
HAL Id: inria-00551518
https://inria.hal.science/inria-00551518

Submitted on 4 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving high-level semantics of parallel programming
annotations through the compilation flow of optimizing

compilers
Antoniu Pop, Albert Cohen

To cite this version:
Antoniu Pop, Albert Cohen. Preserving high-level semantics of parallel programming annotations
through the compilation flow of optimizing compilers. Proceedings of the 15th Workshop on Compilers
for Parallel Computers (CPC’10), Jul 2010, Vienna, Austria. �inria-00551518�

https://inria.hal.science/inria-00551518
https://hal.archives-ouvertes.fr

Preserving high-level semantics of parallel

programming languages through the compilation

flow of optimizing compilers

Antoniu Pop 1 and Albert Cohen 2

1 Centre de Recherche en Informatique, MINES ParisTech, France
2 INRIA Saclay and LRI, Paris-Sud 11 University, France

Abstract. This paper presents a technique for representing the high
level semantics of parallel programming languages in the intermediate
representation of optimizing compilers. The semantics of these languages
does not fit well in the intermediate representation of classical optimiz-
ing compilers, designed for single-threaded applications, and is usually
lowered to threaded code with opaque concurrency bindings through
source-to-source compilation or a front-end compiler pass. The semanti-
cal properties of the high-level parallel language are obfuscated at a very
early stage of the compilation flow. This is detrimental to the effective-
ness of downstream optimizations. We define the properties we introduce
in this representation and prove that they are preserved by existing op-
timization passes. We characterize the optimizations that are enabled
or interfere with this representation and evaluate the impact of the se-
rial optimizations enabled by this technique for concurrent programs,
using a prototype implemented in a branch of GCC 4.6. While we focus
on the OpenMP language as a running example, we also analyze how
our semantical abstraction can serve the unification of the analyses and
optimizations for a variety of parallel programming languages.

1 Introduction

Programming applications for multi-core systems increasingly relies on higher-
level languages, designed to express concurrency, dependence, synchronization
and locality. This information is necessary for efficient and portable paralleliza-
tion and appears in the form of annotations to conventional programming lan-
guages, like pragmas for C or C++. The enhanced semantics of these languages
does not fit well in the intermediate representation of classical optimizing com-
pilers, designed for single-threaded applications, and therefore requires either
source-to-source compilation to a sequential programming language or a front-
end to an existing compiler with an early expansion pass that lowers the lan-
guage to the sequential intermediate representation. In both cases the loss of the
additional information provided in such languages, and the obfuscation of the
underlying code, occurs at a very early stage of the compilation flow, forcing a
tradeoff between exploiting the available parallelism and classical compiler opti-
mizations. With the ever increasing number of cores, this tradeoff leans towards

concurrency and early expansion, even though it also means losing all hope for
optimizing the structure and the granularity of the parallelism, for statically
scheduling the computation or for performing global optimizations.

This paper presents a solution whereby the existing intermediate representa-
tion is transparently used to represent additional semantics in a way that allows
classical analyzes and optimizations to be performed, while also enabling to op-
timize the expressed parallelism and allowing to check the annotations’ validity
through static analysis. This solution does not require any adjustment to exist-
ing compiler passes. Our work stems from the intuition that early expansion of
parallel constructs is a waste of information and results in strong code obfusca-
tion that hampers subsequent attempts at code analysis and optimization. The
expansion should therefore be delayed. We present the general concepts, their
application to the OpenMP language and the GCC compiler, and an early imple-
mentation in GCC 4.5. We show that this approach is both sufficiently flexible
to easily integrate new language extensions, which we illustrate on an OpenMP
extension for streaming, and generic enough to be compatible with different and
domain specific languages, like HMPP.

2 Motivation

The early expansion of user annotations (E.g., OpenMP pragmas) to runtime
calls, with the associated code transformations, outlining, opaque marshaling of
data and use of function pointers, is a process whereby concurrency is gained,
at an early compilation stage, at the cost of the loss of the initial high-level
information and obfuscation of the underlying code.

The annotations provide a wealth of precise information3 about data depen-
dences, control flow, data sharing and synchronization requirements, that can
enable more optimizations than just the originally intended parallelization.

