P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet et al., General models of host-parasite systems. Global analysis, Discrete Contin, Dyn. Syst. Ser. B

R. M. Anderson, Complex dynamic behaviours in the interaction between parasite populations and the host's immune system, International Journal for Parasitology, vol.28, issue.4, pp.551-566, 1998.
DOI : 10.1016/S0020-7519(97)00207-5

R. M. Anderson, R. M. May, and S. Gupta, Non-linear phenomena in host???parasite interactions, Parasitology, vol.90, issue.S1, pp.99-59, 1989.
DOI : 10.1136/bmj.1.2830.546

A. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers & Mathematics with Applications, vol.12, issue.6, pp.677-694, 1986.
DOI : 10.1016/0898-1221(86)90054-4

H. J. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, Journal of Mathematical Biology, vol.11, issue.2, pp.179-190, 1989.
DOI : 10.1007/BF00276102

G. J. Butler, H. S. Hsu, and P. Waltman, Coexistence of competing predators in a chemostat, Journal of Mathematical Biology, vol.1, issue.2, pp.17-133, 1983.
DOI : 10.1007/BF00305755

C. Castillo-chavez, Z. Feng, and W. Huang, On the Computation of R 0 and its Role on Global Stability, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, pp.229-250, 1999.
DOI : 10.1007/978-1-4757-3667-0_13

C. Castillo-chavez, W. Huang, and J. Li, Competitive Exclusion in Gonorrhea Models and Other Sexually Transmitted Diseases, SIAM Journal on Applied Mathematics, vol.56, issue.2, pp.494-508, 1996.
DOI : 10.1137/S003613999325419X

C. Castillo-chavez, W. Huang, and J. Li, Competitive Exclusion and Coexistence of Multiple Strains in an SIS STD Model, SIAM Journal on Applied Mathematics, vol.59, issue.5, pp.1790-1811, 1999.
DOI : 10.1137/S0036139997325862

W. E. Collins and G. M. Jeffery, A retrospective examination of the patterns of recrudescence in patients infected with plasmodium falciparum, Am, J. Trop. Med. Hyg, pp.61-105, 1999.

P. , D. Leenheer, and H. L. Smith, Virus Dynamics: A Global Analysis, SIAM Journal on Applied Mathematics, vol.63, issue.4, pp.1313-1327, 2003.
DOI : 10.1137/S0036139902406905

H. H. Diebner, M. Eichner, L. Molineaux, W. E. Collins, G. M. Jeffery et al., Modelling the Transition of Asexual Blood Stages of Plasmodium falciparum to Gametocytes, Journal of Theoretical Biology, vol.202, issue.2, pp.113-127, 2000.
DOI : 10.1006/jtbi.1999.1041

O. Diekmann, J. A. Heesterbeek, and J. A. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, vol.28, issue.4, pp.28-365, 1990.
DOI : 10.1007/BF00178324

K. Dietz, Epidemiologic interference of virus populations, Journal of Mathematical Biology, vol.80, issue.3, pp.291-300, 1979.
DOI : 10.1007/BF00276314

B. S. Goh, Global stability in two species interactions, Journal of Mathematical Biology, vol.97, issue.3-4, pp.313-318, 1976.
DOI : 10.1007/BF00275063

B. S. Goh, Global Stability in Many-Species Systems, The American Naturalist, vol.111, issue.977, pp.135-143, 1977.
DOI : 10.1086/283144

M. B. Gravenor and D. Kwiatkowski, An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum, Parasitology, vol.117, issue.2, pp.117-97, 1998.
DOI : 10.1017/S0031182098002893

M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates, Parasitology, vol.117, issue.5, pp.117-409, 1998.
DOI : 10.1017/S0031182098003229

M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English et al., A Model for Estimating Total Parasite Load in Falciparum Malaria Patients, Journal of Theoretical Biology, vol.217, issue.2, pp.217-137, 2002.
DOI : 10.1006/jtbi.2002.3030

