
HAL Id: inria-00551974
https://inria.hal.science/inria-00551974

Submitted on 5 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building factorized TAGs with meta-grammars
Éric Villemonte de La Clergerie

To cite this version:
Éric Villemonte de La Clergerie. Building factorized TAGs with meta-grammars. The 10th Interna-
tional Conference on Tree Adjoining Grammars and Related Formalisms - TAG+10, Jun 2010, New
Haven, CO, United States. pp.111-118. �inria-00551974�

https://inria.hal.science/inria-00551974
https://hal.archives-ouvertes.fr


Building factorized TAGs with meta-grammars

Éric Villemonte de la Clergerie
INRIA - Rocquencourt - B.P. 105

78153 Le Chesnay Cedex, FRANCE

Eric.De_La_Clergerie@inria.fr

Abstract

Highly compacted TAGs may be built by al-

lowing subtree factorization operators within

the elementary trees. While hand-crafting

such trees remains possible, a better option

arises from a coupling with meta-grammar

descriptions. The approach has been vali-

dated by the development of FRMG, a wide-

coverage French TAG of only 207 trees.

1 Introduction

Tree Adjoining Grammars (TAG – (Joshi, 1987)),

plus feature decorations, provide a powerful and el-

egant formalism to capture many syntactic phenom-

ena, due to the adjoining mechanism, tree lexical-

ization, and extended domain of locality of trees.

However, it is well-known that the two last prop-

erties easily lead to a combinatorial explosion in

term of trees, with large coverage grammars of sev-

eral thousand trees (or even more) (Crabbé, 2005;

Abeillé, 2002). This explosion induces problems

of development and maintenance of the grammars,

but also of efficiency during parsing. Several ap-

proaches have been proposed to remedy to the sit-

uation, either on the maintenance side or on the

efficiency side. On the maintenance side, besides

the notion of families present in the XTAG archi-

tecture (Doran et al., 1994), one may cite the use

of metarules (Prolo, 2002) to derive trees from the

“canonical” versions, and meta-grammars (Candito,

1999; Duchier et al., 2004) where the grammars

are derived from a constraint-based modular level

of syntactic descriptions organized as an inheritance

hierarchy of elementary classes. On the efficiency

side, besides more or less clever lexicalization-based

filtering techniques (such as suppertagging), one

may cite the factorization of common sub-trees us-

ing automata (Carroll et al., 1998) or the possibility

to attach, modulo regular expressions, several pos-

sible tree traversals to a tree (Harbusch and Woch,

2004). However, no approach cover both side of

the problem, namely maintenance and efficiency. In

particular, finding common sub-trees in a large TAG

(with decorated nodes) is a difficult task (from an al-

gorithmic point of view) and attaching tree traversals

requires some efforts from the grammar writer. We

propose a more modular approach based on the use

of local subtree factorization operators that be ex-

pressed locally and easily in the elementary classes

of a metagrammar. The generation of complete min-

imal trees by a meta-grammar compiler combines all

these local factorizations to produce highly factor-

ized trees that couldn’t easily have been written by

hand. These ideas have been validated during the de-

velopment of FRMG, a large coverage French meta-

grammar producing only 207 trees.

Some background about Meta-Grammars is pro-

vided in Section 2. Tree factoring through MG de-

scriptions is illustrated by a few syntactic phenom-

ena in Section 3. In Section 4, we present FRMG.

Because a grammar is only useful with a parser, Sec-

tion 5 precises some aspects of this parser, focusing

on those that ensure its efficiency. Finally, Section 6

presents some results.

2 Meta-Grammars

Meta-Grammars favor the modular development of

grammars by grouping small sets of elementary con-

straints in classes related to micro syntactic phenom-

ena. Elementary constraints include node equal-



ity (A=B), node dominance (immediate with A >> B

or not with A >>+ B) and node precedence (A < B).

Decoration constraints as feature structures may also

be attached to nodes (node v: [person: 1 | 3, mood

:~imperative|gerundive] ) or to a whole class (desc

:[ extraction : −] ), allowing, as values, constants,

recursive feature structures, (possibly negated) fi-

nite set values, and variables. Path-based equations

may also be used to unify decorations (node(Det) .

top .number = node(N).top .number or desc . diathesis

= node(V).top . diathesis ).