The common approach for the compilation of parallel programming anno-
tations is to directly translate them into calls to the runtime system at a very
early stage. For example, in the GCC compiler, this happens right after parsing
the source code. This means that all the high-level information provided by the
programmer is lost and the compiler will have to cope with the resulting code
obfuscation and loss of precise information. Our approach is to further abstract
the semantics of the user annotations and bring this information into the com-
piler’s intermediate representation using the technique presented in Section 3.
The semantical information is preserved, and when possible used or even refined,
until the end of the code optimization passes, where it is finally translated to
the intended runtime calls in a late expansion pass.

Let us consider the example on Figure 1 where a simple omp parallel for loop
with a static schedule is expanded. Despite the fact that we chose one of the
least disruptive expansions4, the resulting code does not look quite as appealing

3 We obviously assume correctness.
4 If for example the schedule of the loop had been chosen to be dynamic, the resulting
expanded code would be much harder to analyze.

int main () {
int *a = ... ;

#pragma omp parallel for shared (a) \
schedule (static)

for (i = 0; i < N; ++i)
{
a[i] = foo (...);

}

for (j = 0; j < N; ++j)
... = a[j]

}

void main_omp_fn_0 (struct omp_data_s * omp_data_i) {
n_th = omp_get_num_threads();
th_id = omp_get_thread_num();
// compute lower and upper bounds from n_th and th_id

for (i = lower; i < upper; ++i) {
omp_data_i->a[i] = foo (...);

}
}

int main () {
int *a = ... ;

omp_data_o.a = a;
GOMP_parallel_start (main_omp_fn_0, &omp_data_o, 0);
main_omp_fn_0 (&omp_data_o);
GOMP_parallel_end ();
a = omp_data_o.a;

for (j = 0; j < N; ++j)
... = a[j]

}

Fig. 1. The early expansion of a simple OpenMP example (left) results in information
loss and code obfuscation (right).

for most analysis and optimization passes. If the original loop could have been
unrolled or vectorized, it is now very unlikely it would still be.

To make matters worse, the resulting code is not only harder to analyze
and optimize, but it also lost the information provided by the user through the
annotations and we lost the capability of optimizing the parallelization itself. In
the original version, as the loop is declared to be parallel with a shared data
structure a, we know that the right-hand-side of the assignment a[i] = ... is
not partaking in any loop-carried dependences or that calls to the function foo

have no ordering restrictions and can happen concurrently. In the expanded
version, however, that information is lost and must be found through analyses
that may, and quite likely will, fail. Among other possibilities, the loop annotated
as parallel may have been fused with the second loop, but that is no longer an
option once expansion has taken place.

Figure 2 illustrates the compilation flow of three parallel programming lan-
guages that are representative of this type of languages. OpenMP [5], StarSs [2]
and HMPP [4] each in their own way suffer from this issue. StarSs and HMPP
rely on source-to-source compilers as a first step. The ad hoc compiler they rely
on is capable of generating optimized parallel code, either directly expanded to
calls to the runtime system or translated into another high-level parallel pro-
gramming language like OpenMP. From that point on, their compilation flow
either goes through an early expansion pass that generates parallelized code and
issues calls to the runtime along with OpenMP, or as is the case for HMPP, the
code is parsed and directly represented in the compiler’s intermediate represen-
tation. At that point, most of the potential for further optimization is lost.

In order to preserve the high-level semantics of user annotations and to avoid
clobbering important optimizations or analyses, we replace the early expansion

Source-to-source compiler

Standard compiler

Annotated code

Early expansion

Parser

Optimization passes

Annotated source code

OpenMP HMPPStarSs/SMPSs

Back-end

Parallel code
runtime calls

Standard IR: parallel code + runtime calls

Source-to-source compiler

Standard compiler

Annotated code

Early abstraction

Parser

Optimization passes

Annotated source code

OpenMP HMPPStarSs/SMPSs

Back-end

Sequential code
with annotations

Std. IR: seq. code + abstract annotations

Late expansion

Fig. 2. Compilation flow of high-level parallel-programming languages, current situa-
tion (left) and our objective (right).

of user annotations by an early abstraction pass. This pass extracts the seman-
tics of the annotations and inserts it into the compiler’s original intermediate
representation, using constructs that preserve the information in a state that is
usable by analysis and optimization passes and that can ultimately be expanded
to parallel code and runtime calls at the end of the compilation flow.

