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ABSTRACT

Iterative search combined with machine learning is a priomiap-
proach to design optimizing compilers harnessing the cerityl

of modern computing systems. While traversing a program op-

timization space, we collect characteristic feature wesctif the
program, and use them to discover correlations across gregr
target architectures, data sets, and performance. Hwedinbd-
els can be derived from such correlations, effectively rigdihe
time-consuming feedback-directed optimization processfthe
application programmer.
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1. INTRODUCTION AND RELATED WORK

Sophisticated search techniques to optimize programsmove
default compiler heuristics have been proposed to cope thih

One key task of this approach, naturally assigned to comgsite
perts, is to design relevant features and implement seafebture
extractors, including statistical models that filter thesin@levant
information from millions of lines of code. This new taskrsrout

complexity of modern computing systems [34, 29, 24, 8, 4, 31,
7, 20, 27, 16, 17, 12]. These techniques are already used in in
dustry [10, 1, 18, 9], require little knowledge of underlyihard-

ware and can adapt to new environments. However they ate stil

to be a very challenging and tedious one from a compiler coast
tion perspective. So far, only a limited set of ad-hoc, 1§rgyn-
tactical features have been devised. Yet machine learsiogly
able to discover correlations from information it is fed lwiit is
critical to select topical program features for a given wytation
problem in order for this approach to succeed.

We propose a general method for systematically generating n

merical features from a program. This method puts no réisns
on how to logically and algebraically aggregate semanficap-
erties into numerical features. We illustrate our methodthan
difficult problem of selecting the best possible combinatid 88
available optimizations in GCC. We achieve 74% of the paaént
speedup obtained through iterative compilation on a widgeaof
benchmarks and four different general-purpose and embeaide
chitectures. Our work is particularly relevant to embeddgs-
tem designers willing to quickly adapt the optimization hstics
of a mainstream compiler to their custom ISA, microarchites,

benchmark suite and workload. Our method has been integrate

with the publicly released MILEPOST GCC [14].
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very restrictive in practice due to an excessively large Inemnof
evaluations (recompilations and runs). Machine learniig)(was
introduced to make such search techniques practical andeeip-
timization time by enabling optimization knowledge reu2s,[30,
2, 6]. These studies rely on quantitative characterizatioa pro-
gram to build associations between similar programs andasim
optimization spaces. Such a characterization presented/bgtor
of floating point numbers, callecumerical featureg¢for example,
the average basic block size may be one such numerical éatur
These vectors provide the base for defining different opétions
heuristics, cost-models, and more. It is of critical impode for
ML techniques to capture program similarities that effesd§i cor-
respond to similarities in program optimizations.

Compiler experts have been responsible for identifyingytien-
titative program characteristics relevant for the probleemg ad-
dressed. For some extensively investigated optimizatiocisd-
ing unrolling, inlining, scheduling and register allocatj several
static heuristics based on numerical features were dasigriese
heuristics involve analytical cost models to provide giiative
estimates of the effects of an optimization [26]. Beyondlgia
cal models, empirical and feedback-directed approaches dlao
been proposed to guide optimization experts and to help temp
designers [28].

One of the first statistical ML techniques used successfolly
solving several compiler optimizations problems is présgnn
[23]. The information required by the ML component is a vectb
numerical features. We note that the optimizations adddessn-
rolling, inlining, register allocation, scheduling, etall have well-
known static heuristics from which these numerical featwrere
drawn by a compiler expert [26].



Some optimization interferences are almost impossiblerée p
dict by a compiler expert. Optimizing performance by tunop
timization flags may be somewhat accessible to an expertdtr w
understood application characteristics [35], but it glyiddlecomes
intractable when dealing with the fine-tuning of more obeoj-
timization passes. Besides, this task is entirely depanalenhe
availability of quantitative features of the program, andleeir rel-
evance to the optimization problem. To address this chgdiewe
experimented with extensive sets of numerical featuress [€ad
us to consider feature extraction as a general translataiyigm of
a given program representation into numerical featureespddn-
like ordinary program properties maintained in compiléeinals,
numerical features must be comparable across differefrgmes
and target architectures. Cross-program and cross-teoggbara-
bility is necessary for the correlations to be statisticedipresenta-
tive, hence for ML predictions to be robust.

One important comparability requirement is that the sizéhef
numerical feature vector be constant. As the number of blasa
instructions, loops, basic blocks etc. in a program vaties,in-
formation about their properties therefore needs to beeagged.
This implies that we might provide inaccurate informatian the
machine learning component in some cases. To address tiis pr
lem, we consider more sophisticated, semantically riclpgriies.
For instance, such a property for a given loop may be if thg loo
is countable, consists of a single basic block, and contarstore
instructions. The flexibility required for supporting sucbmplex
properties was achieved by an underlying generative mésinan
that allows the derivation of complex properties from siengnes.

A given representation of the program is translated intoeniim
cal features in two stages. First we translate the progranesen-
tation into an intermediate form that contains the basiperies
of the program. Then, the second stage performs the denivati
of more complex properties, as well as the aggregation mkegde
order to finally extract the previously established numbeuoner-
ical features.

