation anal-

ysis based polyhedral compilation shown in Figure 8:

the array dataflow analysis algorithm is used to com-

pute true(dataflow) dependences in a data depen-

dence graph [7]. This information is used twice:

in a violated dependence analysis check, and in a

computation of memory live range intervals.

the memory live range interval analysis algorithm is

used to compute sets of live range intervals for each

memory location accessed in a SCoP. This infor-

mation is used in the violated dependence analysis

check to validate the transformation.

the live range violation analysis algorithm is used to

check for the violation of live range intervals af-

ter a transformation. This check is the core of our

new violated dependence analysis approach.

the dependence violation analysis algorithm [17] is

already implemented in GRAPHITE. Currently it

is used for checking the legality of both dataflow

and memory-based dependences. In our new ap-

proach it is used for checking the violation of true

dataflow dependences only, while the violation of

memory-based dependences is replaced by the pre-

viously mentioned algorithm.

Each SCoP inside GRAPHITE is described as a collection

of polyhedral components for each statement:

SCoP = {< DSi
,θSi

,FSi
>}

For the presentation purposes, we will consider that we

have scheduling functions kept independently for each

statement. We also use a property of GIMPLE three ad-

dress code, stating that each statement can have at most

one read or write to an array.

We have additional attributes attached to the data refer-

ence access polyhedron: base(FSi
) returns the base ad-

dress of the accessed array; write(FSi
), and read(FSi

)
attributes have true value if the access is write/read re-

spectively.

We use a 2 · d + 1 [9] encoding of the schedule time-

stamps. In the 2 ·d +1encoding, odd dimensions corre-

spond to a static schedule – the precedence order of two

statement instances that share the same loop, and are ex-

ecuted at the same iteration, is determined by their tex-

tual order inside that loop. Even dimensions correspond

to dynamic schedule – if two statements share common

loop, then the statement whose iteration comes earlier is

executed before the other. There are as many even di-

mensions as the loop depth of the statement, hence the

2 ·d+1encoding. For example, schedules for statements

S1 and S2 from Figure 3 are encoded in the following

scheduling functions:

θS1
(i, j)T = (0, i,0, j,0)T

θS2
(i, j,k)T = (0, i,0, j,1,k,1)T

4.2.1 Array dataflow analysis

Array dataflow analysis [7] essentially gives a solution

to the following question: for each scalar or array ref-

erence give the source instruction instance – an instruc-

tion instance that produced the value that reaches the

given scalar or array reference. Array dataflow analysis

considers read-after-write dependences only. Compared

to a simple implementation of dependence analysis [17]

currently used in GRAPHITE, it removes all transitively

covered dependences.

The result is a list of dependence relations δ S j→Si .

Each dependence relation represents the relation be-

tween source and sink (write/read) iterations that access

the same memory cell, so that the read access is getting

the live value written in the write access, and not over-

written by any intermediate write access. The algorithm

is outlined below:

∀Si ∈ SCoP such that read(FSi
) = T do:

1. ∀S j ∈ SCoP such that [write(FS j
) = T and

base(FS j
) = base(FSi

)] do:

(a) SW ← SW ∪S j

7

2. depth← 2 ·dim(DSR
)+1

3. Iset ←DSR

4. for lev← depth to 1

5. ∀S j ∈ SW such that S j can precede Si at lev do:

(a) {(iLW , iR)} = lexmax[iR ∈ Iset](iW :

FS j
(iW) = FSi

(iR)∧θSw
iW ≺lev θSr

iR)

(b) δ S j→Si ← δ S j→Si ∪{(iLW , iR)}

(c) Iset ← Iset \ range({(iLW , iR)})

(d) call Remove killed sources

Described in words, this algorithm does the following:

Iterate over all read accesses in a SCoP. Given a read ac-

cess, iterate over all write accesses in a SCoP that write

to the same memory cell (base addresses of arrays are

the same). Compute for each iteration of the read access

and for each array element accessed by that iteration,

the write access that was the last to write the element

accessed by the read access before this read access.

The set Iset keeps those iterations of the read access that

are not yet processed. We proceed level by level, start-

ing from the outermost level to the innermost. The core

of the algorithm is the computation of the lexicograph-

ically maximal2 iteration of the S j statement (a write

statement) that happens before the iteration of the Si

statement (a read statement).