We believe that even languages like HMPP, with a dedicated optimizing
compiler, can benefit from our approach as the source-to-source compiler is gen-
erally intended and specialized to perform the domain-specific optimizations
corresponding to the original source language. This compiler is unlikely to ben-
efit from as large a base of optimizations as, for example, GCC. Extending our
framework to such a language should not be overly complicated, but getting
access to the ad hoc optimizations implemented in its compiler would require
writing a new code generation backend for the source-to-source compiler.

We attempt to address the following issues:

1. High-level parallel programming languages, in particular OpenMP, are
poorly optimized by current compilers, even for simple and crucial
sequential scalar optimizations.

2. Opportunities for optimizing the exploitation of parallelism are lost5 (e.g.,
possibility to compute optimized static schedules, verification ...).

3. User information on concurrency, dataflow and synchronization requirements
is wasted. It can be used for more than only parallelization.

In Section 7 we present a semantic abstraction pass that we substitute to
the early expansion pass. This early abstraction pass extracts important infor-
mation from the user annotations and stores this information in the compiler’s

5 This is more an issue for OpenMP than for StarSs and HMPP as they have optimizing
compilers.

intermediate representation using the technique we discuss in Section 3. In the
subsequent Section ??, we survey some important applications where the in-
formation we add to the intermediate representation, as well as the way this
information is represented, are used to address the three aforementioned issues.
Finally, in Section 8, we give a short list of some of the exciting areas we have
planned to explore before concluding.

3 Intermediate representation

The semantics of user-level annotations is generally defined with a direct cor-
respondence to specific parallelization techniques or to specific runtime calls.
This makes them well-suited for early expansion as they are self-contained and
require no static analysis or verification. A direct translation, or expansion, can
be performed at the earliest stages of the compilation flow, which is a convenient
way to avoid the interactions with the optimization passes of compilers.

A common constraint in extending the intermediate representation of a com-
piler is that it requires modifying most compiler passes, if only to keep the new
information consistent after code transformations. Instead of modify the repre-
sentation, we circumvent this issue by making use of the existing infrastructure.

Our approach is based on the use of calls to factitious builtin functions that
carry the high-level semantics. These builtins are completely opaque to existing
compiler analyses, which ensures their persistence. In order to define the scope to
which these semantics apply, we use the return value of our builtins to predicate
the targeted blocks of code. As we will further detail in Section 5, this will play
an instrumental role in the preservation of the parallel semantics even through
aggressive optimization passes.

int *X;

void bar () {

for (int i = 0; i < ...; ++i) {
#pragma omp task shared (X) firstprivate (i)

{
X[i] = foo (i);

}
}

#pragma omp barrier
// use X;

}

void bar () {

for (int i = 0; i < ...; ++i) {
if (__builtin_omp_task ()

&& __builtin_shared (X)
&& __builtin_firstprivate (i)) {

X[i] = foo (i);
}

}
__builtin_omp_barrier ();
// use X;

}

Fig. 3. Using builtin functions to represent the OpenMP semantics.

The example, on Figure 3, illustrates the use of this intermediate representa-
tion for a simple OpenMP program. Each parallel construct or clause is directly
translated to a builtin call. When the original directive or clause had parameters,
they are passed as parameters to their builtin counterpart.

An important distinction must be made between the high-level semantics of
the parallel program that is carried by this intermediate representation and the
semantics of the representation itself. All the compiler analysis and optimization
passes that are unconcerned by the parallel semantics will only perceive such a
representation as builtin function calls and conditional blocks. As we will discuss
more in detail later, this intermediate representation needs further tuning to en-
sure the interaction between our representation and such unconcerned compiler
passes does neither break the optimizations’ and analyses’ validity, nor clobber
the high-level information. This separation is key to enabling the preservation
of the parallel program’s semantics without adjusting the optimization passes.

As any function, builtins can be tagged, inside the compiler, either as pure
functions, which means they are allowed no side-efects and can only read from
memory and the input parameters6, or as const functions that can only read the
input parameters. This distinction impacts the way the compiler can optimize
the code around these builtin function calls. As builtins are opaque, the compiler
has no knowledge of the behaviour or side-effects that result from calling them
and can only rely on the qualifiers that we provide for each one of them.

