
appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

05
--

FR
+E

N
G

Knowledge and Data Representation and Management

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Where Ignoring Delete Lists Works, Part II:
Causal Graphs

Jörg Hoffmann

N° 7505 — version 2

initial version January 2011 — revised version January 2011

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Where Ignoring Delete Lists Works, Part II:

Causal Graphs

Jörg Ho�mann

Theme : Knowledge and Data Representation and Management
Perception, Cognition, Interaction

Équipes-Projets Maia

Rapport de recherche n° 7505 � version 2∗ � initial version January 2011 �
revised version January 2011 � 72 pages

Abstract: The ignoring delete lists relaxation is of paramount importance for
both satis�cing and optimal planning. Ho�mann (2005) observed that the op-
timal relaxation heuristic h+ has amazing qualities in many classical planning
benchmarks, in particular pertaining to the complete absence of local minima.
Ho�mann's proofs of this are hand-made, raising the question whether such
proofs can be lead automatically by domain analysis techniques. In contrast to
Ho�mann's disappointing results � his analysis method has exponential runtime
and succeeds only in two extremely simple benchmark domains � we herein an-
swer this question in the a�rmative. We establish connections between causal
graph structure and h+ topology. This results in low-order polynomial time
analysis methods, implemented in a tool we call TorchLight. Of the 12 domains
where Ho�mann proved the absence of local minima, TorchLight gives strong
success guarantees in 8 domains. Empirically, its analysis exhibits strong per-
formance in a further 2 of these domains, plus in 4 more domains where local
minima may exist but are rare. We show that, in this way, TorchLight can
distinguish Ho�mann's �easy� domains from the �hard� ones. By summariz-
ing structural reasons for analysis failure, TorchLight also provides diagnostic
output indicating domain aspects that may cause local minima.

Key-words: arti�cial intelligence; planning; heuristic search; domain analysis

∗ Added additional data concerning the di�erence between runtime distributions of state
of the art planners, for small vs. large success rates.

Quand ignorer les delete lists marche bien,

2ème partie: les graphes causaux

Résumé : La relaxation ignorant les delete lists est très importante pour la
plani�cation e�cace, que ce soit pour la plani�cation optimale ou approxima-
tive. Ho�mann (2005) a observé que l'heuristique optimal relaxation heuristic,
h+, a des très fortes propriétés dans beaucoup de benchmarks de la plani�ca-
tion, notamment concernant l'absence complète de minima locaux. Ces pro-
priétés ont été démontrées à la main, ce qui soulève la question s'il est possible
de les démontrer automatiquement, par analyse de domaines. Alors que Ho�-
mann, en essayant d'y répondre, n'a obtenu que des résultats décevants � le
temps d'exécution de son analyse est exponentielle, et en plus l'analyse ne réus-
sit que dans deux benchmarks extrêmement simples � notre investigation ici
répond a cette question a�rmativement. On découvre des liens entre la struc-
ture des graphes causaux et la topologie de h+. En conséquence, on construit
une analyse avec temps d'exécution polynomial, implémenté dans un logiciel
que l'on appelle TorchLight. Parmi les 12 domaines pour lesquels Ho�mann
a démontré l'absence de minima locaux, TorchLight a une garantie de succès
forte dans 8. Dans nos expériences, l'analyse de TorchLight a une performance
forte dans 2 domaines en plus, parmi ces domaines, et aussi dans 4 domaines
dans lesquels des minima locaux existent, mais sont rares. On montre que, de
cette façon, TorchLight peut distinguer les domaines �faciles� de Ho�mann des
domaines �di�ciles�. En résumant les causes des échecs de l'analyse, TorchLight
produit aussi un diagnostic, indiquant des aspects du domaine qui pourraient
provoquer des minima locaux.

Mots-clés : intelligence arti�cielle; plani�cation; recherche heuristique; analyse
de domaines

Where Ignoring Delete Lists Works, Part II: Causal Graphs 3

1 Introduction

The ignoring delete lists relaxation has been since a decade, and still is, of
paramount importance for e�ective satis�cing planning [42, 4, 30, 16, 25, 45].
More recently, heuristics making this relaxation have also been shown to boost
optimal planning [36, 26]. The planners using the relaxation approximate, in
a variety of ways, the optimal relaxation heuristic h+ which itself is NP-hard
to compute [7]. As observed by Ho�mann [29], h+ has some rather amazing
qualities in many classical planning benchmarks. Figure 1 gives Ho�mann's
overview of his results.1

undirected

Logistics [0,1]