The basic properties of a program appear in the compiletes-in
nal representation at compilation time. These propertiesacted
from the program in the first stage determine the possibleifes
that can be derived in the second stage. We therefore desigee
first stage to extract an exhaustive coverage of the conggkabal
data structures representing the program being compiled.

In our approach, the compiler expert is responsible for shoo
ing the basic properties to be extracted from the prograntlaisd
way defining the space of possible features that can be derivm
them. We will demonstrate how to use header files of the canpil
to extract basic properties of the program. This approachbea
automated, facilitating the complete automation of theéuieaex-
traction process.

In a machine learning compiler, numerical features are tizenqg
titative links between the properties of the program andtieglic-
tive models that complement (or substitute) human-craiftadis-
tics. Identifying the factors that affect the performanéea given
optimization is a time-consuming task. In addition a human c
consider only a simplified model of the program, where marmarch
acteristics are ignored. Contrary to this, machine learnach-

the CFG; the machine learning component is responsibleciiv-d
ing the most relevant characteristics. Without the macldaming
component, the compiler expert would have to resort to alsimp
predictive model, with a high probability of missing impamt cor-
relations.

In our view, the problem of automatically generating numeri
cal features consists of automatically inferring proprtof the
program and automatically aggregating these propertiesfea-
tures. These two sub-problems are reminiscent of autontlaéed
rem proving: starting from a set of basic properties, infeeerules
can be designed to infer all possible properties. This isipety the
approach we follow. We currently rely on a semi-automatgjd
programming approach to drive the inference towards a bedind
set of features; a more futuristic direction would be totiertauto-
mate the process, synthesizing new features on demand.

In our approach the program is view as a labeled graph, and
Datalog[32] a first-order logic notion is used for representing this
graph. This provides an alternative view of the program asdad-
tive (an extension of relational) database. The featuepravided
by evaluating Datalog (or Prolog) queries over this databas

To our best knowledge the only work taking a similar view and
generating program features automatically from interaediep-
resentation was introduced recently in [22] - the programefs
resented by a XML database, and features are provided by-eval
ating Xquery expressions over this database. We note tiataon
single major compiler data structure, the IR (the interraedrep-
resentation) is processed. The IR used is basically a toldeess
representation - as a graph this is a tree with a fixed hieicaich
structure. Our work addresses several major compiler data-s
tures (beside the IR), represented as graphs with a moreleomp
structures. In addition we provide techniques for traisipthe
program information into a Datalog representation furtheegd to
generate the features.

It was already shown [33] thdDatalog representation is suit-
able for even complex compiler analysis. Inferring new paog
properties (further to be aggregated to features) requirfest per-
forming compiler analysis - and the XML representation sekrss
appropriate for this. Furthermore, by viewing the progranada-
beled graph represented Byatalognotation we could take advan-
tage of related body of work done in graph (and multi-relzeip
data mining and ILP (inductive logic programming). We detine
space of possible features- this space is huge and an eixieagist
ploration is not possible. Similar with [21] we show how thjzace
could be structured and its structure used for effectivéozagpon.

Based on the techniques presented in this paper, we imptethen
a feature extractor for the GCC compiler, and applied stpetv
ML techniques for learning optimal settings of the flags. Wal-e
uate our approach on several platforms using combinatibad o
available compiler optimizations, making it a practicatiaealistic
approach.

Typical machine learning compilers [25, 30, 2, 6, 11] are €com
possed of two main phases, as shown in Figuretfaiaing phase
and aprediction phase In the training phaseoptimization tools
gather information about the structure of a training setifferent
programs, architectures, data sets, etc. The tools exiragtam

nigues are able to process huge amounts of data, and may workfeatures, apply different combinations of optimizatiome#ach pro-

with a much more detailed and accurate model of a program.
We believe that compiler expertise is still required, bua alif-
ferent level. For instance, the structure of the controkfgraph
(CFG) may affect the output of a given optimization. But @ast
of requiring the compiler expert to point to the characterssof the
CFG that play a role in the decision, compiler expertise iplegred
to generate a space cfndidate featurethat can be derived from

gram, profile and execute the resulting variants, and retoed
speedups. A predictive model is then built by correlatinggpam
features, optimizations and speedups. Ingfesliction phasgfea-
tures of a new program are extracted and fed into the predicti
model that suggests a “good” combination of optimizatiomih

the goal of reducing execution time or other optimizatiojeotives
such as code size and power consumption. Such techniques sho
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Figure 1: Typical machine learning scenario to predict “goa” optimizations for programs. During a training phase (from left to
right) a predictive model is built to correlate complex depedencies between program structure and candidate optimiz#ons. In the
prediction phase (from right to left), features of a new progam are passed to the learned model and used to predict comhbations of

optimizations.

great potential but require large number of compilationd exe-
cutions as training examples. Moreover, although progeatufes
are one of the key components of any machine learning apiproac
little attention has been devoted so far to ways of extrgdtirem
from program semantics.