Classes are organized in a multiple inheritance

hierarchy (using the <: operator), allowing to pro-

gressively refine and enrich syntactic notions (for

instance the notion of subject to get extracted sub-

jects, impersonal subjects, French post-verbal sub-

ject, . . . ), a class inheriting its ancestors’ constraints.

A crossing mechanism is used to combine the ter-

minal classes (e.g. the classes with no children,

wrt the inheritance hierarchy). The existing MG

formalisms implement various flavors of crossing

mechanisms, the general idea being to accumulate

the constraints of the parent classes while check-

ing that they remain satisfiable. Close from the

original MGs (Candito, 1999) but constrained to be

monotonic, we use a resource-based crossing mech-

anism: a class C− may require some resource R (−

subject) while another class C+ may provide this

resource R (+ subject ). In that case, we try to com-

bine C− and C+, neutralizing the resource R. The

basic resource-based mechanism has been extended

with the notion of namespace, allowing a class C−

to require the same resource R several times but

in distinct namespaces Ni (for instance, requiring

two instances of agreement constraints on distinct

nodes with − det :: agr and −root :: agr). The con-

straints from the R-provider class C+ are renamed

with namespace N to avoid names clashes for nodes,

variables, and resources, as shown by the following

equation:

C−[−N ::R ∪ K−]⊕ C+[+R ∪ K+] =

(C− ⊕N ::C+)[=N ::R ∪ K− ∪N ::K+]

The surviving neutral classes (i.e. those requiring

or providing no resources) are used to generate a

minimal set of minimal trees, given their constraints.

Again, the notion of tree minimality depends on the

flavor of MGs and also on the target syntactic for-

malism (for instance MC-TAGs for (Kallmeyer et

al., 2008)). In general, a minimal tree does not intro-

duce nodes not mentioned in the constraints and re-

places non immediate dominance constraints by par-

ent relations. In our case, we also try also to preserve

tree factoring as much as possible.

3 From MGs to factorized trees

Tree factoring relies on regexp-like operators work-

ing on nodes, or more precisely on the subtrees

rooted by these nodes. The (informal) notation

T [(t1op t2)] denotes the application of the operator

op on subtrees t1 and t2 in the context of tree T .

3.1 Disjunction

The first operator concerns disjunction over nodes,

with T [(t1; t2)] straightforwardly equivalent to the

set of trees T [t1] and T [t2]. At the level of MGs, dis-

junction is explicitly introduced with special nodes

carrying the information type : alternative . The al-

ternatives nodes are largely used, for instance to

represent all possible realizations for a subject as

sketched in the following class:1

c l a s s c o l l e c t _ r e a l _ s u b j e c t {

node SAl t : [ t y p e : a l t e r n a t i v e ] ;

SAl t >> S_Cl ;

node S_Cl : [ t y p e : coanchor , c a t : c l ] ;

SAl t >> S_NP ;

node S_NP : [ t y p e : s u b s t , c a t : np ] ;

SAl t >> S_Sent ;

node S_Sent : [ t y p e : s u b s t , c a t : S ] ; . . . }

3.2 Optionality and guards

From disjunction immediately derives the option-

ality operator with T [t?] ≡ T [(ǫ; t)]. At MG

level, a node may be marked as optional using the

optional feature. Note that even a special alter-

native node may be made optional, for instance the

previous SAlt node.

However, most of the times, a node is made op-

tional with conditions: positive (resp. negative)

guards2 may be used to control the presence (resp.

absence) of a node. A guard G is a Boolean dis-

junctive and conjunctive formula over path equa-

1The examples are simplified versions of classes in FRMG.
2The term guard comes from the Constraint Programming

community.



tions. For instance, the presence of a subject may

be (naively) controlled by the verb mood, with:

SAl t =>

node (V) . t o p . mood = ~ i m p e r a t i v e ;

~ SAl t =>

node (V) . t o p . mood = i m p e r a t i v e ;

More formally, a guard G is equivalent to a finite

set ΣG of substitution, implying that T [(G+, t;G−)]
may be replaced by the finite set of trees {T [t]σ‖σ ∈
ΣG+

} ∪ {T [ǫ]σ‖σ ∈ ΣG}.

More than one guard may be progressively at-

tached to a node while crossing classes. The posi-

tive guards from one part and the negative ones from

the other part are separately combined using con-

junction, which may finally lead to complex guards.