M. B. Gravenor, A. R. Mclean, and D. Kwiatkowski, The regulation of malaria parasitaemia: parameter estimates for a population model, Parasitology, vol.31, issue.02, pp.110-115, 1995.
DOI : 10.1111/j.1365-3024.1989.tb00644.x

M. B. Gravenor, M. B. Van-hensbroek, and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria, Proc. Natl. Acad. Sci. USA, pp.95-7620, 1998.
DOI : 10.1073/pnas.95.13.7620

H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Mathematical Biosciences, vol.75, issue.2, pp.205-227, 1985.
DOI : 10.1016/0025-5564(85)90038-0

H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Review, vol.42, issue.4, pp.599-653, 2000.
DOI : 10.1137/S0036144500371907

C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies, Parasitology, vol.56, issue.01, pp.25-38, 1996.
DOI : 10.1111/j.1365-3024.1990.tb00939.x

M. W. Hirsch, The dynamical systems approach to differential equations, Bulletin of the American Mathematical Society, vol.11, issue.1, pp.1-64, 1984.
DOI : 10.1090/S0273-0979-1984-15236-4

M. B. Hoshen, R. Heinrich, W. D. Stein, and H. Ginsburg, Mathematical modelling of the within-host dynamics of Plasmodium falciparum, Parasitology, vol.121, issue.3, pp.121-227, 2001.
DOI : 10.1017/S0031182099006368

J. A. Jacquez and C. P. Simon, Qualitative Theory of Compartmental Systems, SIAM Review, vol.35, issue.1, pp.43-79, 1993.
DOI : 10.1137/1035003

J. A. Jacquez, C. P. Simon, and J. Koopman, Core groups and the R 0 s for subgroups in heterogeneous SIS and SI models, in Epidemics Models: Their Structure and Relation to Data, pp.279-301, 1996.

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Applied Mathematics Letters, vol.15, issue.8, pp.955-961, 2002.
DOI : 10.1016/S0893-9659(02)00069-1

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng, vol.1, pp.57-60, 2004.

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, vol.28, issue.3-4, pp.221-236, 1976.
DOI : 10.1016/0025-5564(76)90125-5

J. P. Lasalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, 1961.

J. P. Lasalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conf. Ser. in Appl, Math, vol.25, 1976.

S. A. Levin and D. Pimentel, Selection of Intermediate Rates of Increase in Parasite-Host Systems, The American Naturalist, vol.117, issue.3, pp.308-315, 1981.
DOI : 10.1086/283708

M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, vol.160, issue.2, pp.191-213, 1999.
DOI : 10.1016/S0025-5564(99)00030-9

M. Y. Li, J. S. Muldowney, and P. Van-den-driessche, Global stability for the SEIR model in epidemiology, Mathematical Biosciences, vol.125, issue.2, pp.155-164, 1995.
DOI : 10.1016/0025-5564(95)92756-5

M. Y. Li, J. S. Muldowney, and P. Van-den-driessche, Global stability for the SEIR model in epidemiology, Mathematical Biosciences, vol.125, issue.2, pp.409-425, 1999.
DOI : 10.1016/0025-5564(95)92756-5

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Mathematical Biosciences, vol.125, issue.2, pp.155-164, 1995.
DOI : 10.1016/0025-5564(95)92756-5

M. Y. Li and J. S. Muldowney, A Geometric Approach to Global-Stability Problems, SIAM Journal on Mathematical Analysis, vol.27, issue.4, pp.1070-1083, 1996.
DOI : 10.1137/S0036141094266449

M. Y. Li, H. L. Smith, and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math, vol.62, pp.58-69, 2001.

X. Lin and J. W. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, vol.12, issue.03, pp.282-295, 1993.
DOI : 10.1016/0025-5564(85)90047-1

