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Abstract. Mining of repeating patterns is useful in inferring structure
in streams and in multimedia indexing, as it allows to summarize even
large archives by small sets of recurrent items. Techniques for their dis-
covery are required to handle large data sets and tolerate a certain
amount of variability among instances of the same underlying pattern
(like spectral variability and temporal distortion). In this paper, early ap-
proaches and experiments are described for the retrieval of such variable
patterns in audio, a task that we call audio motif discovery, for analogy
with its counterpart in biology. The algorithm is based on a combination
of ARGOS [4] to segment the data and organize the search of the mo-
tifs, and a novel technique based on segmental dynamic time warping to
detect similarities in the audio data. Moreover, precision-recall measures
are defined for evaluation purposes and preliminary experiments on the
word discovery case are discussed.

Key words: audio pattern discovery, variable motif, dynamic time warp-
ing, normalized edit distance

1 Introduction

1.1 Motivation

Discovery of repeating patterns for multimedia indexing is an emerging research
field. The increasing possibility to capture and store large amounts of multimedia
documents has led to the adoption of strategies to quickly access, process and
browse through massive data sets. Identification of patterns that structurally
characterize a multimedia archive aims at coherently organizing the collection
by representing the archive through a set of specific, recurrent items. Recent
work on audio thumbnailing of music catalogs point towards this direction [1][2].
Moreover, in many cases, learning the structure of a process by pattern discovery
can be very useful in seeking a model that reflects the properties of the source
that has generated the process itself. This is roughly what is done in computa-
tional biology, where the extraction of meaningful patterns (usually referred as
motifs) in massive amounts of DNA and protein sequences plays a key role in
the analysis and understanding of important biological functionalities [5].
Allowing only identical patterns to be recognized would dramatically limit the
potential applications of motif discovery. For example in comparative genomics,
most of the time, patterns are allowed to present wild cards or indels, e.g. they
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are not necessarily identical, but present a certain degree of variability.
Our interest is focused on the retrieval of such recurring patterns in audio streams
or data sets, a task that, for analogy with its counterpart in genomic, we call
audio motif discovery. Typical examples in streams are repetition of jingles, ad-
vertisements, or even entire shows broadcasted multiple times in a day, whose
identification allows for customization of the stream (by skipping commercial,
for example). Identification of words and verbal expressions that inherently char-
acterize a news, a lecture, a movie, is useful for summarization and enable the
user to fastly browse trough the audio archive without relying on a transcribed
version of the data. Techniques for retrieval of such motifs are required scala-
bility to manage large data sets, flexibility to handle the large variety of motifs
lenght, and robustness to sources of variability that make it difficult to detect
multiple copies of the same motif (temporal distortions, spectral variability of
the human voice). We propose in this paper one of such techniques that has been
preliminary tested on the task of word discovery in speech and we plan to verify
its performance in different audio motif discovery experiments.

1.2 Related works

In the last few years, only few work have addressed and formalized the problem
of unsupervised audio motif discovery.
In [3] an algorithm is proposed for motif discovery in time series, but the search
is performed on a symbolic, intermediate level that is clearly a limitation for the
application to the audio signal. In ARGOS [4], a scalable approach is used to
detect repetition of multimedia objects in streams by only considering the audio
portion, but variability is not taken into account as objects are supposed to be
identical recordings broadcasted multiple times over the day.
In [6] fragments of speech are compared pairwise at the acoustic level by a seg-
mental DTW (SDTW) and the output is used to build an adjacency graph (with
times indexes as nodes and DTW scores as edges) followed by a clustering phase.
However, this approach does not scale well for increasing large data sets as the
number of comparisons grows quadratically with the number of segments. More-
over, SDTW shows higher complexity than conventional DTW.

1.3 Outline

The paper is organized as follows: a short introduction is done to specify the
elementary subtasks that compose the problem, followed by the description of
ARGOS, a procedure to segment the stream and organize the search. The main
contribution of our work is in subsection 2.2, 2.3, 2.4, where three variants of
a new segmental DTW algorithm are introduced for automatically discovering
similarities in acoustic fragments. In section 3, a framework to evaluate the
performance is proposed and preliminary results on a small data set are next
presented. Finally, ideas for improvements and developments of the current work
are discussed.
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2 Description of the algorithm

The audio motif discovery can be conceptually organized in four different sub-
tasks:

1. the segmentation of the data into smaller segments to be compared for sim-
ilarity detection.