That was the starting point of the computation: it com-

putes a possible flow dependence from an instance of S j

statement, to an instance of Si statement. But consider-

ing only one write/read pair is not enough: there might

be some intermediate write instance of Sk statement that

happens after an instance of the S j statement, but before

an instance of the Si statement. That instance of the Sk

statement is killing the value produced by an instance of

S j statement, since that value does not reach a read in-

stance of the Si statement. We take care of those cases

in the remove killed sources procedure.

Procedure: remove killed sources

Given a possible flow dependence δ S j→Si at level lev,

remove those elements for which there is an iteration

2It is a well known PIP (Parametric Integer Programming) al-

gorithm implemented in polyhedral libraries such as PPL, ISL or

PIPlib.

of another source Sk that is closer to the sink Si. Flow

dependences δ Sk→Si are updated with the improved

sources, while flow dependences δ S j→Si are removed.

Any improved source needs to precede the sink at the

same level levsink, and needs to follow the source S j at

the same or a deeper level lev.

parameters: SCoP, SW , Si, levsink, j

1. depth← 2 ·dim(S j)+1

2. ∀Sk ∈ SW ,k< j such that Sk can precede Si at levsink

do:

(a) for lev← levsink to depth

(b) if S j can precede Sk at lev

i. {(iLW , iR)} = lexmax[iR](iKW, iW :

(iW, iR) ∈ δ S j→Si ∧ FSk
(iKW) =

FSi
(iR) ∧ θSk

iKW ≺levsink
θSi

iR ∧
θS j

iW ≺lev θSk
iKW)

ii. δ S j→Si ← δ S j→Si \{(iLW , iR)}

iii. δ Sk→Si ← δ Sk→Si ∪{(iLW , iR)}

4.2.2 Memory live range interval analysis

What has been described so far is an algorithm to com-

pute the latest write iteration, given a specific read itera-

tion. In order to compute the set of live range instances

of the variable LM, we also have to compute the latest

sink iteration, given the source iteration. Thus, we apply

a very similar procedure:

Procedure: compute intervals LM

for all distinct arrays M inside a SCoP do:

1. ∀Si such that base(FSi
) = M and write(FSi

) = T

(a) ∀δ Si→S j such that source(δ Si→S j) = Si

i. SR← SR∪ sink(δ Si→S j)

(b) λ Si→SR ← compute the latest read for a write

statement Si and a set of read statements SR

(c) LM = LM ∪λ Si→SR

Given a set of already precomputed dataflow depen-

dences δ Si→S j , we are computing LM sets for each dis-

tinct array M inside a SCoP (remember that scalars are

also represented as arrays). For each statement Si that

8

writes a value to an array M we collect all read state-

ments for which the value is live. A set of those read

statements is kept in SR. Among those read statements

we compute the latest read access that reads a live value

written in some instance of Si statement. This is, as in a

dataflow analysis, done by using a computation of lex-

icographic maximal iteration. For each write statement

Si we keep a result in λ Si→SR , and we accumulate results

to form a final set of live range intervals: LM.

4.3 Live range violation analysis

By definition, live range instances form a disjoint inter-

vals in the original program execution trace. Dataflow

(true, read-after-write) dependences enforce a correct

execution order of statement instance pairs that produce

and consume values respectively. If we enforce the cor-

rectness of all dataflow dependences and if we enforce

that all live range intervals are preserved, we can guar-

antee a correctness of the transformation, ignoring the

preservation of memory based dependences.

After applying a transformation, the relative execution

order of statement instances might change. This change

might induce a violation of live range interval instances.

We say that two instances of live range intervals are in

conflict if they overlap in the execution trace of a trans-

formed program.

The goal of live range violation analysis is to check

which instances, if any, of live range intervals are in con-

flict after a program transformation. If there is at least

one pair of such instances, then the transformation is not

legal without further corrections.

Computing live range interval conflict sets proceeds in

two steps:

1. computing transformed image of live range interval

set

2. checking for overlapping live range intervals

4.3.1 Computing transformed image of live range

interval sets

Given an already computed initial set of live ranges LM

for an array M, we are interested in computing a trans-

formed image of live ranges after applying a program

transformation. This information is necessary for deter-

mining the legality of the transformation in a subsequent

step.