However, for neutral classes, a set of rewriting rules

is used to reduce the guards by removing the parts

that are trivially true or false3. Obviously, if a guard

is of the form G = G1 ∧ G2 and G1 is shown to be

trivially true (resp. false) then G may be reduced to

G2 (resp. to false).

Guards are heavily used in FRMG. Actually, pos-

itive guards are also used on non optional nodes

to attach disjunctive constraints to a node, or con-

straints to a node under a disjunctive node, for in-

stance to state that a sentential subject should be in

subjunctive mood:

S_Sent +

node (V) . t o p . mood= v a l u e (~ s u b j u n c t i v e )

3.3 Repetition

The Kleene star operator provides subtree repetition,

with T [t∗] ≡ {T [ǫ], T [t], T [(t, t)], . . .}. More for-

mally, the Kleene operator may be removed by in-

troducing an extra node category Xt∗ used as a sub-

stitution node in T [Xt∗], and two extra trees Xt∗(ǫ)
and Xt∗(t,Xt∗).

4

At MG level, a (possibly special) node may be

repeated using the star feature. Concretely, in

FRMG, the Kleene star operator have only been

used to represent repetition of coordinated compo-

nents in coordination.

c l a s s coord {

3An equation is trivially true (resp. false) if true (resp. false)

without further instantiation of the decorations.
4This scheme only applies if t does not cover a foot node,

and therefore Kleene stars are not allowed over such subtrees.

node Seq : [ t y p e : sequence , s t a r : ∗ ] ;

Seq < SeqLas t ;

Seq >> Punct_Comma ;

Seq >> coord2

SeqLas t >> coo ;

SeqLas t >> coord3 ;

coo < coord3 ; }

3.4 Shuffling

Less known but well motivated in (Nederhof

et al., 2003) to handle free word ordering,

the shuffling (or interleaving) of two sequences

(ai)i=1···n##(bj)j=1···m returns all sequences con-

taining all ai and bj in any order that preserves the

original orderings (i.e. ai < ai+1 and bj < bj+1).

For instance, the shuffling of a, b with c, d returns

the sequences “a, b, c, d”, “a, c, b, d”, “a, c, d, b”,

“c, a, b, d”, “c, a, d, b”, and “c, d, a, b”. In our

case, the shuffle operator ## is used on sequences

of subtrees, with in particular T [(t1##t2)] ≡
{T [(t1, t2)], T [(t2, t1)]}.

At MG level, shuffling naturally arises from un-

derspecification of the ordering between sibling

nodes. For instance, the constraints “N >> N_1, N>>

N_2, N >> N_3, and N_1 < N_2” produce the (mini-

mal) tree fragment N((N1, N2)##N3), stating that

N3 may occur anywhere (before, between, after) rel-

atively to the sequence N1, N2. In FRMG, free node

ordering is, in particular, present between verb argu-

ments, including inverted subject, such as in

le

the

livre

book

que

that

donne

gives

(à

(to

Paul)

Paul)

(son

(his

ami

friend

. . . )

. . . )

To block free node ordering, one has to explicit

the precedence constraints or use the special rank

feature with the first or last values to force the po-

sition of a node wrt its siblings.5 Finally, the shuffle

operator is systematically expanded when covering

a foot node, in order to ease the detection of TIG

auxiliary trees (Section 5).

3.5 Some complements

The above-presented operators are first generic, be-

ing adaptable for many grammatical formalisms and

not just for TAGs. Secondly, they do not change the

expressive power of TAGs. As sketched, they may

indeed be progressively removed to get a finite set of

5of course, it is an error to have several sibling nodes carry-

ing the first (or the last ) value.



standard TAG trees, possibly by adding some extra

new non-terminals. However, the number of extra

trees may be exponential in the number of operators

in a tree. Concretely, these operators provide a way

to factorize a large number of trees into a single tree.

Such a compact tree S may be understood as rep-

resenting a large set of potential traversals through

the non-terminals occurring in S, similar in some

aspects to (Harbusch and Woch, 2004).

Of course, it is important that these operators may

be used at parsing time with none or low overhead

(as shown in Section 6), in particular for the com-

plex shuffle and Kleene star operators. In our case,

very informally, the implementation of these two op-

erators relies on the capacity to create and manage

continuations. For the Kleene star operator, at some

point one may choose between two continuations:

“exit the loop” or “reenter the loop”. For the shuf-

fle operators, at each step, one may choose between

the continuations “advance in sequence 1” and “ad-

vance in sequence 2”.