Ferry [0,1]

Gripper [0,1]

harmless recognized unrecognized

Miconic−STRIPS [0,1]

Movie [0,1]

Simple−Tsp [0,0]

Zenotravel [2,2]

Satellite [4,4]

Tyreworld [0,6]
Dining−Phil. [31,31]

Grid [0]

Optical−Telegraph

Rovers

b
en

ch
 e

d
 <

=
 c

lo
ca

l
m

in
im

a
ed

 <
=

 c

Hanoi [0]

Blocksworld−NoArm [0]

Transport [0]

Blocksworld−Arm

Depots

Driverlog PSR

Pipesworld−NoTank

Mystery

Mprime

Freecell

Airport

Pipesworld−Tank

Elevators [0,1]

Figure 1: Ho�mann's overview of his h+ topology results.

Ho�mann's results divide domains into classes along two dimensions. We will
herein ignore the horizontal dimension, which pertains to dead ends (easy-to-
test powerful criteria implying that a task is �undirected�/�harmless� are known,
see, e.g., Ho�mann's paper). The vertical dimension divides the domains into
three classes. In the �easiest� bottom class, there exist constant upper bounds
on the exit distance � the distance to a state with strictly smaller h+ value minus
1 � from both, states on local minima and states on benches (regions that do
have better-looking neighbors). In the �gure, the bounds are given in square
brackets. For example, in Logistics, the bound for local minima is 0 � meaning
that no local minima exist at all � and the bound for benches is 1. In the middle
class, a bound exists only for local minima (in all the present domains, there
are no local minima at all). In the �hardest� top class, both local minima and
benches may take arbitrarily many steps to escape.

Ho�mann's proofs underlying Figure 1 are hand-made. For dealing with
unseen domains, the question arises whether we can design domain analysis
methods leading such proofs automatically. The potential uses of such analysis
methods are manifold; we discuss this at the end of the paper. For now, note
that addressing this question is quite a formidable challenge. We are trying to
automatically infer high-level properties of a heuristic function. This sounds a
bit like science �ction, and indeed to our knowledge there exists no prior work
at all that even attempts to do so, with a single exception. That exception is
work mentioned on the side by Ho�mann [29]. This analysis method builds an

1We omit ADL domains, and we added the more recent planning competition benchmarks
Elevators and Transport (without action costs), for which these properties are trivial to prove
based on Ho�mann's results. Blocksworld-Arm is the classical blocksworld, Blocksworld-
NoArm is a variant allowing to �move A from B to C� directly.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 4

exponentially large tree structure summarizing all ways in which relaxed plans
may generate facts. The tree is then examined for �con�icts�. The tree size,
and therewith the analysis runtime, explodes quickly with task size. Worse, the
analysis succeeds only in Movie and Simple-TSP � arguably the two most sim-
plistic benchmarks in existence.2 By contrast, the TorchLight tool we develop
herein has low-order polynomial runtime and usually terminates in split sec-
onds. Distinguishing between global (per task) and local (per state) analysis, it
proves the global absence of local minima in Movie, Simple-TSP, Logistics, and
Miconic-STRIPS. It gives a strong guarantee for local analysis in Ferry, Gripper,
Elevators, and Transport. Empirically its local analysis exhibits strong perfor-
mance also in Zenotravel, Satellite, Tyreworld, Grid, Driverlog, and Rovers. We
show that, in this way, TorchLight can distinguish Ho�mann's �easy� domains
from the �hard� ones, even based on analyzing only a single state per instance.
By summarizing structural reasons for analysis failure, TorchLight also provides
diagnostic output indicating problematic aspects of the domain, i.e., operator
e�ects that potentially cause local minima under h+.

What is the key to this performance boost? Consider Logistics and Blocks-
world-Arm. At the level of their PDDL domain descriptions, the di�erence is not
evident � both have delete e�ects, so why do those in Blocksworld-Arm �hurt�
and those in Logistics don't? What does the trick is to move to the multi-valued
variable representation (e.g., [35, 25]) and to consider the associated structures,
notably the causal graph (e.g., [39, 34, 10, 25]) capturing the precondition and
e�ect dependencies between variables. The causal graph of Blocksworld-Arm
contains cycles. That of Logistics doesn't. Looking into this, we were surprised
how easy it was to derive our most basic result:

If the causal graph is acyclic, and every variable transition is invertible,
then there are no local minima under h+.