If M is not a zero-dimensional array (a scalar repre-

sented as an array) then the polyhedron λ SLW→SLR stores

a family of live range sets for each array element. Live

range sets for different memory locations might overlap

in the execution trace of the original program. If we are

interested in instances of live ranges for one particular

memory location, then we have to parametrize that poly-

hedron with a vector of array indices s that identify an

exact memory location that we are interested in:

λ SLW→SLR [s] = {(iLW, iLR) : Λ × (iLW, iLR)
T ≥ 0 ∧

FSLR
(iLR) = s}

In order to compute an image of transformed live range

interval sets, we proceed with the following algorithm:

INPUT:

1. transformed schedules for the statements

θ ′S1
,θ ′S2

, . . . ,θ ′Sn

2. computed LM

∀λ SLW→SLR ∈LM do:

1. λ SLW→SLR [s]← extend(λ SLW→SLR)

2. ImageM[s] ← ImageM[s] ∪ {(tLW, tLR) | tLW =
θ ′SLW

(iLW), tLR = θ ′SLR
(iLR) ∧ (iLW, iLR) ∈

λ SLW→SLR [s]}

An input to the algorithm is a program transformation,

encoded as a set of transformed schedules for each state-

ment, and the already computed LM set. The algo-

rithm proceeds by iterating over all polyhedra for dif-

ferent statement pairs that form live range interval sets:

λ SLW→SLR . It extends each λ SLW→SLR by parametrizing it

with a vector of array indices s. It computes an image

for each λ SLW→SLR [s] by computing a time-stamp vector

as an application of a scheduling function to an itera-

tion vector. It accumulates partial results into ImageM[s]
polyhedron. The output is a parametrized polyhedron

ImageM[s] which holds a family of live range interval

sets for each memory location identified by subscript

vector s.

9

4.3.2 Checking for overlapping live range intervals

The final building block needed for our framework is a

live range violation analysis. We need to check whether

any pair of live range intervals is in conflict.

We build a set of pairs of violated live range intervals

Vio. A closed form expression to build a set of violated

pairs is the following:

Vio = {< (tLW, tLR),(tLW
′, tLR

′)>|
(tLW, tLR) ∈ ImageM[s]∧
(tLW

′, tLR
′) ∈ ImageM[s]∧ tLW

′ ≺ tLR∧ tLW ≺ tLR
′}

Please note that we use lexicographic less than operator

≺ when comparing time-stamps. This expression has

to be evaluated level-by-level (for each time-stamp di-

mension), and the result is an union of polyhedra. The

result can easily explode into the exponential number of

polyhedra in the output. An upper bound to the num-

ber of polyhedra is O(cN). Luckily, parameter N is the

loop depth inside SCoP, which is usually a small num-

ber (N ≤ 6).

In the previous expression we used a property of sequen-

tial schedules: two different statement instances could

not be scheduled at the same time – their time-stamps

must differ. When checking starts/ends of overlapping

intervals we do not need to check for the case where

their time-stamps are equal, thus a strong lexicographic

less than operator is enough.

Legality of parallelization: Previously mentioned

property reduces the computational complexity when

checking for a violation of sequential code transforma-

tions. If we consider loop parallelization transforma-

tion, then we need to take into the account that some

statement instances are executed at the same time, and

their scheduling time-stamps are equal – this is indeed

an essence of parallelism.

A closed form expression to build a set of violated pairs

in the case we want to check for parallelism transforma-

tion is the following:

Vio = {< (tLW, tLR),(tLW
′, tLR

′)>|
(tLW, tLR) ∈ ImageM[s]∧
(tLW

′, tLR
′) ∈ ImageM[s]∧

tLW
′ ≺ tLR∧ tLW ≺ tLR

′∧
(tLW 6= tLW

′∨ tLR 6= tLR
′)}

This expression is computationally more heavy than the

expression for sequential transformations, so it would

be used only in the case where we check for legality of

parallelism transformation.

Supporting array/scalar expansion: Our approach

is compatible with well known array/scalar expansion

approaches. If a transformation produces at least one

pair of violated live range intervals (the set Vio is not

empty) then we can choose to expand the variable M

whose live range intervals are violated. A precise char-

acterization of violated live range instances in a set Vio

could be used to drive the needed degree of expansion.

Our proposed heuristic is to use the minimal sufficient

degree of expansion so to correct all the violated live

ranges. If we do not want to perform an expansion, we

can choose a new schedule that does not violate any live

range intervals.

Supporting privatization: Privatization is a com-

mon concept in the loop parallelization community. We

can use our framework to automatically detect which

scalars/arrays need to be privatized to enable loop paral-

lelization transformation, or we can let the user specify

(through OpenMP pragmas) which variables should be

privatized. If some variable is explicitly marked as pri-

vatized, we need to modify access functions, so that we

map a distinct memory location to each iteration.