4 A French Meta-Grammar

Based on the potentialities of the MG formalism and

its coupling with factoring operators, FRMG was

developed for French in 2004 and maintained since

then. The generated grammar turned out to be a

very compact grammar with only 207 trees (in May

2010), produced from 279 classes, 197 of them be-

ing terminal. This compactness does not hinder cov-

erage or efficiency as we will see.

It may look surprising to get less trees than

classes. There are two reasons for this situation,

both of them resulting from the modularity of meta-

grammars. First, the trees are generated from the ter-

minal classes, some of these classes inheriting from

many ancestor simple classes. Secondly, some trees

result from the crossing of many terminal classes.

Actually, the compactness is even more severe

than it looks with only 21 trees used to cover all

verbal constructions with up to 3 arguments (includ-

ing subjects), covering “canonical” constructions,

passive ones, extraction ones (for relatives, inter-

rogatives, clefted, topicalizations), impersonal ones,

causative ones (partially), subject inversions, sup-

port verbs (such as faire attention à / take care of ),

. . . . Two extra trees are available for auxiliary verbs.

20 trees are anchored by adjectives, providing ele-

mentary subcategorization for sentential arguments

(il est évident qu’il doit partir – it is obvious that

he should leave) and 40 for adverbs, a rather non-

homogeneous syntactic category (Table 1(a)). It is

difficult to describe the coverage of the grammar.

Let us say that besides the verbal constructions, the

grammar partially covers most punctuations, coordi-

nations, superlatives, comparatives, floating incises

(adverbs, time modifiers, . . . ), . . .

Table 1(a) shows that 65 trees are not anchored,

which does not mean they have no lexical compo-

nent. It rather reflects the idea that their underly-

ing semantic is not related to a lexical form. For

instance, we use a non-anchored tree roughly equiv-

alent to NP (∗NP,S) to attach relative sentences on

nouns, this tree being used both when the relative

pronoun in S is an extracted argument or a modifier

Table 1(b) shows that compactness really arises

from the factoring operators, and more specifically

from guards. However, the use of these operators is

not evenly distributed among all trees. Only a small

set of complex trees (the verbal and adjectival ones)

are concerned, as shown for tree #198 corresponding

to the verbal canonical construction for most subcat-

egorization frames. This tree results from the cross-

ing of 36 terminal classes and is formed of 63 nodes,

not including the special nodes listed in Table 1(b).

It would be very difficult to craft and maintain this

tree by hand. The Figure 1 shows a simplified rep-

resentation of tree #198, not showing the content of

the guards (for the nodes with a green background)

and also not showing some nodes. The diamond-

shaped nodes represent the alternative (|) and shuf-

fle (##) nodes. In particular, we have a disjunc-

tion node (left side) over the possible realizations

(nominative clitic, nominal group, sentences, prepo-

sitional group) for the subject in canonical position,

and a shuffle operator (right side) over 2 possible

arguments groups and a postverbal subject (which

is also usable with a preposition for causative con-

structions).

Still, several questions arises in presence of such

trees. The first one concerns the level of factoriza-

tion squeezed in this tree. The unfolding of a pre-

vious version of the grammar (February 2007) pro-

duced almost 2 millions trees, 99.98% of them be-

ing generated by the verbal trees. The equivalent of



anchored v coo adv adj csu prep aux prop. n. com. n. det pro Not anchored
142 21 26 40 20 6 5 2 3 1 1 5 65

(a) Distribution by anchors

Guards Disjunctions Interleaving Kleene Stars
all trees 2609 152 22 27

tree #198 106 6 1 0
(b) Distribution by factorization operators

Table 1: Grammar anatomy

tree #198 was the most productive one with around

700000 unfolded trees.6

Given these figures, one may wonder about the

potential overgenerativity of the grammar and its

overhead at parsing time. Practically, overgenera-

tion seems to be adequately controlled through the

guards, with no obvious overhead. Another reason

explaining this behaviour may come from the con-

straints provided by the forms of the input string.

Indeed, tree #198 covers many subcategorization

frames, much more than the number of frames usu-

ally attached to a given verb. The notion of family

attached to a frame as defined in the XTAG model

(Doran et al., 1994) is therefore no longer pertinent.