This result is certainly interesting in that, for the �rst time, it establishes a con-
nection between causal graph structure and h+ topology. However, by itself the
result is much too weak for domain analysis � of the considered benchmarks, it
applies only in Logistics. We devise generalizations and approximations yielding
the analysis results described above. Aside from their signi�cance for domain
analysis, our techniques are also interesting with respect to research on causal
graphs. Whereas traditional methods (e.g., [34, 6, 33, 19]) seek execution paths
solving the overall task, we seek �only� execution paths decreasing the value of
h+. In local analysis, this enables us to consider only small fragments of the
causal graph, creating the potential to successfully analyze states in tasks whose
causal graphs are otherwise arbitrarily complex.

The next section gives a brief background on planning with multi-valued
variables, and the associated notions such as causal graphs and the de�nition
of h+ and its topology. Section 3 then gives an illustrative example explaining
our basic result, and Section 4 provides a synopsis of our full technical results
relating causal graphs and h+ topology. Sections 5 and 6 present these results in
some detail, explaining �rst how we can analyze a state s provided we are given
an optimal relaxed plan for s as the input, and thereafter providing criteria
on causal graph structure implying that such analysis will always succeed. We
evaluate our domain analysis technique by proving a number of domain-speci�c

2Simple-TSP encodes TSP but on a fully connected graph with uniform edge cost. The
domain was introduced by Fox and Long [13] as a benchmark for symmetry detection.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 5

performance guarantees in Section 7, and reporting on a large-scale experiment
with TorchLight in Section 8. We point to related work within its context
where appropriate, and discuss details in Section 9. We close the paper with
a discussion of future work in Section 10. To improve readability, the main
text omits many technical details and only outlines our proofs. The full details
including proofs are in Appendix A.

2 Background

We adopt the terminology and notation of Helmert [25], with a number of
modi�cations suiting our purposes. A (multi-valued variable) planning task
is a 4-tuple (X, sI , sG, O). X is a �nite set of variables, where each x ∈ X
is associated with a �nite domain Dx. A partial state over X is a function
s on a subset Xs of X, so that s(x) ∈ Dx for all x ∈ Xs; s is a state if
Xs = X. The initial state sI is a state. The goal sG is a partial state. O is
a �nite set of operators. Each o ∈ O is a pair o = (preo, effo) of partial states,
called its precondition and e�ect. As simple non-restricting sanity conditions,
we assume that |Dx| > 1 for all x ∈ X, and preo(x) 6= effo(x) for all o ∈ O and
x ∈ Xpreo

∩Xeffo
.

We identify partial states with sets of variable-value pairs, which we will
often refer to as facts. The state space S of the task is the directed graph whose
vertices are all states over X, with an arc (s, s′) i� there exists o ∈ O such that
preo ⊆ s, effo ⊆ s′, and s(x) = s′(x) for all x ∈ X \Xeffo

. A plan is a path in S
leading from sI to a state s with sG ⊆ s.

We next de�ne the two basic structures in our analysis: domain transition
graphs and causal graphs. For the former, we diverge from Helmert's de�nition
(only) in that we introduce additional notations indicating the operator respon-
sible for the transition, as well as the �side e�ects� of the transition, i.e., any
other variable values set when executing the responsible operator. In detail, let
x ∈ X. The domain transition graph DTGx of x is the labeled directed graph
with vertex setDx and the following arcs. For each o ∈ O where x ∈ Xpreo

∩Xeffo

with c := preo(x) and c′ := effo(x), DTGx contains an arc (c, c′) labeled with
responsible operator rop(c, c′) := o, with conditions cond(c, c′) := preo \ {(x, c)},
and with side e�ects seff(c, c′) := effo \ {(x, c′)}. For each o ∈ O where
x ∈ Xeffo

\ Xpreo
with c′ := effo(x), for every c ∈ Dx with c 6= c′, DTGx

contains an arc (c, c′) labeled with rop(c, c′) := o, cond(c, c′) := preo, and
seff(c, c′) := effo \ {(x, c′)}.

The reader familiar with causal graphs may have wondered why we intro-
duced a notion of side e�ects, seeing as causal graphs can be acyclic only if
all operators are unary (a�ect only a single variable). The reason is that we
do handle cases where operators are non-unary. The variant of causal graphs
we use can still be acyclic in such cases, and indeed this happens in some of
our benchmark domains, speci�cally in Simple-TSP, Movie, Miconic-STRIPS,
and Satellite. We de�ne the support graph SG to be the directed graph with
vertex set X, and with an arc (x, y) i� DTGy has a relevant transition (c, c′) so
that x ∈ Xcond(c,c′). Here, a transition (c, c′) on variable x is called relevant i�
(x, c′) ∈ sG ∪

⋃
o∈O preo.