2. the transformation of the raw data in an alternative, less redundant repre-
sentation suitable for the comparisons.

3. the definition of a similarity measure and the inference of a proper threshold
to discriminate (dis)similarity, that is to detect instances of the same motif.

4. the search procedure, that is the structural way to organize the comparison
of the segments.

We tackle all these aspect in this section.
First, we remark the notable difference between the motif discovery and the
search for previously known patterns (query by content) in stream or data
sets, a problem well addressed in the scientific literature. In motif discovery,
the searched objects (the queries of the search) are not known a priori, but must
be inferred from the stream itself in an unsupervised way. As motifs endpoints
or even presence in the stream is unknown, naive exhaustive strategies imply
candidate motifs of every possible length in every part of the stream to be as-
sumed as queries and searched along the entire stream. This approach is clearly
unfeasible even for small data sets.
Alternatively we resort on ARGOS, a general purpose strategy that exploit the
intrinsic repetitiveness in streams to efficiently segment the data and organize
the search.

2.1 The ARGOS approach

In ARGOS fixed length motif candidates (queries) are used, supposed to either
coincide with the motif or include the motif as a portion of it. Moreover, the
search for each query is not performed over the entire stream, but is rather
restricted on its near future (or recent past) and a library is incrementally build
where detected motifs are stored and used for retrieval of long term matches.
More specifically, at each step of the process, a portion of the incoming audio
stream is broken into a pair query-buffer. The query is a segment of the portion
of stream under processing, which is supposed to completely contain the motif.
The buffer is the audio portion adjacent to the query and it represents the search-
space where the query is seeked into.
The underlying assumption is that meaningful patterns repeat frequently, at
least in a part of the stream, thus they are likely to repeat in their near future
1.
When a repetition of the current query in the buffer is detected, a reference
model of the common pattern (the found motif) is stored in a library and used

1 or in the recent past, as in the original work
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Fig. 1. ARGOS framework: at step L, the current query is not detected in the library
but it is found in the buffer and the corresponding reference model is stored in the
library as the q-th motif. At step L+1 query and buffer shift along the stream of a
query length and the current query is retrieved in the library by comparison with the
m-th motif. At step L+2 the new query, which happens to be another occurrence of
the q-th motif, is retrieved by direct search in the library.

for future comparisons. As the process evolves, query and buffer shift along the
audio stream, and the new query is first seeked into the library (by comparison
with the stored models) and, if not found in the library, in the search buffer
(as illustrated in figure 1). It follows that each query is searched, at most, in
the K motifs currently stored in the library plus the search buffer, unlike the
exhaustive approach that implies a number of comparisons that quadratically
grwos with the number of queries.
In the original work, the search is performed on the audio portion by time
correlating distorted versions of the speech signal, obtained by only retaining a
small part of the audio spectrum (about 200 Hz centered around the sixth Bark
band). Such a reduction technique can decently perform only in a context where a
very few samples are needed to discriminate (dis)similarity, that is, occurrences of
the same motif are supposed to be practically identical and completely different
from other motifs; it is therefore unsuitable in a word discovery task, and, in
general, in a scenario where instances of the same motifs can exhibit a certain
amount of variability. For this purpose, we propose to resort to a more accurate
spectral representation of the audio signal (MFCC) and exploite the potential
of dynamic programming for pattern identification. Several implementations of
a new segmental DTW technique are carefully described in the following.