Aside from adjusting the qualifiers of the builtin function, we can also change
the way parameters are passed to the builtin function in order to adapt the in-
termediate representation’s semantics to our needs. Table 1 sums up the options
available in classical intermediate representations that we can use to tune the
low-level semantics of our representation.

Function qualifier Low-level semantics (what the compiler can assume)

default Call may read or write to any part of global memory
and modify its input parameters.

pure Call may only read from global memory and from its
input parameters.

const Call may only read from its input parameters.

Parameter passing style

by value or const-qualified The function can only read the input parameter.
by pointer/reference The function may read or write to the input parameters.

Table 1. Semantics of the representation.

One of the imperative requirements to make our representation robust, de-
spite not requiring to modify optimization passes, is that it naturally prevents
any transformation that would invalidate the semantics of the annotations.

Many compiler passes have the potential to break the semantics if they are
to perform without any constraint. However, the representation implicitly intro-
duces a few constraints that we believe to be sufficient. The conditional expres-

6 This is a somewhat more lax definition than the classical functional programming
definition that requires such a function’s return value to depend only on the input
parameters.

sions it introduces, relying on opaque builtin function calls, ensure the integrity
of the blocks of code they are attached to.

4 Case study: the OpenMP language

In this section we analyze the semantics of the parallel programming constructs
and clauses of the OpenMP language and we describe how we translate them in
the intermediate representation of the GCC compiler. These constructs are essen-
tially a way of providing the compiler with information that cannot be expressed
in the underlying sequential programming language and that the compiler may
not be able to extract through static analyses. They supplement the sequential
semantics of Fortran, C or C++ with information about the data-flow, with
control-flow restrictions that stem from the lack of precision on the dynamic
data-flow and with hints on the best strategies to exploit the concurrency re-
sulting from the absence of conflicts.

The core elements of the OpenMP language are directives for thread
creation (parallel, task), worksharing directives (for, single, sections,

workshare), synchronization directives (barrier, atomic, taskwait), data
sharing clauses (shared, private, firstprivate, lastprivate) and tuning
clauses (schedule, num threads). These constructs can be classified in two
broad semantic categories based on the type of information they provide. Data
sharing clauses provide data-flow information, while all the other constructs fo-
cus on describing the control-flow restrictions necessary to properly orchestrate
the program execution in order to avoid concurrency conflicts (data races).

Translating these constructs in our builtin-based representation requires more
than replacing a compiler directive with a function call and a conditional state-
ment. We propose the translation scheme presented on Table 2.

OpenMP construct Builtin equivalent Function qualifier Argument passing style

Thread creation directives
#pragma omp parallel builtin omp parallel () pure —
#pragma omp task builtin omp task () pure —
Worksharing directives
#pragma omp for builtin omp for () — —
#pragma omp sections builtin omp sections () — —
#pragma omp single builtin omp single () — —
#pragma omp workshare builtin omp workshare () — —

Synchronization directives
#pragma omp barrier builtin omp barrier () — —
#pragma omp taskwait builtin omp taskwait () — —
#pragma omp atomic None7 — —
Data sharing clauses
shared (x) builtin shared (&x) — by pointer
private (x) builtin private (x) const by value
firstprivate (x) builtin firstprivate (x) const by value
lastprivate (x) builtin lastprivate (&x) — by pointer

Table 2. .

[AP: Table still incomplete]
[AP: The parallel for directive needs special handling. The loop body also needs to

be marked to prevent optimizations that would not keep its data-parallel property.]
The argument passing style allows selectively adjusting the compiler’s under-

standing of the conditional block with respect to the parameters alone, while the
function qualifier has a much broader scope and is a blunt method for inhibiting
some optimizations.

The correspondence between the two semantic categories of OpenMP con-
structs and these two means of controlling static analysis is all too obvious. The
constructs providing precise data-flow information only require restrictions on
the builtins parameters, the functions themselves being const-qualified to let
the analysis passes know there is no other side-effect. The remaining constructs
merely allow to cope with the impossibility of providing precise enough data-flow
information, and they will be adjusted using the function qualifiers.
[AP: Discuss the semantics of the representation for some interesting cases]

5 Interaction with analysis and optimization passes

Despite the diversity of the compiler analysis and optimization passes in modern
optimizing compilers, like GCC, they all share a common constraint: they must
conservatively preserve data flow dependences. [AP: Cite Felleisen PDG (86)]

A complete study of all optimization passes is impossible within the limits of
this paper, but the principles underlying the semantic preservation of our rep-
resentation are similar in all cases. We will detail the analysis of two common
optimization passes, conditional constant propagation and partial redundancy
elimination, to illustrate this technique. We will also briefly discuss the interac-
tion of our representation with other relevant optimization passes.
[AP: Mention special cases, e.g., graphite.]