Instead, we use a more flexible mechanism based

on the notion of hypertags (Kinyon, 2000). A hy-

pertag is a feature structure, issued from the class

decorations, providing information on the linguistic

phenomena covered by a tree or allowed by a word.

The anchoring of a tree by a word is only possible

if their hypertags do unify, as illustrated by Fig. 2.

The verb “promettre/ to promise” may anchor

tree #198, only selecting (after unification) the pres-

ence of an optional object (arg1.kind) and of an

optional prepositional object (arg2.kind) intro-

duced by “à/to” (arg2.pcas). The link between

an hypertag H and the allowed syntactic construc-

tions is done through the variables occurring in H
and in the guards and node decorations. A partial

anchoring is done at load time to select the potential

trees, given the input sentence, and a full anchoring

is then performed, on demand, during parsing. An-

choring through hypertags offers a powerful way to

restrict the generative power of the factorized trees.

6It should be noted that while it is easy to naively unfold the

operators, it is much more difficult and costly to get a minimal

set of unfolded trees.

5 Building efficient parsers

The French TAG grammar is compiled offline into a

chart parser, able to take profit of the factoring oper-

ators. Actually, several optimizations, developed for

TAGs (and not related to MGs), are also applied to

improve the efficiency of the parser.

The first optimisation is a static analysis of the

grammar to identify the auxiliary trees that behave

as left or right auxiliary trees as defined in Tree

Insertion Grammars (TIG – (Schabes and Waters,

1995)), a variant of TAGs that may be parsed in

cubic time rather than O(n6) for TAGs. Roughly

speaking, TIG auxiliary trees adjoin material either

on the left side or the right side of the adjoined node,

which actually corresponds to the behavior of most

auxiliary trees. TIG and TAG auxiliary trees may be

used simultaneously leading to a hybrid TAG/TIG

parser (Alonso and Díaz, 2003).

Another static analysis of the grammar is used to

identify the node features that are left unmodified

through adjoining, greatly reducing the amount of

information to be stored in items, and potentially in-

creasing computation sharing. A third static analysis

is used to compute a left-corner relation to be used

at parsing time.

When parsing starts, besides the non-lexicalized

trees that are always loaded, the parser selects only

the trees that may be anchored by a form of the in-

put sentence, using the hypertag information of both

forms and trees. Other lexical information are also

used. During parsing, the parser uses a left-to-right

top-down parsing strategy with bottom-up propaga-

tion of the node decorations. The left-corner relation

controls the selection of syntactic categories and of

trees at a given position in the input sentence.

Several experiments on test suites and corpora

have shown the strong gains resulting from these op-



S

VMod

|

⋄cln ↓N2 ↓CS ↓S ↓PP

V

VMod

V1

⋄clneg ⋄advneg ⋄clr clseq

⋄cld ⋄cla ⋄cld ⋄cll ⋄clg

Infl

✸v |

⋄cln ⋄ilimp

clseq

##

VMod

⋄prep |

↓N2 ↓CS ↓S ↓PP

VMod

|

↓comp Arg

⋄prep ce ⋄que ↓S

↓PP

VMod

|

↓N2 ↓comp Arg

⋄prep ce ⋄que ↓S

↓PP

subject

post verbal subj clitic

post verbal subject

verb arg 2

Figure 1: Tree #198 (simplified)











































































arg0 a0













extracted -

kind subj

pcas -

real r0 - |CS |N2 | PP | S | cln | prel | pri













arg1 a1













extracted -

kind k1 - | acomp | obj | prepacomp | prepobj

pcas p1 + | - | apres | à | avec | de | . . .

real r1 - |CS |N |N2 | PP | S |V | adj | . . .













arg2 a2

















extracted -

kind k2 - | prepacomp | prepobj | prepscomp | prepv-

comp | scomp | vcomp | whcomp

pcas p2 + | - | apres | à | ...

real r2 - |CS |N |N2 | PP | S | ...

















cat v

diathesis active

refl refl











































































(a) for tree #198































arg0

[

kind subj | -

pcas -

]

arg1

[

kind obj | scomp | -

pcas -

]

arg2

[

kind prepobj | -

pcas à | -

]

refl -































(b) for “to promise”

Figure 2: Grammar and lexicon hypertags



timisations, in particular for the left-corner relation

(Table 1(b)).