2.2 Segmental locally normalized DTW

DTW is a widely used technique for pattern recognition. In the classical version,
it is used to detect similarity between two motif templates, a and b, by comput-
ing spectral frame vectors {ui}

M
i=1

and {vj}
N
j=1

, and the frame-to-frame distance
matrix d(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ N . Applying recursively dynamic program-
ming (DP) relations, a path P = [(1, 1), · · · , (M, N)] of length L(P ) is found
and the corresponding average weight W (P ) = (d(1, 1) + · · · + d(M, N))/L(P )
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is compared against a spectal threshold φ to decide if a and b are similar.
As in our framework we can not rely on an a priori segmentation of the stream
into exact motifs, this approach is not suitable since it only works when mo-
tifs endpoints are well defined. Indeed, motifs boundaries are not known in ad-
vance. Our goal is to be able to find a path P from (is, js) to (ie, je), with
1 ≤ is ≤ ie ≤ M, 1 ≤ js ≤ je ≤ N , relaxing the boundary constraint of the
classical approaches that force starting and ending point to be respectively at
(1, 1) and (M, N). We first consider the case is = 1, ie = M , that is, we search
a repetition of the whole vector u (query) into v (buffer).
The solution we propose relies on a heuristic that consists in locally minimiz-
ing the average weight of each path, both when selecting new starting points
and when computing the paths itself, with same complexity as the conventional
boundary-constrained approaches. We call it segmental locally normalized DTW
(SLNDTW), as it allows for multiple paths with different starting points (Seg-
mental) and it is based on a Local Normalization principle.
We define L(i, j) as the length of the path starting from some (1, js) up to (i, j),
D(i, j) the corresponding accumulated distance and W (i, j) = D(i, j)/L(i, j) its
average weight.
As a potential match can occur anywhere in v, we need a strategy to allow
js 6= 1, je 6= N .We identify a starting point by comparing each cell (1, j) with its
left neighbour (1, j − 1) (which has been evaluated previously, as computation
proceeds from left to right, as in classical DTW): if d(1, j) is less than W (1, j)
(the weight of the path obtained by adding d(1, j) to D(1, j − 1)), then it is de-
cided to start a new path from (1, j) as a starting point of a potential matching
sequence. Formally:
∀j, 1 ≤ j ≤ N ,























D(1, j) = d(1, j)
L(1, j) = 1

D(1, j) = D(1, j − 1) + d(1, j)
L(1, j) = L(1, j − 1) + 1

, if d(1, j) < W (1, j)

, otherwise

(1)

Except for i = 1, each path is computed by iteratively applying the DP relations
following the local normalization paradigm, which consists in minimizing, at
each point (i, j) of the computational grid [1, · · · , M ] × [1, · · · , N ], the weight
W (i, j), that is the quotient between the accumulated distance D(i, j) and the
path length L(i, j). Formally:

W (i, j) = min

[

d(i, j) + D(i − 1, j)

L(i − 1, j) + 1
,
d(i, j) + D(i − 1, j − 1)

L(i − 1, j − 1) + 1
,
d(i, j) + D(i, j − 1)

L(i, j − 1) + 1

]

(2)
The ending point (M, je) of a match is such that W (M, je) < φ, 1 ≤ je ≤ N ,
where φ is a spectral threshold. If several such points exist, that is multiple
occurrences of the query in the buffer occur, we just retain the first one and ini-
tialize a cluster in the library, modeling the motif as the average of the spectral
frames put in correspondence by the DTW mapping. The other occurrences will
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be detected later when assumed as queries and searched in the library, and the
reference model will be updated as well by averaging with the newly detected
instances of the motif.
Like in conventional DTW we only need to scan the distance matrix d once to
compute D and L (W is D/L), differently from SDTW, where after paths com-
putation, each diagonal band needs to be re-evaluated for subpath identification.
Moreover, while in SDTW starting points are a priori selected by regularly sam-
pling the first row of [1, · · · , M ] × [1, · · · , N ], in SLNDTW each cell (1, j) is a
starting point candidate.
It is worth noting that paths are not forced to be confined in diagonals of a
pre-defined slope, and various local constraints can be applied, depending on
the application, allowing for matches with different slopes.