6 Evaluation

We evaluate the impact of our approach, both positive and negative, using the
OpenMP implementation of the GCC compiler. We compare the performance
of OpenMP applications either compiled with the traditional compilation flow
where the parallel constructs are expanded in the front-end, or with our approach
where the front-end translates the parallel constructs to our builtin-based rep-
resentation which is only expanded late in the middle-end.

7 Semantic abstraction

The semantics of user-level annotations is generally defined with a direct cor-
respondence to specific parallelization techniques or to specific runtime calls.

7 The atomic directive should be directly replaced by the appropriate compiler builtin
for atomic operations.

Because of this, if instead of the early expansion we only represent the annota-
tions, as they are, in the intermediate representation, the interpretation of their
semantics will be necessary for each compiler pass that needs to use the informa-
tion they carry. Multiple interpretation layers, in optimization passes and then
in the late expansion pass, would severely reduce the genericity of this framework
and make its extension cumbersome.

The solution we advocate is to replace the early expansion pass by an early
abstraction pass that extracts the necessary information from user annotations
and represents it using a unique set of abstract annotations irrespectively of the
original language, lowering the annotations to a language-independent represen-
tation, which should provide a unified view of the user information whether it
comes from OpenMP, HMPP or StarSs annotations.

The key insight is that the high-level user annotations mostly provide infor-
mation on data-flow, with also some restrictions on control-flow that stem from
the lack of precision on the dynamic data-flow. The concurrency is just a result
of the absence of conflicts. We also recognize the importance of the additional
information a user provides as hints on the best strategy, like for example which
is the scheduling technique likely to yield the best results.

Adapting a new language, or an extension, to this early abstraction pass
requires understanding and abstracting the underlying semantics of the anno-
tations, but it should not require any modification in the optimization passes
of the compiler. Additional ad hoc semantics for tuning new architectures or
accelerators can easily be added in the form of user hints.

Following is the set of required abstract annotations, and a gist of their
semantics.

Data-flow annotations.

– use: the variable or memory area is read within the associated block.
– def: the variable or memory area is written.
– may-use: the variable or memory area may be read within the associated

block.
– may-def: the variable or memory area may be written.
– safe-ref: the variable is used or defined, but the user guarantees that all

potential conflicts are handled, e.g., with manual synchronization.
– reduction: the associated variable is part of a reduction.

Control-flow annotations.

– SESE: the associated block of code is a Single-Entry Single-Exit region.
There is no branching in or out and exceptions are caught within the region.

– single: the associated block can only be executed on one thread.
– barrier: either an explicit barrier or when a barrier is implied at the end of

a block.
– synchronization point: point-to-point synchronization.
– memory barrier: a memory flush is required at this point.

User hints. Many of the decisions involved in tuning the parallel code generation
and the execution are hard to decide from static analysis alone. We store as hints
all the information provided by the programmer. If the optimization passes can
find provably better choices, then these hints can be ignored, otherwise they
should take precedence.

– parallel: this hint may be important for loops, because even if static analysis
can recognize the loop is parallel, the profitability of the parallel execution
may not be obvious. If the programmer annotates a loop as parallel, it should
not be overlooked.

– schedule: the choice of the schedule for a parallel loop.
– num threads: number of threads available.
– More generally, any ad hoc information can be stored as a hint. In particular,

in case the late expansion pass is too difficult to perform using the abstract
annotations alone, it would be trivial to keep the whole set of original an-
notations in this form. As we will see in Section ??, this is the easy way
to solve the problem of enabling classical sequential optimizations for such
languages as OpenMP.

These abstract annotations provide readily usable information to the opti-
mization passes. They can also be refined through static analysis as, for example,
OpenMP sharing clauses will generally only provide may-def/may-use informa-
tion which can be promoted to def/use.

Depending on the compiler pass, annotated blocks of code can be either
seen as black boxes, that have well-specified memory effects and behaviour, or
they may need to be perfect white boxes to allow unrelated optimizations to be
transparently applied. The representation of these annotations needs to allow
access to the code, yet restrict optimizations that would break the semantics of
the optimizations.

