
HAL Id: inria-00551520
https://hal.inria.fr/inria-00551520

Submitted on 4 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Erbium: A Deterministic, Concurrent Intermediate
Representation for Portable and Scalable Performance

Cupertino Miranda, Philippe Dumont, Albert Cohen, Marc Duranton,
Antoniu Pop

To cite this version:
Cupertino Miranda, Philippe Dumont, Albert Cohen, Marc Duranton, Antoniu Pop. Erbium: A
Deterministic, Concurrent Intermediate Representation for Portable and Scalable Performance. ACM
International Conference on Computing Frontiers (CF’10), May 2010, Bertinoro, Italy. 2010. <inria-
00551520>

https://hal.inria.fr/inria-00551520
https://hal.archives-ouvertes.fr


Erbium: A Deterministic, Concurrent Intermediate
Representation for Portable and Scalable Performance

Cupertino Miranda1 Philippe Dumont1,2 Albert Cohen1

Marc Duranton2 Antoniu Pop3

1 INRIA Saclay and LRI, Paris-Sud 11 University, France
2 NXP Semiconductors, The Netherlands

3 Centre de Recherche en Informatique, MINES ParisTech, France

ABSTRACT

Optimizing compilers and runtime libraries do not shield
programmers from the complexity of multi-core hardware;
as a result the need for manual, target-specific optimiza-
tions increases with every processor generation. High-level
languages are being designed to express concurrency and lo-
cality without reference to a particular architecture. But
compiling such abstractions into efficient code requires a
portable, intermediate representation: this is essential for
modular composition (separate compilation), for optimiza-
tion frameworks independent of the source language, and for
just-in-time compilation of bytecode languages.

This paper introduces Erbium, an intermediate represen-
tation for compilers, a low-level language for efficiency pro-
grammers, and a lightweight runtime implementation. It
relies on a data structure for scalable and deterministic con-
currency, called Event Recording, exposing the data-level,
task and pipeline parallelism suitable to a given target. We
provide experimental evidence of the productivity, scalabil-
ity and efficiency advantages of Erbium, relying on a pro-
totype implementation in GCC4.3.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors - Run-time environ-
ments, Compilers

General Terms: Algorithms, Languages, Performance

1. DESIGN AND SEMANTICS

Erbium defines an intermediate representation for com-
pilers, also usable as a low-level language by efficiency pro-
grammers. Our objectives are the following.

• Determinism. Erbium’s semantics derives from Kahn

Process Networks (KPNs) [5]. KPNs are canonical
concurrent extensions of (sequential) recursive func-
tions preserving determinism (time independence) and
functional composition. Erbium processes can be arbi-
trary, imperative C code, operating on process-private

data only; their interactions are compatible with the
Kahn principle, with an operational semantics favoring
scalable and lightweight implementation.

• Modularity. Separate compilation of modular pro-

Copyright is held by the author/owner(s).
CF’10, May 17–19, 2010, Bertinoro, Italy.
ACM 978-1-4503-0044-5/10/05.

cesses is essential to the construction of real world sys-
tems. An Erbium program is built of a sequential main
thread spawning interacting processes dynamically.

• Expressiveness. In concurrent data-flow languages,
data and functional parallelism is implicit in (recur-
sive) functions. As an intermediate representation,
Erbium provides explicit, asynchronous spawn points
for concurrent processes. Unlike periodic subclasses of
KPN [1], Erbium supports dynamic creation, termi-
nation of concurrent processes, allowing for arbitrary
mode switches, resets and adaptation scenarios. De-
terminism is preserved through generic initialization
and termination protocols.

• Static adaptation. As an intermediate language,
Erbium supports aggressive specialization, analysis and
optimization. It is not restricted to periodic subclasses
of KPN [2,3,6] or specific parallel computation skele-
ton [8]. It supports program transformations for dy-
namic, data-dependent control flow applications, in-
cluding generalized forms of decoupled software pipelin-
ing [4,7]. The compiler is responsible for selecting an
appropriate specialization, offering the most relevant
runtime primitives and interface for a given platform.

• Lightweight implementation. Erbium is designed
to be as close as possible to the hardware while preserv-
ing portability and determinism. Any intrinsic over-
head in its design and any implementation overhead
will hit scalability and performance; such overheads
cannot be recovered by programmers who operate at
this or higher levels of abstraction.

view horizonrecord horizon

record

process

commitlast defined

view

updatelast available

process

stall release

copy4 3 2 1 0 2 1 0
v0v1v4 v3 v2 v1 v0 v2

Figure 1: Data flow with bounded resources

Figure 1 illustrates the Erbium primitives and event record-
ing structures on a simple producer-consumer template. The
commit() and update() primitives implement data-flow pres-

sure, enforcing causality among processes. In this split-
phase design, data-flow communication is decoupled from



int main() {
recording int re =
new_recording(1);

run producer(re);
run consumer(re);

}

process producer
(recording int re) {
int tl=0, hd, i;
alloc(re, P_HORIZ);
while (1) {
hd = tl + P_BURST;
if (hd<N) break;
stall(re, hd);
for (i=tl; i<hd; i++)
re[[i]] = foo(i);

commit(re, hd);
}

}

process consumer
(recording int re) {
int tl=0, hd, i;
int sum=0;
view int vi = new_view(re);
register(vi);
alloc(vi, C_HORIZ);

while(1) {
hd = tl + C_BURST;
receive(vi, hd);
hd = update(vi, hd);
if (!hd) break;
for (i=tl; i<hd; i++)
sum += vi[[i]];

release(vi, hd);
tl = hd;

}
}

Figure 2: Producer-consumer example

synchronization. A one-sided, asynchronous communica-
tion is initiated with the receive() primitive. The re-

lease() and stall() primitives implement back-pressure.
Each recording (resp. view) is associated with a private,
monotonically increasing stall (resp. release) index, marking
the tail of live elements in the recording (resp. view). The
stall index is always lower than or equal to the minimum of
the connected views’ release indices.