2.3 Band relaxed SLNDTW

SLNDTW aims at finding matches of the query in the search buffer. In our
framework, this approach would be effective only if motifs were of fixed length
and coincide exactly with the query. This is a strong assumption and far from
realistic applicative contexts. If the length assumption restricts the number of re-
trievable motifs, the mismatch in time synchronization between motif and query
dramatically decrease performance, as increasingly high path weights result from
even sligth timeshiftings. We propose here a modification of SLNDTW, band re-
laxed SLNDTW, that relaxes the boundary constraints of SLNDTW selecting
starting and ending points in a group of rows (band), instead of a single one,
thus allowing to retrieve motif with different lengths, as illustrated in figure 2.
This is achieved by dividing the grid [1, · · · , M ] × [1, · · · , N ] in three horizontal
bands and selecting starting point in the first one and ending point in third,
constraining all the paths to cross the second one. The starting band includes all
(i, j)|i ∈ [1, Ls], the central band includes points (i, j)|i ∈]Ls, Ls + Lc] and the
ending band includes all points (i, j)|i ∈]Ls +Lc, M ]. Accordingly, motif lengths
are allowed to vary from Lc to M .
More specifically:

1. ∀(i, j)|i ∈ [1, Ls]:

if d(i, j) <

[

d(i, j) + D(i − 1, j)

L(i − 1, j) + 1
,
d(i, j) + D(i − 1, j − 1)

L(i − 1, j − 1) + 1
,
d(i, j) + D(i, j − 1)

L(i, j − 1) + 1

]

then (i, j) is the starting point of a new path, otherwise it is added to the
path that minimizes W (i, j). Note that this a generalization of eq. (1), as
the same condition is expressed by considering the whole neighbourhood of
(i, j) rather than the single cell at its left (i, j − 1).

2. ∀(i, j)|i ∈]Ls, M ] compute path as in eq. (2).
3. ∀(i, j)|i ∈ [Lc + Ls, M ] select the ending point of a match, if any, as in

SLNDTW, and reconstruct the corresponding path.
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Fig. 2. Band relaexd SLNDTW: the motif completely includes the central band. After
path reconstruction, boundaries are refined in the starting and ending band (dashed
lines).

In addition, we have applied an heuristic for the refinement of the boundaries
that consists in extending the found match by adding new frames at the bound-
aries (following the local normalization paradigm), as long as the average weight
of the extended path does not increase too much.
Formally:

1. Consider the path P with W (P ) = Wo ending in (ie, je).
2. Select in the neighbourhood of (ie, je) (composed of (ie + 1, je + 1), (ie +

1, je), (ie, je + 1)) the point that, added to P , minimizes W (P ), and add it
to P as its new ending point.

3. If W (P ) < Wo+10%Wo, then repeat the procedure from 1, otherwise remove
the new ending point from P and stop the procedure.

The same approach applies when extending the path backward from its starting
point (is, js).

2.4 Fragmental SLNDTW

Band relaxed SNLDTW does not constrain motif and query to coincide, but
it still assumes the motif to be located in the middle part of the query, such
that it completely includes the central band. A simple generalization of the
previous versions of the algorithm, that we call fragmental SLNDTW, allows to
retrieve the sought motif regardless of its position in the query, by first retrieving
a portion of it, e.g. a fragment. SLNDTW detects a match whenever a query
coincide with a motif. By using queries small enough to be included in the motif,
then there exists at least one fragment of the motif that coincide with one of the
queries and that can be discovered by SLNDTW. Indeed, if Lmin ≤ Lmotif ≤
Lmax, partitioning a Lmax long query in Lmin/2 long subqueries ensures that at
least a Lmin/2 long fragment of the motif coincide with one of the subqueries,
and it is therefore retrievable by conventional SNLDTW. The entire match can
be recovered afterwards, by extending the corresponding path as in the boundary
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Fig. 3. Fragmental SLNDTW: partitiong the query in Lmin/2 long subqueries ensures
that a least a fragment of the motif coincide with a subquery. The entire match can be
then recovered by extending the fragmental match.

refinement stage in Band relaxed SLNDTW.
For the sake of clarity we explicit the steps of the procedure and illustrate the
scenario in figure 3:

1. divide the grid [1, · · · , M ]× [1, · · · , N ] in horizontal bands of length Lmin/2,
such as the i-th band includes all point (i, j)|(i − 1) · Lmin/2 + 1 ≤ i ≤
i · Lmin/2.

2. perform a conventional SNLDTW in each band and reconstruct the found
match, if any.

3. extend the path corresponding to the found match with the same heuristic
used to refine boundaries in band SLNDTW.