2. FEATURE EXTRACTION

e loop hierarchy;

e control dependence graph;
e dominator tree;

e data dependence graph;

o liveness information;

We may consider a program as being characterized by a number

of entities. Some of these entities are a direct mappingrofiai
entities defined by the specific programming language, vatiiers
are generated during compilation. These entities include:

e functions;
e instructions and operands;

e variables;

types;

constants;

basic blocks;

e loops;
e compiler-generated temporaries.

2.1 Relational View of a Program

A relation over one or more sets of entities is a subset of their
Cartesian product. Relations can be used to express stateme
about tuples of entities, i.e., they define predicates. kamgle,
we can define a relatioopcode= {(ix,0p ) | instruction ik has op-
codeop } C | x OPS wherel is the set of program instructions and
OPSis the set of all opcodes. Then, the statenaptodé€iy,op )
is the claim that instructio, has opcodep. This statement is
true or false depending on the set of pairs constituting ¢fetion
opcode As another example the relatiamC | x B, in = {(ix,b;)
| instructioniy is in basic blockby}, where B is the set of basic
blocks, expresses the membership of instructions in bésiké.

During compilation more complex relations among entitiess a
computed, providing supplementary information about tiogiam
being compiled. Some of these relations, common to alm&syev
optimizing compiler are:

e call graph;

o control flow graph;

e availability information;
e anticipatibility information;
e alias information.

For example, the control flow graph can be viewed as a rela-
tion over pairs of basic blocks. New entities and relati@isvant
to specific optimizations of interest should be considefeat. in-
stance if information concerning register pressure is irtgn, new
entities and relation such as live range and interferenapigrre-
spectively, need to be considered.

Furthermore, the language in which the application is emitt
also gives rise to entities and relations worth consideriAg an
example, &lassentity and a class hierarchy grapbHG) relation
are relevant for programs written in object-oriented laaggs such
as C++.

We prefer to focus on generic compilation entities and it
(such as the ones enumerated above) over entities anansl#tiat
are specific to certain compilers. The features we consigethas
defined in generic compilation terms, ensuring that our wisrk
portable across different optimizing compilers.

We restrict our attention and extract only binary relatifnosn
the program. This is not restrictive, as evdrarity relation can
be expressed by a set kft 1 binary relations. This assumption
implies a graphical representation of the relationsbeled graph
(i.e. semantic netwopk The labels of the vertices are provided by
the entities and the labels of the edges are provided by khigores.
For arelatiorr C Eg x Ep, afactr(a,b) is represented by two nodes
with labelsE; and respectiv&, connected by an edge with lalyel

In this program graph, important subgraphs correspond forma
compiler data structures such as CFG, def-use chains, ¢éRr(tibr-
mediate language) etc. In order to take advantage of theaifsp
properties, we may consider each of these subgraphs selparat

In conclusion, a program may be represented as a collection o
(binary) relations over sets of entities, i.e., as a retaticlatabase.
Our first step is therefore to provide such a representatam the



compiler’s data structures. We use thatalog language [32] for
this task, as we describe next.

2.2 Datalog

We use theDatalog logic-based notation to describe relations.
Datalog is a Prolog-like language, but with more restrictechan-
tics, suitable for expressing relations and operationsden them
[3],[32]. Datalog allows us to provide rules for defining acan-
puting new relations from existing ones.

The elements of Datalog are atoms of the fop{Xg,...,Xn)
wherep is a predicate anidy,..., Xy are variables or constants. By
convention names beginning with lower case letters are tmed
constants and predicates, while names beginning with ugrsse
letters are used for variables. gxound atomis a predicate with
only constants as arguments.

A Datalog database consists of a listrofes Each Datalog rule
has the formH : —B,,By,...Bn, whereH,B,,..,B, are atoms.H
is called theheadof the rule, andB,,B;, ..., B, form the body of
the rule. The body of the rule is optional (i.e.> 0). Bodyless
rules are calledacts and can be used to define relations by explicit
enumeration. For example, the two fagt4,2) andx(3,5) define
x as the relation{(1,2),(3,5)}. Rules with bodies serve to infer
the head relation from the body relations; meaning that when
we substitute constants for the variables in the atoms, lEadtb-
stitution makes all the body predicates true then the heedigate
must also be true.

A Datalogquery has the form - B1,By,...B,, whereBy,..,By
are atoms. An answer to a given query is a set of constants that
substituted to the variables in the atoms makes all the qaees
appearing in the query true. A query may result in many ansger
substitutions.

To obtain a Datalog representation of the program, we erateer
the elements of every entity of interest: variablés= vy, v, ...,
typesT = ty1,tp,..., instructionsl = iq,ip,i3..., basic blocksB =
b1,by,bs..., etc. We then extract from the compiler’s data structures
relations over these entities. For example we specify ttatioa
in C | x B, in ={(ix,by) | instructioni is in basic blockh} by a
sequence of Datalog ground atoms of the famiy, by ).

Datalog is able to work with relations and perform operation
them whose results are in turn are relations as well. Alldzah
relational algebra operations [32] are expressible, thetmseful
(for our purposes) being the conjunction (join) of two redas.
For instance starting with the relatiossore andin, Datalog can
compute the relatiost_in C | x B formed from all pairgi, b) such
that instruction is astoreinstruction in basic block. In Datalog
this computation is triggered by the rule

st in(l,B) : —storgl),in(l,B).