Our de�nition modi�es the most commonly used one in that it uses rel-
evant transitions only, and that it does not introduce arcs between variables

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 6

co-occurring in the same operator e�ect (unless these variables occur also in
the precondition). Transitions with side e�ects are handled separately in our
analysis. Note that irrelevant transitions occur naturally, in domains with non-
unary operators. For example, unstacking a block induces the irrelevant transi-
tion making the arm non-empty, and departing a passenger in Miconic-STRIPS
makes the passenger �not-boarded�.3

Consider now the de�nition of h+. In the more common Boolean-variable
setting of PDDL, this is de�ned as the length of a shortest plan solving the
problem when ignoring all delete lists, i.e., the negative operator e�ects [7, 42, 4].
This raises the question what h+ actually is in multi-valued variable planning,
where there are no �delete lists�. That question is easily answered. �Ignoring
deletes� essentially means to act as if �what was true once will remain true
forever�. In the multi-valued variable setting, this simply means to not over-
write any values that the variables had previously. To our knowledge, this
generalization was �rst described by Helmert [25]. In detail, we de�ne the
relaxed state space S+ of the task is the directed graph whose vertices are all
sets s+ of variable-value pairs over X, with an arc (s+

1 , s
+
2) i� there exists o ∈ O

such that preo ⊆ s+
1 and s+

2 = s+
1 ∪ effo. If s is a state over X, then a relaxed

plan for s is a path in S+ leading from s to a state s+ with sG ⊆ s+. By
h+(s) we denote the length of a shortest relaxed plan for s, or h+(s) = ∞ if
no such plan exists. It is easy to see that this de�nition corresponds to the
common Boolean one: if we translate the multi-valued variables into Boolean
ones by creating one Boolean variable �is-(x, c)-true?� for every fact (x, c), then
standard h+ in the Boolean task is identical to h+ in the multi-valued task.

Bylander [7] proved that it is intractable to compute h+. Many state-of-the-
art planners approximate h+, in a variety of ways [42, 4, 30, 16, 25, 44, 45]. A
popular approximation in satis�cing planning � that gives no guarantees on the
quality of the plan returned � is the so-called relaxed plan heuristic �rst proposed
in the FF system [30], which approximates h+ in terms of the length of some
not necessarily shortest relaxed plan. Such relaxed plans can be computed in
low-order polynomial time using techniques inspired by Graphplan [3].

We next introduce the relevant notations pertaining to search space topology
under h+. Let s ∈ S be a state where 0 < h+(s) < ∞. Then an exit is a state
s′ reachable from s so that h+(s′) = h+(s) and there exists a neighbor s′′ of s′

so that h+(s′′) < h+(s′). The exit distance ed(s) of s is the length of a shortest
path to an exit, or ed(s) =∞ if no exit exists. A path in S is called monotone
i� there exist no two consecutive states s1 and s2 on it so that h+(s1) < h+(s2).
We say that s is a local minimum if there exists no monotone path to an exit.

Note that the topology de�nitions are speci�c to h+ � we will not consider
any other heuristics. The de�nitions are adapted from Ho�mann [29] and should
be self-explanatory.4 States with in�nite heuristic value are ignored because they
are correctly identi�ed, by the heuristic, to be dead ends (relaxed-plan based
approximations like that of FF do identify all these cases). If the heuristic
value is 0 then we have already reached the goal, so this case can also be safely

3We remark that relevant transitions correspond to what has been called �requestable
values� in some works, (e.g., [35, 22]). In Fast-Downward's implementation, the causal graph
includes only precondition-e�ect arcs, similarly as the support graph de�ned here.

4We remark that Ho�mann's [29] de�nitions are signi�cantly more involved, e.g., de�ning
�local minima� not based on individual states but based on strongly connected sub-graphs of
the state space. None of these complications is relevant to the results herein.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 7

ignored. Note that we do not force exit paths to be monotone, i.e., we will also
talk about exit distances in situations where s may be a local minimum. This
is in correspondence with Ho�mann's notations, and is necessary to capture the
structure of domains like Satellite and Zenotravel, where local minima exist but
the exit distance is bounded nevertheless. Indeed, some of our analysis methods
guarantee an upper bound on the length of an exit path only, not that the
heuristic values on that path will decrease monotonically.