This implementation of the technique has the advantage to enable the retrieval
of a match whichever its position in the considered query, hence it shows higher
flexibility than the two previous versions. It only constraints the motif minimum
and maximum lenght, which is not a very limiting assumption in many applica-
tions.
Therefore, using an accurate spectral representation of the audio signal (MFCC)
and combining the described method with ARGOS segmentation-search strat-
egy, the motif discovery can be finally performed.

3 Evaluation

The evaluation of the performance relies on the analysis of the library of motifs
constructed by the algorithm. We propose here a framework for the computation
of a recall-precision curve. Precision aims at quantifying the level of purity of
each cluster in the library, that is the ability of the algorithm to limit false hits
as much as possible, while recall aims at measuring the ability to limit missed
detection of motif’s instances, or, equivalently, to retrieve, for each motif, as
many exemplars as possible. In our framework, evaluation has been performed
at the phonetic level relying on a transcribed version of speech data; accordingly
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we have resorted to normalized edit distance d [7] and a phonetic threshold θ to
verify the (dis)similarity between motifs found by the algorithm at the spectral
level.
We introduce the following notation:

– LBi: i-th motif of the library LB.
– LBi,j : j-th instance of the motif LBi.
– mi: cardinality of LBi.
– d(LBi,j , LBi,k): distance between LBi,j and LBi,k.
– ci: centroid of LBi

The centroid ci of LBi is defined as:

ci = LBi,p where p = arg min
1≤j≤mi

mi
∑

k=1

d2(LBi,j , LBi,k) (3)

The precision of the i-th motif is thus computed as:

Pi(θ) =

(

∑

j δ (d(LBi,j , LBi,p < θ)
)

mi

=
m′

i

mi

(4)

where δ = 1 if its argument is true, and 0 otherwise. It represents the fraction
of instances LBi,j included in a sphere of center ci and radius θ. The global
precision P (θ) is the average of Pi over all motifs LBi.
Let m′′

i be the number of entities M over the entire phonetic transcription such
as d (M, LBi,j) < θ. The recall of the i-th cluster is the ratio:

Ri(θ) =
m′

i

m′′
i

(5)

and the global recall R(θ) is computed by averaging over all motifs of the library.

4 Preliminary experiments

The test data is composed of a 20 minute long French broadcast recording, sam-
pled at 16 KHz. Words are uttered from different speakers (the conductor and the
authors of the live reports) and no preliminary segmentation or pre-processing
(like silence deletion) is performed. 13-dimensional MFCCs vector are extracted
every 10 ms.
As the dimension of the processed file is quite small, even motifs occurring as
few as 2 times are retained and considered for recall-precision evaluation: there-
fore the resulting numbers are not meant as statistically relevant measurements.
Nonetheless, they are useful to evaluate and compare the performance of the
different implementations of the algorithm.
In a 20 minutes bulletin, the time duration of each report is around 1 minute;
as patterns inherently characterizing a 1 minute news have been supposed to
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repeat in a few seconds, we have arbitrarily set the buffer length to 13 seconds
for all runs of the algorithm. As queries and motifs are supposed to coincide in
conventional SLNDTW, the query length has been set to an average word length
(0.6 second). In Band relaxed SLNDTW, the motif is supposed to be located in
the middle of the query. We have therefore used 1 second long queries. In the
Fragmental SLNDTW, motifs are allowed to be located anywhere in the query.
Given the flexibility of this last method, among all the possible choices, we have
arbitrarily chosen 2 seconds long queries. Finally, in the Band relaxed version we
have set Lc = 0.3 s and in the Fragmental SLNDTW we have set Lmin/2 = 0.3
s.
The different versions of the algorithm have been tested for increasing values of
the spectral thresholds φ, from φ = 8 to φ = 12. In some experiments we have
noted that, even in the correct detection of two occurences of the same motif,
certain phonemes at the boundaries of the two exemplars are not detected. In
order to take into account the issue, we have empirically set the phonetic thresh-
old θ to 0.35.
We have noted that, at least for φ ≤ 10, the resulting library of motifs exhibits
a significative level of purity, as acoustically similar fragments are well grouped
together. Motif length has mostly ranged from 0.45 s (set as minimum acceptable
length)to 0.9 s. Example of retrieved motifs are: single words, usually including
some phonemes from the preceding and following words (les ambassadeurs du