2.3 Automatic Inference of New Relations

Given a set of basic relations (such as those listed in Se2tin,
further useful relations can be inferred, including veryngbex
ones. For example, Whaley and Lam [33] were able to perform
interprocedural context sensitive alias analysising Datalog in-
ference. Although, as a general rule it is impractical tetinfery
complex relations automatically, it is still useful to infeew rela-
tions easily with Datalog, albeit of limited complexity.

The main operation we use for relation inference is the fgni
of two relations: given two relations C E; x --- x Ex and p C
F1 x --- x | such that some of thEs are identical to some of the
Fs, we select a nonempty subsedf pairs of identical entities and
essentially concatenate the two relations with the comnmoitiess
(in 1) appearing only once. The simplest way to explain tiis i
through a Datalog example. Suppose the two relations @rg; x

E, x Ez andp C F; x F x F3 such thaEy = Fy andEz =F,. Then
we can join the two relations in the following three ways.

rel 1(E1l, E2, E3, F2, F3) :-
r(El, E2, E3), p(E2, F2, F3).
rel 2(E1, E2, E3, F1, F3) :-
r(El, E2, E3), p(Fl, E3, F3).
rel 3(El, E2, E3, F3) :-
r(El, E2, E3), p(E2, E3, F3).

By repeated joining, starting from a set of basic relatioms,
can obtain new relations of increasing complexity. As thanegle
shows, this is straightforward to automate. In a practiedirsg,
though, the number of relations and their complexity museys
to a limit. For example, we may limit the number of joiningsith
lead to a relation, the number of times any relation may apipea
such a sequence, the arity of the resulting relation, anémor

2.4 Extracting Relations from Programs

During compilation a compiler maintains an internal reprea-
tion of the program being compiled using several data sirest
We use the definitions of these data structures to extracidemd
tify basic entities and relations. The data types expres<ttii-
ties: in C such data types are typically of tygte uct T, having a
number of fields. Each such field may define a relation between
the entity represented by the parant uct and the entity repre-
sented by the type of the field. For example, the data streidtur
an edge of a control-flow graph can bsta uct edge containing
two fieldssr ¢ andt r g (among others) that are pointersstar uct
basi c_bl ock, as inthe case of GCC. The data typesuct edge
andstruct basi c_bl ock introduce two entitieg andB, and the
fieldssrc andtrg introduce two relations ove x B: edge_src
andedge_trg.

The above mechanical method provides compiler specifie enti
ties and relations, which we then map to generic entitiesrand
lations. This mapping may be straightforward as in the examp
above, or may require some additional processing and s@amant
understanding. For example, in GGCruct tree is used to rep-
resent different generic entities such as variables anestywith
a selector field in thet ruct identifying the intended semantics.
Other fields of this data structure are overloaded, and thean-
ing depends on the entity the tree represent. For exampéepon
the fields in astruct tree that represents a variable contains a
pointer to anothest ruct tree that represents the variable’s type.
Knowing this allows us to deduce a relation prariablevariable

type) pairs.

2.5 Extracting Features from Relations

A machine learning tool requires a quantitative measuré¢mien
the program, provided by a vector of numerical features.his t
section we present several techniques for deriving numeiga-
tures from a relational representation of the program.

We consider first the case of entities having numerical \wlue
These values may need to be aggregated into their sum, ayerag
variance, max, min, etc., and in this way produce numerieal f
tures for the relation. For example, given relation

count= {(b,n)|bis a basic block
whose estimated number of executionaljis

1we focus on C because our work is implemented in the context of
GCC, which is written in C.



we may want to compute numerical features such as the maximalmerical features are provided by the number of occurrenicesoh

number of estimated executions of a basic block, or the geera
number of estimated executions of a basic block.

We focus now on the case of entities having categorical galue
(i.e., symbols). Most of the entities important for the caliaton
process belong to this class. Typically, numerical featalescrib-
ing relations over such entities provide information onibasuc-
tural aspects of the relation such as the number of tupleben t
relation, the maximum out-degree of nodes in a tree relagtm
We show how to extract several typical types of numericatifiess
by applying the the standard selection and projection tioeis
together with thexumoperator, defined as returning the number of
tuples in a relation.

First we note that applyingumto a relation already provides a
numerical feature which is often of interest. This is paitgcly
so in the case of unary relations (e.g., number of basic bjock
but may also be the case for higher arity relations (e.g.,baim
of edges in the control flow graph). Also, applyimgmto the
projection of relationr on dimension—yielding the unary rela-
tion rj = {e|3t e r such that hase at positioni }—often provides
an interesting numerical feature. For example, considerdfation

st in_block= {(i,b)|i is a store instruction in basic blod}.

Thennum(st_in_block ) is the number of stores in all basic blocks,
while num(st_in_block) is the number of basic blocks containing
storeinstructions.