Finally, let us say a few words on domain analysis. Generally speaking,
domain analysis aims at automatically obtaining non-trivial information about
a domain or planning task. Such analysis has a long tradition in planning, e.g.,
[43, 12, 17, 11, 46]. Most often, the information sought pertains to reachability
or relevance properties, i.e., which entities or combinations thereof are reachable
from the initial state/relevant to the goal. A notable exception is the work of
Long and Fox [41] which automatically recognizes certain �generic types� of
domains, like transportation. However, there exists no prior work at all trying
to automatically infer properties of a heuristic function. The single exception
are the aforementioned disappointing results reported (as an aside) by Ho�mann
[29]. This method builds a structure called �fact generation tree�, enumerating
all ways in which facts may support each other in a non-redundant relaxed plan.
If there is no �con�ict� then h+ is the exact solution distance. Clearly, this is
a far too strong property to be applicable in any reasonably complex domain.
Of the considered benchmarks, the property applies only in Simple-TSP. Apart
from that, Ho�mann identi�es a slightly more general special case that applies in
Movie as well as trivial Logistics tasks with 2 locations, 1 truck, and 1 package.

It is worth noting that analyzing the topology of h+ is computationally hard:

Theorem 1. It is PSPACE-hard to decide whether or not the state space of
a given planning task contains a local minimum, and given an integer K it is
PSPACE-hard to decide whether or not for all states s we have ed(s) ≤ K.
Further, it is PSPACE-hard to decide whether or not a given state s is a local
minimum, and given an integer K it is PSPACE-hard to decide whether or
not ed(s) ≤ K.

These results are hardly surprising, but to our knowledge have not been
stated anywhere yet. Theorem 1 still holds when restricting the input to solvable
tasks/states. Our proof works by reducing plan existence respectively bounded
plan existence (with a bound in non-unary representation). Basically, given a
task whose plan existence we wish to decide, we �atten h+ by a new operator
that can always achieve the goal but that has a fatal side e�ect. Then we give
the planner the choice between solving this task or solving an alternative task.
That latter task is designed so that a local minimum exists/that the exit distance
exceeds the bound i� the planner does not have to choose the alternative task,
i.e., i� the original task is solvable/i� it is solvable within a given number of
steps. The full proof is given in Appendix A.1.

In practice, computational hardness here is particularly challenging because,
in most applications of domain analysis, we are not willing to run a worst-case
exponential search. After all, the analysis will not actually solve the problem.5

The reader will have noticed the state-speci�c analysis problems in The-
orem 1. We distinguish between global analysis per-task, and local analysis

5We remark that Ho�mann [27] does run explicit enumeration for answering the questions
posed in Theorem 1, and the examples where that is feasible are very tiny indeed.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 8

per-state. Domain analysis traditionally considers only the global variant (or
even more generalizing variants looking at only the PDDL domain �le). While
global once-and-for-all analysis is also the �holy grail� in our work, local analysis
has its advantages. It applies in any domain, including those that do contain
local minima, or that don't but where global analysis is not strong enough to
recognize this. Indeed, we show empirically that local analysis, based on very
limited sampling, can be used to produce accurate information about a domain.

3 An Illustrative Example

The basic connection we identify between causal graphs and h+ topology � more
precisely, between support graphs, domain transition graphs, and h+ topology �
is quite simple. It is instructive to understand this �rst, before delving into our
full results. Figure 2 shows fragments of the domain transition graphs (DTGs)
of three variables x0, x1, and x2. All DTG transitions here are assumed to be
invertible, and to have no side e�ects.

T1

X0

X1
X2

g
0

R1 R2 R3

L2L1 L3

t0

T2

c c ss 11 2 2

Figure 2: An example illustrating our basic result.

The imaginative reader is invited to think of x0 as a car whose battery is
currently empty and that therefore requires the help of two people, x1 and x2,
in order to push-start it. The people may, to solve di�erent parts of the task, be
required for other purposes too, but here we consider only the sub-problem of
achieving the goal x0 = g0. We wish to take the x0 transition t0, which has the
two conditions c1 and c2. These conditions are currently not ful�lled. In the
state s at hand, x1 is in s1 and x2 is in s2. We must move to a di�erent state,
s0, in which x1 = c1 and x2 = c2. What will happen to h+ along the way?