4.4 An example

Let’s take the GIMPLE code from Figure 3 and let’s

consider a memory location phi_out_of_ssa. Fig-

ure 9 shows an interleaving of writes and reads to this

memory location. A slice of execution trace, for a lim-

ited number of iterations, is shown. Live ranges are

shown as well.

Some live range interval instances contained in a set L:

(< S1,(0,0)>,< S2,(0,0,0)>)
(< S6,(0,0,0)>,< S2,(0,0,1)>)
(< S6,(0,0,1)>,< S2,(0,0,2)>)
(< S6,(0,0,N−2)>,< S2,(0,0,N−1)>)
(< S1,(0,1)>,< S2,(0,1,0)>)

10

After memory live range interval analysis, we come

up with two closed form expressions: λ S1→S2 and

λ S6→S2 . These polyhedra summarize live range interval

instances between statements S1 and S2, and between S6

and S2 respectively. They have the following form:

λ S1→S2 = {< (i, j),(i′, j′,k′)>: i′ = i∧ j′ = j∧
k′ = 0∧0≤ i < N∧0≤ j < N}

λ S6→S2 = {< (i, j,k),(i′, j′,k′)>| i′ = i∧ j′ = j∧
k′ = k+1∧0≤ i < N∧
0≤ j < N∧0≤ k < N−1}

Two polyhedra are summarizing all instances of live

range intervals for the location phi_out_of_ssa.

We form a set of all polyhedra that describe live range

interval set for a given location:

LM = {λ S1→S2 ,λ S6→S2}

We would like to check whether interchanging loops i

and j is a transformation that preserves non-conflicting

condition on all live range interval instances. Referring

again to figure 3, we see that we are interested in the

schedule of statements S1, S2, and S6. Their scheduling

functions in an original program are as follows:

θS1
(i, j)T = (0, i,0, j,0)T

θS2
(i, j,k)T = (0, i,0, j,1,k,1)T

θS6
(i, j,k)T = (0, i,0, j,1,k,8)T

If we perform a loop interchange transformation, we

will get the following transformed scheduling functions:

θ ′S1
(i, j)T = (0, j,0, i,0)T

θ ′S2
(i, j,k)T = (0, j,0, i,1,k,1)T

θ ′S6
(i, j,k)T = (0, j,0, i,1,k,8)T

A transformed image of live range intervals is com-

puted. The image is composed of an union of two poly-

hedra:

{[(t1, t2, t3, t4, t5, t6, t7),(t1′, t2′, t3′, t4′, t5′, t6′, t7′)] :

t1 = t1′ = 0∧ t2 = t2′∧ t3 = t3′ = 0∧ t4 = t4′∧
∧t5 = 0, t5′ = 1∧ t6′ = 0, t7′ = 1∧0≤ t2 < N∧
0≤ t4 < N}

Figure 10: Compilation flow

GIMPLE, SSA, CFG

GPOLYSCoP outlining

SESE regions

GPOLY construction

Dependence Analysis

Transformations

transformed GPOLY

GLOOG (CLOOG based)GRAPHITE pass

GIMPLE, SSA, CFG

PPL

CLOOG

ISL

{[(t1, t2, t3, t4, t5, t6, t7),(t1′, t2′, t3′, t4′, t5′, t6′, t7′)] :

t1 = t1′ = 0∧ t2 = t2′∧ t3 = t3′ = 0∧ t4 = t4′∧
t5 = t5′ = 1∧ t6′ = t6+1∧ t7 = 8∧ t7′ = 1∧
0≤ t2 < N∧0≤ t4 < N∧0≤ t6 < N−1}

Applying a sequential version of violation check on

these polyhedra reveals that Vio set is empty, thus no in-

tervals are conflicting. This check has to be performed

for other memory accesses as well. In addition, we per-

form a dependence violation analysis on dataflow (read-

after-write) dependences only: δ S1→S2 and δ S2→S6 . A

dependence violation analysis is already implemented

in GRAPHITE.

As shown, a combination of dependence violation anal-

ysis of dataflow dependences and live range interval vi-

olation check reveals that it is legal to perform an inter-

change of i and j loops, even if the code was scalar opti-

mized before entering GRAPHITE. If we use only depen-

dence violation analysis of all dependences (dataflow

and memory based) we will not be able to perform this

transformation, since the dependence violation analysis

would return

5 Implementation

We plan to implement our approach inside GRAPHITE

pass of GCC compiler. GRAPHITE has an already im-

plemented dependence violation analysis, but it does

not have live range interval violation analysis nor array

dataflow analysis. Those two algorithms were presented

11

in this paper and they would be implemented as compo-

nents of GRAPHITE polyhedral compilation framework.