We consider now the case of a binary relation E; x E». For
every elemene € Ej, 1 <i < 2, we consider the selection induced
by this element, i.e., the relatian(e) defined as the set of pairs
in r that contaire at positioni. By associating witre the value of
nun(r'(e)) we define a new relation i x N. For this relation, nu-
merical features can be derived by aggregating the nunhgehkees
in the second position.

For example, consider again the relatsarin_block For a given
basic blockb, the valuenuny(st in_block(b)) is the number of
store instructions in basic block. Thus the relation consisting
of all pairs (b, num(st_in_block(b))) associates each block with
the number oftoreinstructions it contains. By aggregating these
counts we may obtain numerical features such as the aveuage n
ber of stores in a basic block.

For the general case ofkaarity relationr wherek > 2, we may
derive a number of binary relations by considering the tajea
of r on any two dimensions j, i # j. For each such binary rela-
tion we derive new features by the above technique. Furtberm
for a relationr C E; x ...Ex we can also consider any two disjunct
subsetd andJ of the index se{1,...k}. The projection of on the
dimensions il andJ may be seen as a binary relation over the sets
S =Ej, x---xEj, andS = Ej, x --- x Ej,, wherel = {iy,...,ip}
andJ = {]jy,..., jq}- Again, for this binary relation new numerical
features may be derived.

The techniques described above for derivations of numdeaa
tures from relations can be automated. We implemented tin@cex
tion of numerical features from the Datalog-derived repnéation
of the program in Prolog, as the required aggregation ojpeisat
are not supported in Datalog.

2.6 Structural Code Patterns

In the previous section we examined some basic structuoal pr
erties of a graph as number of edges, average number of wegghb
for a vertex etc. These properties represent poorly thehgsapc-
ture for labeled graphs with a small number of labels forigest
and edges (e.g., CFG, DDG, dominator tree, etc.). We try &o-ch
acterize such graphs by a number of (subgraph) patternsnuthe

patterns in the graph.

For instance, the control flow graph (CFG) may be considered
as a relation oveB x B, where B is the set of basic blocks. New
relations oveB x B may be induced from this relation by taking
into account the way in which two basic blocks are connedted.
example, we may consider blocks connected viafahhen or an
i f-t hen-el se pattern in CFG. The following Datalog rules provide
possible definitions for these two relations. (In this exnthe
relationbb_edgespecifies whether two basic blocks are connected
by an edge in the CFG.)

bb_ifthen(B1,B3) :-
bb_edge(B1, B3), bb_edge(B1, B2), bb_edge(B2, B3).

bb_ifthen_el se(B1,B4) :-
bb_edge(B1, B2), bb_edge(B1, B3),
bb_edge(B2, B4), bb_edge(B3, B4).

These new relations may in turn induce new relations oveécbas
blocks connected via nestéd-t hen or i f -t hen-el se patterns.
The following Datalog rule provides a possible definitions &
relation having as elements pairs of basic blocks connedted
direct edge and a nestéd-t hen pattern (an f -t hen pattern in
which thet hen alternative is itself anf -t hen pattern).

bb_ifthen_n(B1,B4) :-
bb_edge(B1, B4), bb_edge(BLl, B2),
bb_i fthen(B2, B3), bb_edge(B3, B4).

In a similar way we may derive relations describing pattémns
any graph structure computed during the compilation. Tipese
terns can be described easily by Datalog rules. The semaoftic
the graph structure being analyzed provide guidance irctieie
the patterns to consider. Additional knowledge about thiecoay
help further trim the pattern space. For instance, knowlirag for
C programs withouswi t ch statements every node has at most two
successors in the CFG could limit the number of possiblespatt
we look for.

Other patterns in graphs such as cycles may be considered as
well. For the CFG, the loop structure may be extracted eftioan
relevant data structures of the compiler if available, orcbyn-
puting simple patterns directly from the CFG, such as sibgkdc
block loops or innermost loops with a simple structure (egn-
taining a single f - t hen pattern inside the loop body).

Finally we note that every binary relatianC E x F can be
viewed as a bipartite graph in which the partite sets coomedp
to E andF. For example, thelef-userelation over operand pairs
induces a bipartite graph in which one of the partite setsistsof
thedefs and the other consists of thees. This allows us to apply
the techniques presented in this section to any binaryioalaFor
instance, ler denote thedef-userelation. then thevebrelation
below defines avebpattern in the bipartite graph corresponding to
thedef-userelation.

web(EL, E2, F1, F2) : -
r(E1, F1), r(E2,F1), r(EL F2), r(E2, F2).

As can be seen, a large number of structural patterns carsbe ea
ily expressed and tested using our feature extraction frarie
Techniques for exploring the space of structural patteraéuather
discussed in the next subsection.



2.7 Exploring the Structural Pattern Space

In our framework, Datalog queries are used to represent sub-

graph patterns. For a quegyits frequencyq,r) is defined as the
number of the substitutions for which the query is true irpees
to a Datalog database Thefrequencyprovides a metric for a pat-
tern that maps the pattern to a feature. Given a set of pattben
features vector is provided by their frequencies. Thusfehtures
space is determined by Datalog patterns (i.e. queriesgspac

We use a pattern growth approach, in which more complex pat-
terns are successively derived from a set of initial patterie
refine the scheme of inference of new relations presentegie-a
vious subsection by imposing constraints (chosen by a dempi
expert) on the variables. In this way only the potential img@ot
patterns are generated, this significantly reducing theespfpat-
terns to be considered.