G), or subwords shared in common by different words (la position - la discus-

sion), or even small multi words locutions (face a l’interdiction), while the small
breathings in between words have been notably the most frequenly retrieved
pattern. In some cases we have noted different clusters representing the same
underlying motif that the algorithm has failed to merge together, in particular
for words uttered by different speakers. In several occasions, repeating words
have not been detected at all, either because the size of the buffer has revealed
to be too short to detect them, or because different exemplars of the same word
have shown higher spectral distances than expected.
From a quantitative point of view, the results of the experiments are summarized
in figure 4 and 5. In figure 4 the number of found motifs for a certain value of
φ is shown for the different versions of the algorithm. As expected, this number
is always higher for Band relaxed and Fragmental SLNDTW with respect to
conventional SNLDTW, since in this last case no variability in motif length is
allowed and consequently, only 0.6 seconds repeating words (the query length
used) can be detected; moreover only perfectly aligned exemplars are likely to be
found, as slight misalignments, as already noted, infer significative distortions.
In figure 5 it can be observed that, for increasing values of φ, the precision P
decreases, as false hits appear more frequently. Even if the the experiment was
conducted on a small data set, it is noteworthy the high value of purity suggested
by the computed precision, in particular for φ < 11 and for the last two versions
of SLNDTW.
The behaviour of the recall parameter R, for different values of φ is less straight-
forward to understand.
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Fig. 4. Number of found motifs for the different algorithms and different values of θ
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Fig. 5. Precision and recall curve for the different algorithms and different values of θ

Indeed, in SLNDTW and Fragmental SLNDTW this value tends to increase from
φ = 8 to φ = 10 and then to fall for larger values of φ. The same transition can
be observed between φ = 9 and φ = 10 for Band relaxed SLNDTW.
We initially predicted that an increase of φ would be followed by a substantial
improvement of R at the expense of P , as more instances of the same underlying
motif -as well as more false hits- are likely to be detected for higher values of
spectral threshold; instead, the way the reference model is built and updated in
the library strictly relates recall and performance measures, as averaging false
hits with the reference model tends to progressively reduce its representative-
ness, leading to missed detection of true instances of the same motif. In synthesis,
updating the reference model is highly prone to error propagation, when increas-
ing the spectral threshold. Moreover, as defined as in eq. (5), the recall is only
computed over the found motifs, not taking into accounts those motifs that al-
gorithm does not detect at all, that should contribute each with a single recall
Ri = 0.

5 Conclusions and future works

In this work, we have addressed and formalized the task of audio motif discov-
ery. We have proposed an algorithm that combines ARGOS and three different
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implementations of a novel DTW approach for audio similarities detection that
seamlessly integrates into ARGOS. The algorithm has been tested on the word
discovery case, and has shown promising results, at least in terms of precision.
It exhibits a certain robustness to the typical spectral variability in speech when
detecting multiple realization of the same word. We plan to investigate its per-
formance in different audio motif contexts.
Large scale experiments are needed to validate the preliminary results here pre-
sented and to test the sensitivity of the algorithm to variations of main param-
eters. As far as the improvement of the current algorithm we note here that the
most remarkable limitation of the current method is that it limits the pattern
discovery problem to the search and identification of low distortion regions in
the local distance matrix. However, we have noted that, for a variety of reasons
(different speakers, environmental conditions and so on), same words at different
points in the audio file present different values of (locally normalized) distance
when compared against each other; that makes it difficult to set a fixed reliable
spectral threshold to discriminate between false and true matches. However, we
have discovered visual similarities in their local distance matrices, which are con-
sistent in the majority of the compared instances, regardless of the distortion of
the main diagonal. We plan to investigate the nature of these patterns to improve
the recognition task, by exploiting the large corpus of techniques in the image
processing literature. The ultimate goal is to build an adaptive model where
different spectral thresholds are set for each motif in the library and updated as
new instances are found. Moreover, in order to speed up the computation, tech-
nique for fast access to the library can be applied (for example, by storing the
motif in order of decreasing frequency of occurrence), together with techniques
for fast approximation of DTW.
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