While it would possible to parse tagged sentences,

the parser rather takes word lattices as input and re-

turns the shared forest of all possible derivations.

When no full parses are found, the parser switches

to a robust mode used to return a set of partial parses

trying to cover to input sentence in some best way.

In post-parsing phases, the derivation forests may be

converted to dependency shared forests, which may

then be disambiguated.

6 Some results

Many efforts have been devoted to improve the

meta-grammar and the parser, in terms of accuracy,

coverage (in terms of full parses), efficiency and

level of ambiguity.

Accuracy has been tested by participating to 3

parsing evaluation campaigns for French, in the

context of the French actions EASy and Passage

(Paroubek et al., 2008). Table 2 shows the F-

measures for 6 kinds of chunks (such as GN, GV,

PP, . . . ) and 14 kinds of dependencies (such as

SUBJ-V, OBJ-V, CPL-V, . . . ) for the two first cam-

paigns7. The evolution between the 2 campaigns

is clear, with a 3rd position on relations in 2007.

The corpus EasyDev of the first campaign (almost

4000 sentences) has been used to steadily improve

the grammar (and the disambiguation process).

f-measure f-measure

Campaign Chunks Relations

2004 69% 41%

2007 89% 63%

Table 2: Results for the French evaluation campaigns

The other parameters (coverage, efficiency and

ambiguity) are controlled by regularly parsing sev-

eral corpora, including the EASy development cor-

pus, as shown in Table 3. The time figures should

be taken with some caution, having been computed

over various kinds of environments, including lap-

tops, desktops and grid computers8. For instance,

7The results of the last campaign, run over a 100 million

word corpus, are not yet available.
8including the Grid’5000 experimental testbed, being de-

veloped under the INRIA ALADDIN development action

with support from CNRS, RENATER and several Universi-

recent figures computed after porting to 64bit archi-

tectures have shown a preliminary speedup by 2.

Corpus #sentence Cov. time (s) amb.

EUROTRA 334 100% 0.15 0.63

TSNLP 1161 95.07% 0.07 0.46

EasyDev 3879 64.73% 0.93 1.04

JRCacquis 1.1M 51.26% 1.41 1.1

Europarl 0.8M 70.19% 1.69 1.36

EstRep. 1.6M 67.05% 0.69 0.92

Wikipedia 2.2M 69.11% 0.49 0.87

Wikisource 1.5M 61.08% 0.71 0.89

AFP news 1.6M 52.15% 0.51 1.06

Table 3: Coverage, avg time, and avg ambiguity

To test the impact of factorization on parsing time,

we have partially unfactorized FRMG, keeping all

trees but #198. For #198, we have expanded the

guards and the shuffle operators (but kept the dis-

junctions) and then intersected with the 195 verbal

subcategoriztion frames present in our LEFFF lexi-

con. We got a version of FRMG with 5934 trees,

5729 being derived from #198. This grammar was

already too large to be able to compile the left-corner

relation in reasonable time and space, so Table 4

compares the evaluation times (in seconds) on the

3879 sentences of EasyDev for the unfactorized ver-

sion and for the factorized version with no left cor-

ner. We see that the factorized version (with no left-

corner) is slightly faster than the unfactorized one,

which a contrario confirms that factorization induces

no overhead. Table 4 also shows that FRMG with

left-corner is around twice faster than the version

with no left-corner. The fact that the left-corner rela-

tion can be computed for the factorized version but

not easily for the (partially) unfolded one highlights

another advantage of the factorization.

parser avg median 90% 99%

factorized 0.64 0.16 1.14 6.22

fact. -lc 1.33 0.46 2.63 12.24

-fact -lc 1.43 0.44 2.89 14.94

Table 4: Factorized vs non-factorized (in seconds)

ties as well as other funding bodies (see https://www.

grid5000.fr).



7 Conclusion

The modularity of MGs combined with tree factor-

ing offers an elegant methodology to design main-

tainable grammars that remain small in size, open-

ing the way to more efficient parsers, as shown for a

large coverage French MG. It should also be noted

that the modularity of MGs makes easier the port of

a MG for a close language.