We exemplify our extension techniques for the case of the CFG
represented by the relatidib edgeC B x B. The possible queries
are sequences bb_edgepredicates of arbitrary length

T bb_edgqxl X2)7 bb_edgqxl X3)7 bb_edgf{x& X4) e

For each variablXi, X, ... in the sequence, some constraints con-
trol the sharing of variables between thie edgepredicates. The
constraints are of the forfm, n), mis the maximal number of oc-
currences of the variable as the first argument, mrslthe maxi-
mal number of occurrences of the variable as the second amgum
Intuitively these constraints limit the number of predestes and
successors for the vertices substituted to the variableaemdho-
sen on basis of domain expert knowledge - for CFG the congsrai
chosen ar¢l,2),(2,1),(1,1),(2,2).

A query is extended as by adding at each stép &dgepredi-
cate. If a new variable is introduced, the possible four tairgs
mentioned above should be attached to it - in fact there are fo
new resulting relations. If no variable is introduced, thdition of
the new added predicate (that uses two existent variabhes)d
conform with the constraints imposed on the variables. Asxan
ample we consider the query below, the constrains assddiatae
variables, and a possible legal extension.

(2,2)
(1,1)
(2,1)

const rai nt (B1)
constrai ns(B2)

2
1
const rai ns(B3) 1

Bef ore extension
- bb_edge(B1, B2), bb_edge(B1, B3).

After extension
- bb_edge(B1, B2), bb_edge(B1, B3), bb_edge(B2, B3).

We note that after the extension the variaB® could not be
further shared with any new added predicate as this wouldteio
its constraints. Similarly81 andB3 could not appear as the first
argument, respective second argument of a new added peedica

intuitively the number of databaseswvhere the patterg occurs.
A patternq is calledfrequent[21] if suppor{q,S) is at least equal
with a threshold specified by the user.

The specialization operator is anti-monotonic w.r.t. te skip-
port relation for a set of Datalog databases, i.e. di < gy then
suppor{qs,S) > suppor{gy,S). The anti-monotonicity property,
allows us to effectively prune the extension of a query - ilieny
is not frequent, then none of its extensions is frequent.

3. METHODOLOGY

In our work we attempt to overcome two major methodological
flaws that limit the dissemination of current and past resean
iterative compilation and machine learning compilatioaely:

o the use of proprietary, unreleased or outdated transfasmat
compilation and feature extraction tools;

e the very limited set of optimizations and features, making i
difficult or even impossible to replicate and improve upon
previous results.

In an attempt to curb these tendencies, we decided to impleme
our feature extractor inside the popular, free softwaredpction-
quality GCC [13] compiler. Recent versions of GCC achieve pe
formance levels competitive with the best commercial asdaech
compilers. GCC also supports a large number of platformergel
and fast-growing number of optimizations, and modern mgsti-
ate representations facilitating the extraction of semalty rich
properties and features. It is a unique tool available fseagch
purposes in compilation of real-world applications.

Based on the techniques described in the previous sectien, w
implemented our feature extractor as additional passe€in &2-
4.4 versions [14]. It is invoked on demand after the complkem-
erates the data needed for producing features. The featinaeter
works in two stages:

e extracting a relational representation of the program;

e computing a feature vector based on this representation.

4. EVALUATION

The technique presented in this paper shows how to automate
and generalize feature extraction for use in predictingdgopti-
mizations. To make its benefits more concrete, we proposena co
plete, realistic scenario about how a compiler expert mayein
mentally enhance a machine learning compiler. We assume the
compiler expert is working in an embedded system designprou
targeting an ARC 725D 700MHz embedded processARE As
it is common in such a context, the design group is very snmall a
does not have the resources to tune the heuristics, optiotizzass
selection and compilation flags for this particular platfior

We use the popular, freely-available MiBench [15] benchmar

We note that our techniques could be extended to any labeledsuite that comes with a variety of embedded and generaleparp

graph. As mentioned before the compiler expert should défiee
constraints to be used based on the specific properties gfapé.

The pattern grow approach previously described, introsliece
partial order< over the set of Datalog queries, whege < g
means that the queny is an extension of the quegy. The pattern
space is the lattice spanned by the partial ordethe inference of
the patterns may be seen as a search problem in this space.

For a collectiorS of Datalog databases, we define the support of
a queryq with respect tdS as

suppor{q,S) = |{r € S| frequencyq,r) > O}

desktop applications.

1. The expert first constructs a search space where sigrifican
speedups can be obtained using traditional iterative dampi
tion.