Default clauses. In languages that have default clauses, or default specified be-
haviour, all defaults must be made explicit by the early expansion. This is part
of the interpretation of the language’s semantics and keeping any information
implicit would hamper the genericity of the approach. The abstract annotations
should be self-contained.

In particular, the OpenMP default sharing or a default clause allows the pro-
grammer to leave some of the sharing clauses implicit. We convert all implicit
clauses to explicit ones during the early abstraction pass, which allows to decou-
ple the intermediate representation from the OpenMP-specific semantics of the
default sharing.

Example: abstract semantics for OpenMP. Without attempting to provide a full
characterization of the OpenMP semantics, we present on Figure 4 a subset of
the abstract semantics of the language.

Adapting this framework for an OpenMP extension for streaming [1, 3], con-
sisting in two additional clauses for task constructs, would require also adding

OpenMP annotation Abstract annotations counterpart

Main directives

parallel SESE & barrier
single SESE & single & barrier
task SESE
sections SESE & barrier
section SESE & single
for parallel hint & barrier

Synchronization directives

master master thread hint & single
atomic {expr} lower to corresponding atomic builtin operation
barrier barrier
taskwait synchronization point
flush memory barrier

Sharing clauses

shared (X) safe-ref (X) & may-use (X) & may-def (X)
firstprivate (X) use (X)
lastprivate (X) def (X)
private (X) rename the variable X p
threadprivate (X) rename the variable X tp
reduction reduction(X)
copyin (X) use (X) & def (X tp)
copyprivate (X) barrier & use (X) & def (X p)

Tuning clauses

num treads num threads hint
schedule schedule hint
collapse —
ordered single & static schedule
nowait remove the implicit barrier from the directive

Fig. 4. OpenMP semantics.

the same two data-flow annotations. This extension defines an input and an out-

put clauses for tasks, which can be abstracted to a use and a def annotations
in the simple, scalar version of the extension.

8 Roadmap for future work

In order to experimentally validate our approach and evaluate the impact these
techniques have on real applications, we envisage the following roadmap:

– Evaluate the additional code coverage that can be achieved in the polyhedral
representation by using the additional semantics of OpenMP annotations in
the programs of the OpenMP Benchmark Suite.

– Consider streaming OpenMP extensions carrying explicit dependence infor-
mation, to enhance the accuracy of data dependence analyses.

– Further evaluate the performance improvement this added coverage has on
both the late-expanded version and on the sequential version.

– Evaluate more precisely and more extensively the impact of missed opti-
mization opportunities on the OpenMP Benchmark Suite, by comparing the
performance achieved using the original OpenMP code with the classical
early expansion to the performance achieved using late expansion.

– Compare the performance results of early expansion to the results of both
unoptimized late expansion and optimized late expansion with specific con-
currency optimization.

9 Conclusion

We presented an alternative approach to the classical compilation flow of high-
level annotation-based parallel programming languages. This alternative solu-
tion enables sequential optimizations of parallel codes, in particular it allows
OpenMP programs to benefit from many optimizations that until now were out
of reach. Further uses, of the intermediate representation we presented include
the extension of the scope of polyhedral representation and optimization as well
as static verification of user annotations.

Acknowledgements. This work was partly funded by the European FP7 project
TERAFLUX id. 249013, http://www.teraflux.eu.

References

1. P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramı́rez, and E. Ayguadé. A stream-
ing machine description and programming model. In SAMOS, pages 107–116, 2007.

2. J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based
Programming With StarSs. Int. J. High Perform. Comput. Appl., 23(3):284–299,
2009.

3. A. Pop and A. Cohen. A Stream-Computing Extension to OpenMP. Tech-
nical report, MINES ParisTech, CRI - Centre de Recherche en Informatique,
Mathématiques et Systèmes, 35 rue St Honoré 77305 Fontainebleau-Cedex, France,
Jan. 2009.

4. S. B. R. Dolbeau and F. Bodin. Hmpp: A hybrid multi-core parallel programming
environment. In Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU 2007), 2007.

5. The OpenMP Architecture Review Board. OpenMP Application Program Interface.
http://www.openmp.org/mp-documents/spec30.pdf.