The trees that are generated may be very complex

but should rather seen as a side-product of simpler

linguistic descriptions that are MGs. In other words,

the TAGs tend to become an operational target for-

malism for MGs and the focus is now about improv-

ing the MG formalisms to get simpler notations for

some constraints (such as node exclusion) and also

to incorporate more powerful constraints.

Actually, TAGs as a target formalism are not pow-

erful enough to capture some important syntactic

phenomena, for instance deep genitive extractions.

A natural evolution would be to use (local) Multi-

Components TAGs instead of TAGs, as initiated by

(Kallmeyer et al., 2008) for a German grammar. At

MG level, the shift is relatively simple, mostly con-

cerning the way the minimal trees are generated.

However, even with MGs, hand-crafting a large

coverage grammar remains a complicated and long-

standing task. In particular, while the modularity of

MGs is a clear advantage for maintenance, track-

ing the cause of a non-analysis and of some over-

generation may be very difficult because hidden in

the interactions of several constraints coming from

many classes. Besides large regression test suites,

there is a need for a sophisticated debugging envi-

ronment, allowing us to track, at parsing time, the

origin of all constraints.

References

A. Abeillé. 2002. Une grammaire électronique du

français. CNRS Editions, Paris.

M. A. Alonso and V. J. Díaz. 2003. Variants of mixed

parsing of TAG and TIG. Traitement Automatique des

Langues (T.A.L.), 44(3):41–65.

M.-H. Candito. 1999. Organisation modulaire et

paramétrable de grammaires électroniques lexical-

isées. Ph.D. thesis, Université Paris 7.

J. Carroll, N. Nicolov, M. Smets, O. Shaumyan, and

D. Weir. 1998. Grammar compaction and compu-

tation sharing in automata-based parsing. In Pro-

ceedings of Tabulation in Parsing and Deduction

(TAPD’98), pages 16–25, Paris (FRANCE).

Benoît Crabbé. 2005. Représentation informatique de

grammaires d’arbres fortement lexicalisées : le cas de

la grammaire d’arbres adjoints. Ph.D. thesis, Univer-

sité Nancy 2.

Ch. Doran, D. Egedi, Beth Ann Hockey, B. Srinivas, and

Martin Zaidel. 1994. XTAG system — a wide cov-

erage grammar for English. In Proc. of the 15th In-

ternational Conference on Computational Linguistics

(COLING’94), pages 922–928, Kyoto, Japan.

D. Duchier, J. Leroux, and Y. Parmentier. 2004. The

metagrammar compiler: An nlp application with a

multi-paradigm architecture. In 2nd International

Mozart/Oz Conference.

K. Harbusch and J. Woch. 2004. Integrated natural

language generation with schema-tree adjoining gram-

mars. In Christopher Habel and editors Thomas Pech-

mann, editors, Language Production. Mouton De

Gruyter.

A. K. Joshi. 1987. An introduction to tree adjoining

grammars. In Alexis Manaster-Ramer, editor, Math-

ematics of Language, pages 87–115. John Benjamins

Publishing Co., Amsterdam/Philadelphia.

Laura Kallmeyer, Wolfgang Maier, Timm Lichte, Yan-

nick Parmentier, Johannes Dellert, and Kilian Evang.

2008. TuLiPA: Towards a multi-formalism parsing en-

vironment for grammar engineering. In proceedings

of the 2nd workshop on Grammar Engineering Across

Frameworks (GEAF 2008), Manchester, United King-

dom, August.

A. Kinyon. 2000. Hypertags. In Proc. of COLING,

pages 446–452.

M.-J. Nederhof, G. Satta, and S. Shieber. 2003. Par-

tially ordered multiset context-free grammars and free-

word-order parsing. In In 8th International Workshop

on Parsing Technologies (IWPT’03), pages 171–182.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, and

Christelle Ayache. 2008. Easy, evaluation of parsers

of french: what are the results? In Proceedings of the

6th International Conference on Language Resources

and Evaluation (LREC), Marrakech, Morroco.

Carlos A. Prolo. 2002. Generating the xtag english

grammar using metarules. In Proceedings of the 19th

international conference on Computational linguis-

tics, pages 1–7, Morristown, NJ, USA. Association for

Computational Linguistics.

Y. Schabes and R. C. Waters. 1995. Tree insertion gram-

mar: a cubic-time, parsable formalism that lexicalizes

context-free grammar without changing the trees pro-

duced. Fuzzy Sets Syst., 76(3):309–317.