2. She uses this space to build a machine learning model.

3. She trains this model over multiple (desktop and servat) p
forms: AMD — Athlon 64 3700+)A32 — Intel Xeon 2.8GHz,
IA64— Itanium2 1.3GHz.
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Figure 3: Speedups when predicting best optimizations baseon program features in comparison with the achievable spehips after

iterative compilation based on 500 runs per benchmark (ARC pocessor)

4. The expert aims to use this knowledge base to predict how to
select the best optimizations, when running the same bench-

marks but on the embedd@dRCtarget.

9. To finalize the tuning, and improve compilation and tnaini
time, she performs principal component analysis (PCA) to
narrow down the set of features that really make sense on her

platform of interest.
As outlined in the use case scenario, the training of the mach

5. In the process, her first experiments are disappointihg: t
learning model has been performed on all benchmarks anbeall t

predictions achieved by the model only reach a fractionef th
performance of the best combination of optimizations avail

able in the search space.

platforms, except ARC which we used as a test platform fok opt

mization predictions.
To illustrate this scenario in practice, we applied 500 and

6. The expert identifies the source of the problem using stan-

dard statistical metrics [19]. It may come from a model over- Combinations of 88 compiler optimizations that are knowmftu-

fit due to a limited number of features, or to lack of effective €nce performance, with 50% probability of being selected, ran
correlations between these features and the semantigad pro €ach program variant 5 times. To make the adaptive optifoizat
fully transparent, we directly invoke optimization passeside a

erties that actually impact performance on &RCplatform.

modified GCC pass manager. Figure 2 shows speedups over the

7. The expert designs and implements new program feature ex-best GCC optimization leveD3 for all programs and all architec-
tures. It confirms the previous findings about iterative citatipn

[10, 1, 27, 17] — that it is possible to considerably improes-p

tractors, leveragingher understanding of the optimization
formance over default compiler settings, which are tunegen

process and of the performance anomalies involved.

8. She incrementally adds these features into the trairehg s

until the predictive model shows releva

form well on average across all programs and platforms. dieror
to help end-users and researchers reproduce results anuzept

nt results.



Feature #

Description:

ftl

ft2

ft3

ft4

ft5

fté

ft7

ft8

ft9

ft10
ft1l
ft12
ft13
ft14
ft15
ft16
ft17
ft18
ft19
ft20
ft21
ft22
ft23
ft24
ft25
ft26
ft27
ft28
ft29
ft30
ft31
ft32
ft33
ft34
ft35
ft36
ft37
ft38
ft39
ft40
ft4l
ft42
ft43
ft44
ft45
ft46
ft47
ft48
ft49
ft50
ft51
ft52
ft53
ft54
ft55
ft56

Number of basic blocks in the method

Number of basic blocks with a single successor

Number of basic blocks with two successors

Number of basic blocks with more than two successors

Number of basic blocks with a single predecessor

Number of basic blocks with two predecessors

Number of basic blocks with more than two predecessors

Number of basic blocks with a single predecessor and a ssugleessor
Number of basic blocks with a single predecessor and twoesscts
Number of basic blocks with a two predecessors and one sarces
Number of basic blocks with two successors and two predecess
Number of basic blocks with more than two successors and tharetwo predecessors
Number of basic blocks with number of instructions less than

Number of basic blocks with number of instructions in themal [15, 500]
Number of basic blocks with number of instructions greatant500
Number of edges in the control flow graph

Number of critical edges in the control flow graph

Number of abnormal edges in the control flow graph

Number of direct calls in the method

Number of conditional branches in the method

Number of assignment instructions in the method

Number of unconditional branches in the method

Number of binary integer operations in the method

Number of binary floating point operations in the method

Number of instructions in the method

Average of number of instructions in basic blocks

Average of number of phi-nodes at the beginning of a basickblo
Average of arguments for a phi-node

Number of basic blocks with no phi nodes

Number of basic blocks with phi hodes in the interval [0, 3]

Number of basic blocks with more than 3 phi nodes

Number of basic block where total number of arguments foplaiinodes is in greater than 5
Number of basic block where total number of arguments foplaiHnodes is in the interval [1, 5]
Number of switch instructions in the method

Number of unary operations in the method

Number of instruction that do pointer arithmetic in the noeth

Number of indirect references via pointers ("*" in C)

Number of times the address of a variables is taken ("&" in C)
Number of times the address of a function is taken ("&" in C)
Number of indirect calls (i.e. done via pointers) in the noeth

Number of assignment instructions with the left operandnéeger constant in the method
Number of binary operations with one of the operands an @rtegnstant in the method
Number of calls with pointers as arguments

Number of calls with the number of arguments is greater than 4
Number of calls that return a pointer

Number of calls that return an integer

Number of occurrences of integer constant zero

Number of occurrences of 32-bit integer constants

Number of occurrences of integer constant one

Number of occurrences of 64-bit integer constants

Number of references of local variables in the method

Number of references (def/use) of static/extern variainléise method
Number of local variables referred in the method