The polyhedral analysis and transformation framework

called GRAPHITE is implemented as a pass in GCC com-

piler. The main task of this pass is to: extract the polyhe-

dral model representation out of the GCC three-address

GIMPLE representation, perform various optimizations

and analyses on the polyhedral model representation and

to regenerate the GIMPLE three-address code that cor-

responds to transformations on the polyhedral model.

This three stage process is the classical flow in poly-

hedral compilation of source-to-source compilers [9, 3].

Because the starting point of the GRAPHITE pass is the

low-level three-address GIMPLE code instead of the

high-level syntactical source code, some information is

lost: the loop structure, loop induction variables, loop

bounds, conditionals, data accesses and reductions. All

of this information has to be reconstructed in order to

build the polyhedral model representation of the rele-

vant code fragment.

Figure 10 shows stages inside current GRAPHITE pass:

(1) the Static Control Parts (SCoP’s) are outlined from

the control flow graph, (2) polyhedral representation is

constructed for each SCoP (GPOLY construction), (3)

data dependence analysis and transformations are per-

formed (possibly multiple times), and (4) GIMPLE code

corresponding to transformed polyhedral model is re-

generated (GLOOG).

GRAPHITE is dependent on several libraries: PPL -

Parma Polyhedra Library [2], CLooG - Chunky Loop

Generator (which itself depends on PPL). Our algorithm

would make GRAPHITE dependent on ISL [19] (Inte-

ger Set Library) as well. There is a special version of

CLooG that is based on ISL library. More detailed ex-

planation of GRAPHITE design and implementation in-

ternals is given in [15].

For efficiency reasons, schedule and domain polyhedra

are kept per each basic block, and not per each state-

ment. This approach was taken in GRAPHITE to save

memory and to reduce compilation time. Our approach

requires that each statement would have a scheduling

function, so the question is: how do we provide a

scheduling function for each statement?

The answer is simple: since a basic block is a collection

of statements, scheduling functions of all statements in-

side the basic block are the same, except the latest static

scheduling component. Thus, we still keep scheduling

polyhedra per basic block, and we provide the last com-

ponent of the schedule for each statement on the fly.

This work is augmenting GRAPHITE dependence anal-

ysis with a more powerful dependence computation: it

uses an array dataflow analysis instead of a simple mem-

ory access conflict check. A dataflow analysis is already

implemented in ISL library, and we plan to use this im-

plementation in GRAPHITE. This would require intro-

ducing a new polyhedral library in GCC, since we al-

ready use PPL library for internal polyhedral represen-

tation(GPOLY) inside GRAPHITE.

Several libraries for polyhedral operations are available:

Polylib, PIPlib, PPL, ISL. Polylib and PIPlib are histor-

ically important, but not robust enough for production

quality tools like GCC. GRAPHITE uses PPL as a library

for the internal polyhedral representation of GIMPLE

code. The latest version of PPL library includes an inte-

ger and mixed-integer linear programming algorithms,

but one drawback of PPL library is that it is not an inte-

ger, but rational polyhedra library [2]. ISL library [19],

on the other hand, provides integer solutions only. This

is the key property needed in exact dataflow analysis.

We have opted for ISL library, and we would propose

to include this library as a requirement for GRAPHITE

compilation.

Nevertheless, PPL would remain a standard interface for

internal polyhedral operations inside GRAPHITE. It is

used by CLooG code generator as well. Conversion op-

erations between PPL and ISL polyhedra representation

are already provided.

6 Conclusion

We have shown a framework to effectively approach

the memory expansion vs transformation expressiveness

problem. This is a necessary component of any com-

piler that wants to offer effective automatic paralleliza-

tion and loop transformations. Solving this problem is

even more critical in compilers whose optimizations are

based on three-address code, as is GIMPLE in GCC.

We have shown a motivating example that justifies the

effort we want to put into implementing the presented

approach. A successful implementation of this algo-

rithm, based on ISL library and ISL implementation of

array dataflow analysis, would enable GRAPHITE to par-

allelize much wider class of loops.

12

Having an exact array dataflow analysis in GRAPHITE

would be beneficial in many other cases as well, since it

provides an exact information on the flow of values, in-

stead of mere scheduling constraints, as given by current

data dependence analysis.