Figure 2 shows an illustrative producer-consumer exam-
ple. A single recording is connected to a single view. Data-
flow synchronization, communication and back-pressure are
straightforward. Each process sets its own recording/view
horizons and its own commit/update bursts. In a given
burst, commit() follows the last definition of a value, up-

date() precedes the first use, release() follows the last
use, and stall() precedes the first definition.

Termination detection by the consumer takes two phases:
the value returned by update() bounds the burst iteration
to the precise number of retrieved elements, then control-
flow breaks out of the loop at the next call. The recording
descriptor owned (allocated) by the producer is an initial-
ization argument for the consumer; it has been initialized
prior to spawning the producer, and is used to connect the
view to the recording in the consumer. Together with the
backpressure design, it makes separate compilation of the
producer and consumer possible.

2. EXPERIMENTS

Our experiments target real applications and a code gen-
erator implemented in an experimental branch of GCC 4.3.
The code generator expands the Erbium constructs to their
shared-memory specializations after the main optimization
passes. The most interesting step is to hide the concurrency
constructs from the compiler optimizations. This peace-
ful collaboration of thread-level parallelism with middle- or
back-end optimizations is the result of our intermediate lan-
guage approach, and is rarely found in high-level languages
or low-level threading libraries.

Platform (cores) fmradio 802.11a jpeg

Xeon (24) 12.6 6.67 2.42
Opteron (16) 14.6 7.45 1.95

Figure 3: Speedups for fmradio, 802.11a and jpeg

We report experimental data about the parallelized ver-
sion of our three applications. fmradio (GNU radio) and
802.11a (internal reference code at Nokia) did not require
algorithmic or radical design changes to achieve scalable per-
formance. In the case of jpeg, we chose to illustrate the
expressiveness and low-overhead benefits of Erbium: the
code was initially decomposed at the finest possible grain
exposing KPN semantics, and we did attempt to hide syn-
chronization latency through task coarsening or fusion. Fig-
ure 3 summarizes the speedups on 24-core and 16-core x86
platforms. The baseline is the sequential (original) version
compiled with -O2. Streaming codes are often bandwidth-
bound: the Xeon’s front-side bus appears to be penalized
on such codes compared to the Opteron’s Hypertransport
busses: data-parallelism is limited by off-chip memory band-
width. It is encouraging that jpeg shows a modest but real
speedup despite its unrealistically fine grain parallelism.

3. CONCLUSION

We introduced Erbium and its three main ingredients:
an intermediate representation for compilers and efficiency
programmers, a data structure for scalable and determinis-
tic concurrency, and a lightweight runtime. Erbium is im-
plemented in GCC 4.3, allowing classical optimizations and
parallelizing transformations to operate transparently. It re-
lies on 4 concurrency primitives implemented with platform-
specific, non-blocking algorithms. Our current implementa-
tion has a very low footprint and demonstrates high scala-
bility and performance. Unlike usual runtime approaches to
low-level parallel programming, the intermediate represen-
tation is the portability layer. We are porting Erbium to
distributed memory machines (Cell BE and clusters), and on
front-ends for high-level, performance portable languages.

4. REFERENCES

[1] G. Bilsen, M. Engels, L. R., and J. A. Peperstraete.
Cyclo-static data flow. In Intl. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP’95), pages 3255–3258,
Detroit, Michigan, May 1995.

[2] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet. N-Sychronous Kahn networks. In ACM Symp.
on Principles of Programming Languages (POPL’06), pages
180–193, Charleston, South Carolina, Jan. 2006.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. In ASPLOS-XII: Proc. of the 12th intl. conf. on
architectural support for programming languages and
operating systems, pages 151–162, San Jose, California, 2006.

[4] R. Gupta. Exploiting parallelism on a fine-grain MIMD
architecture based upon channel queues. Intl. J. of Parallel
Programming, 21(3):169–192, 1992.

[5] G. Kahn. The semantics of a simple language for parallel
programming. In J. L. Rosenfeld, editor, Information
processing, pages 471–475, Stockholm, Sweden, Aug. 1974.
North Holland, Amsterdam.

[6] M. Kudlur and S. Mahlke. Orchestrating the execution of
stream programs on multicore platforms. In ACM Conf. on
Programming Language Design and Implementation
(PLDI’08), pages 114–124, June 2008.

[7] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. In IEEE
Intl. Symp. on Microarchitecture (MICRO’05), pages
105–118, 2005.

[8] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. J. Dally. A
tuning framework for software-managed memory hierarchies. In
Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’08), pages 280–291. ACM Press, 2008.