Number of static/extern variables referred in the method

Number of local variables that are pointers in the method

Number of static/extern variables that are pointers in tieéod

Table 1: List of program features produced using our technigqie to be able to predict good optimizations

their programs, we made experimental data publicly aviglab predictive modeling techniques similar to [25, 30, 2, 6] edble
the Collective Optimization Database at [9]. Note that tame to characterize similarities between programs and opétigas,
combination of optimizations found for one benchmark, fcare- and to predict good optimizations for a yet unseen prograseda

ple, susan_corner®n AMD, does not improve execution time of  on this knowledge. To validate our results, we decided toause
the bitcountbenchmark, and even degrades the execution time of state-of-the-art predictive model described in [2]. Thisd@l pre-
jpeg_chy 10% on the same architecture. It is of course a clear dicts optimizations for a given program based on a neargighbor
signal that program features are key to the success of angineac  static feature classifier, suggesting optimizations fromdimilar-

learning compiler. This of course does not diminish the ingrtce ity of programs. We use a different training set on the embddd
of architecture features and data-set features. system platformARG and the traditionaleave-one-outalidation
Though obtaining strong speedups, the iterative compigiio- where the evaluated benchmark is removed from the trairehg s

cess is very time-consuming and impractical in productide.use To avoid strong biasing of the same optimizations from theesa



benchmark. When a new program is compiled, features are first ever, machine learning is only able to recover correlatigresnce

extracted using our tool, then they are compared with alilaim
features of other programs using a nearest-neighbor fitassis

described in [5]. The program is recompiled again with theloib

nation of optimizations for the most similar program endeved

so far.

As outlined in the use case scenario, we iterated on thidibase
method while gradually adding more and more features. We-eve
tually reached 11% average performance across all benkbmar
out of 15% when picking the optimal points in the search spsee
Figure 3. Adding more features did not bring us more perforcaa
on average across the benchmarks. The list of the 56 importan
features identified in this iterative process that are ableapture
complex dependencies between program structure and a cambi
tion of multiple optimizations is presented in Table 1. Thbwve
did not reach the best performance achieved with iterativepi-
lation, we showed that our technique for automatic featuteae-
tion can already be used effectively for machine learniognable
optimization knowledge reuse and automatically improvagpam
execution time. The simplicity and expressiveness of tla¢ufe
extractor is one key contribution of our approach: a fewdioé
Prolog code for each new feature, building on a finite set eftpr
printers from GCC'’s internal data structures into Datalotites.

Our results pave the way for a more systematic study of the qua
ity and importance of individual program features, a neaesstep
towards automatic feature selection and the constructioabmst
predictive models for compiler optimizations.

Our main contribution is to construct program features by ag
gregation and filtering of a large amount of semantical priogs
But comparison with other predictive techniques is a reiegaes-
tion in itself, related with the selection of the featured amachine
learning classifier or predictor. Our work is intended toeesisch
comparisons, replicating the work of others into a singleirze
learning optimization platform.

5. CONCLUSION

Though the combination of iterative compilation and maehin
learning has been studied for more than a decade and shoeed gr
potential for program optimizations, there are surprilirigw re-
search results on the problem of selecting good quality rarag
features. This problem is relevant for effective optimizaknowl-
edge reuse, to speedup the search for good optimizatiobsijltb
predictive models for compilation heuristics, to seledirojzation
passes and ordering, to build and tune analytical perfocmarod-
els, and more.

Up to now, compiler experts had to manually construct and im-
plement feature extractors that best suit their purposehdtf a
systematic way to construct features and evaluate theitsntris
task remains a tedious trial and error process relying ort e
expertsbelievethey understand about the impact of optimization
passes. In amodern compiler like GCC, more than 200 pasees co
pete in a dreadful interplay of tradeoffs and assumptiomsiatihe
program and the target architecture (itself very complekrather
unpredictable). The global impact of these heuristics candry
far from optimal, even on a major target of the compiler sush a
the x86 ISA and its most popular microarchitectural insean@ut
what about embedded targets which attract less attentoom éx-
perts developers and cannot afford large in-house congpiteps?
What about design-space exploration of the ISA, micro&echire
and compiler?

So far, a limited set of largely syntactical features havenbe
devised to prove that optimization knowledge can be reused a
derived automatically from feedback-directed optimiaati How-

optimization knowledge) from the information it is fed with is
critical to select topical program features for a given wytation
problem. To our knowledge, this is the first attempt to prepas
practical and general method for systematically genegatirmer-
ical features from a program, and to implement it in a proiduact
compiler. This method does not put any restriction on hovotp-|
cally and algebraically aggregate semantical propentigsiumer-
ical features, offering a virtually exhaustive coveragstafistically
relevant information that can be derived from a program.

This method has been implemented in GCC and applied to a
number of general-purpose and embedded benchmarks. We illu
trate our method on the difficult problem of selecting theiropt
setting of compiler optimizations for improving the perfaance of
an application, and demonstrate its practicality achipvid% of
the available speedup obtained through iterative compilatn a
wide range of benchmarks and 4 different general-purpod@sm
bedded architectures. We believe this work is an importenut t©-
wards generalizing machine learning techniques to tabldedm-
plexity of present and future computing systems. Featutraebor
presented in this paper is now available for download wikhibE-
POST GCC at [14] while experimental data is available at §9] t
help researchers reproduce and extend this work.
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