A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proceedings of the Royal Society B: Biological Sciences, vol.268, issue.1469, pp.847-854, 2001.
DOI : 10.1098/rspb.2000.1572

A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proceedings of the Royal Society B: Biological Sciences, vol.268, issue.1470, pp.985-993, 2001.
DOI : 10.1098/rspb.2001.1599

A. L. Lloyd, Realistic Distributions of Infectious Periods in Epidemic Models: Changing Patterns of Persistence and Dynamics, Theoretical Population Biology, vol.60, issue.1, pp.59-71, 2001.
DOI : 10.1006/tpbi.2001.1525

D. G. Luenberger, Introduction to dynamic systems. Theory, models, and applications, 1979.

N. Macdonald, Time Lags in Biological Models, 1978.
DOI : 10.1007/978-3-642-93107-9

D. P. Mason, F. E. Mckenzie, and W. H. Bossert, The Blood-stage Dynamics of Mixed Plasmodium malariae???Plasmodium falciparum Infections, Journal of Theoretical Biology, vol.198, issue.4, pp.549-566, 1999.
DOI : 10.1006/jtbi.1999.0932

R. M. May and R. M. Anderson, Epidemiology and Genetics in the Coevolution of Parasites and Hosts, Proceedings of the Royal Society B: Biological Sciences, vol.219, issue.1216, pp.281-313, 1983.
DOI : 10.1098/rspb.1983.0075

J. and M. Smith, Models in Ecology, 1974.

F. E. Mckenzie and W. H. Bossert, The Dynamics ofPlasmodium falciparumBlood-stage Infection, Journal of Theoretical Biology, vol.188, issue.1, pp.127-140, 1997.
DOI : 10.1006/jtbi.1997.0478

F. E. Mckenzie and W. H. Bossert, The Optimal Production of Gametocytes byPlasmodium falciparum, Journal of Theoretical Biology, vol.193, issue.3, pp.419-428, 1998.
DOI : 10.1006/jtbi.1998.0710

P. G. Mcqueen and F. E. Mckenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections, Proc. Natl. Acad. Sci. USA, pp.9161-9166, 2004.
DOI : 10.1073/pnas.0308256101

L. Molineaux, H. H. Diebner, M. Eichner, W. E. Collins, G. M. Jeffery et al., Plasmodium falciparum parasitaemia described by a new mathematical model, Parasitology, vol.122, issue.04, pp.122-379, 2001.
DOI : 10.1017/S0031182001007533

L. Molineaux and K. Dietz, Review of intra-host models of malaria, Parassitologia, pp.41-221, 2000.

A. S. Perelson, D. E. Kirschner, and R. Boer, Dynamics of HIV infection of CD4+ T cells, Mathematical Biosciences, vol.114, issue.1, pp.81-125
DOI : 10.1016/0025-5564(93)90043-A

A. S. Perelson and P. W. Nelson, Mathematical Analysis of HIV-1 Dynamics in Vivo, SIAM Review, vol.41, issue.1, pp.3-44, 1999.
DOI : 10.1137/S0036144598335107

J. Prüss, L. Pujo-mejouet, G. F. Webb, and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin, Dyn. Syst. Ser. B, vol.6, pp.225-235, 2006.

A. Saul, Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates, Parasitology, vol.117, issue.5, pp.405-407, 1998.
DOI : 10.1017/S0031182098003230

C. P. Simon, J. A. Jacquez, and J. S. Koopman, A Lyapunov function approach to computing R 0 , in Models for Infectious Human Diseases: Their Structure and Relation to Data, pp.311-314, 1996.

J. Swinton, The dynamics of blood-stage malaria: Modelling strain specific and strain transcending immunity, in Models for Infectious Human Diseases: Their Structure and Relation to Data, pp.210-212, 1996.

H. R. Thieme, Global asymptotic stability in epidemic models, Equadiff 82, pp.608-615, 1983.
DOI : 10.1007/BF02320701