References

[1] R. Allen and K. Kennedy. Optimizing Compil-

ers for Modern Architectures. Morgan Kaufmann

Publishers, 2001.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. The

Parma Polyhedra Library: Toward a complete set

of numerical abstractions for the analysis and veri-

fication of hardware and software systems. Science

of Computer Programming, 72(1–2):3–21, 2008.

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam,

and P. Sadayappan. A practical automatic polyhe-

dral parallelization and locality optimization sys-

tem. In PLDI, June 2008.

[4] A. Cohen. Parallelization via constrained storage

mapping optimization. In Intl. Symp. on High Per-

formance Computing (ISHPC’99), number 1615,

pages 83–94, Kyoto, Japan, 1999.

[5] A. Cohen and V. Lefebvre. Optimization of storage

mappings for parallel programs. In Euro-Par’99,

number 1685 in LNCS, pages 375–382, Toulouse,

France, September 1999. Springer-Verlag.

[6] J.-F. Collard. The advantages of reaching defini-

tion analyses in Array (S)SA. In 11þLanguages

and Compilers for Parallel Computing, number

1656 in LNCS, pages 338–352, Chapel Hill, North

Carolina, August 1998. Springer-Verlag.

[7] P. Feautrier. Dataflow analysis of scalar and ar-

ray references. Intl. J. of Parallel Programming,

20(1):23–53, February 1991.

[8] P. Feautrier. Some efficient solutions to the

affine scheduling problem, part II, multidimen-

sional time. Intl. J. of Parallel Programming,

21(6):389–420, December 1992. See also Part I,

one dimensional time, 21(5):315–348.

[9] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,

D. Parello, M. Sigler, and O. Temam. Semi-

automatic composition of loop transformations for

deep parallelism and memory hierarchies. Intl.

J. of Parallel Programming, 34(3):261–317, June

2006. Special issue on Microgrids.

[10] W. Kelly and W. Pugh. A framework for unifying

reordering transformations. Technical Report CS-

TR-3193, University of Maryland, 1993.

[11] Vincent Lefebvre and Paul Feautrier. Automatic

storage management for parallel programs. Paral-

lel Computing, 24(3):649–671, 1998.

[12] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam.

Array dataflow analysis and its use in array priva-

tization. In ACM Symp. on Principles of Program-

ming Languages, pages 2–15, Charleston, South

Carolina, January 1993.

[13] Louis-Noel Pouchet, Cedric Bastoul, Albert Co-

hen, and John Cavazos. Iterative optimization in

the polyhedral model: Part II, multidimensional

time. In PLDI, June 2008.

[14] W. Thies, F. Vivien, J. Sheldon, and S. Amaras-

inghe. A unified framework for schedule and stor-

age optimization. In ACM Symp. on Programming

Language Design and Implementation (PLDI’01),

pages 232–242, 2001.

[15] K. Trifunovic and et al. Graphite two years af-

ter: First lessons learned from real-world polyhe-

dral compilation. In GCC Research Opportunities

Workshop, October 2010.

[16] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks,

and I. Rosen. Polyhedral-model guided loop-

nest auto-vectorization. In Parallel Architectures

and Compilation Techniques (PACT’09), Raleigh,

North Carolina, September 2009.

[17] Nicolas Vasilache, Cedric Bastoul, Albert Cohen,

and Sylvain Girbal. Violated dependence analy-

sis. In ICS ’06: Proceedings of the 20th annual in-

ternational conference on Supercomputing, pages

335–344, 2006.

[18] Nicolas Vasilache, Albert Cohen, and Louis-Noël

Pouchet. Automatic correction of loop transforma-

tions. In PACT, pages 292–304, 2007.

[19] Sven Verdoolaege. isl: An integer set library for

the polyhedral model. In Komei Fukuda, Joris Ho-

even, Michael Joswig, and Nobuki Takayama, edi-

tors, Mathematical Software - ICMS 2010, volume

13

6327 of Lecture Notes in Computer Science, pages

299–302. Springer Berlin / Heidelberg, 2010.

[20] Michael E. Wolf, Dror E. Maydan, and Ding-Kai

Chen. Combining loop transformations consider-

ing caches and scheduling. In Proceedings of the

29th annual ACM/IEEE international symposium

on Microarchitecture, pages 274–286, Paris, 1996.

[21] Michael Wolfe. High Performance Compilers for

Parallel Computing. Addison Wesley, 1996.

14