Say that an optimal relaxed plan P+(s) for s moves x1 to c1 along the path
marked T1, and moves x2 to c2 along the path marked T2 � clearly, some such
paths will have to be taken by any P+(s). Key observation (1) is similar to
a phenomenon known from transportation benchmarks. When moving x1 and
x2, whichever state s′ we are in, as long as s′ remains within the boundaries of
the values traversed by T1 and T2, we can construct a relaxed plan P+(s′) for
s′ so that |P+(s′)| ≤ |P+(s)|. Namely, to obtain P+(s′), we simply replace the
respective move sequence −→o i in P+(s), for i = 1, 2, with its inverse ←−o i. For
example, say we got to s′ by −→o 1 = 〈R1, R2, R3〉 moving x1 to c1, as indicated in
Figure 2. Then wlog P+(s) has the form 〈R1, R2, R3〉 ◦P . We de�ne P+(s′) :=
〈L3, L2, L1〉 ◦P . The post�x P of both relaxed plans is the same; at the end of
the pre�x, the set of values achieved for x1, namely s1, c1, and the two values in

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 9

between, is also the same. Thus P+(s′) is a relaxed plan for s′. This is true in
general, i.e., ←−o 1 is necessarily applicable in s′, and will achieve, within relaxed
execution of P+(s′), the same set of facts as achieved by −→o 1 in P+(s). Thus
h+(s′) ≤ h+(s) for any state s′, including the state s0 we're after.

Key observation (2) pertains to the �leaf� variable, x0. Say that x0 moves
only for its own sake, i.e., the car position is not important for any other goal.
Then executing t0 in s0 does not delete anything needed anywhere else. Thus
we can remove rop(t0) from the relaxed plan P+(s0) for s0 � constructed as
per observation (1) � to obtain a relaxed plan for the state s1 that results from
executing t0 in s0. We get h+(s1) < h+(s), and thus s0 (or some state on the
path to s0) is an exit. The exit distance of s is bounded by the number of moves
on the path to s0, and with observation (1) that path is monotone hence s is
not a local minimum.

It is not di�cult to imagine that the above works also if preconditions need
to be established recursively, as long as no cyclic dependencies exist. A third
person may be needed to �rst persuade x1 and x2, the third person may need
to take a bus, and so on. The length of the path to s0 may grow exponentially
� if x1 depends on x3 then each move of x1 may require several moves of x3,
and so forth � but we will still be able to construct P+(s′) by inverting the
moves of all variables individually. Further, the inverting transitions may have
conditions, too, provided these conditions are not new, i.e., moving x1 to the
left does not require prerequisites not required by the respective move to the
right. Any conditions that are required in P+(s) are established there, and thus
will be established also in P+(s′).

Now, say that the support graph is acyclic, and that all transitions are
invertible and have no side e�ects. Given any state s, unless s is already a goal
state, some variable x0 moving only for its own sake necessarily exists. But
then, within any optimal relaxed plan for s, a situation as above exists, and
therefore we have a monotone exit path, Q.E.D. for no local minima under h+.

The execution path construction we have just discussed is not so di�erent
from known results exploiting causal graph acyclicity and notions of connect-
edness or invertibility of domain transition graphs. The �rst results of this
kind were published more than 10 years ago [34, 49]. What is new here is the
connection to h+.

We remark that Ho�mann [29] uses a notion of operators �respected by
the relaxation� � whenever any operator o starts an optimal real plan, o also
starts an optimal relaxed plan � as a core property in many of his hand-made
proofs. He speculates that recognizing this property automatically could be key
to domain analysis recognizing the absence of local minima under h+. We do
not explore this option herein, however we note that even the basic result we just
outlined contains cases not covered by this property. Even with acyclic support
graph and invertible transitions without side e�ects, there are examples where
an operator is not respected by the relaxation. We give such a construction in
Example 1, Appendix A.4.

4 Synopsis of Technical Results

Our technical results in what follows are structured in a way similar to the
proof argument outlined in the previous section. (A), Section 5, we identify

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 10

circumstances under which we can deduce from an optimal relaxed plan that
a monotone exit path exists. (B), Section 6, we devise support-graph based
su�cient criteria implying that analysis (A) will always succeed. (B) under-
lies TorchLight's conservative analysis methods, i.e., local and global analysis
giving guarantees. By feeding (A) with the usual relaxed plans as computed,
e.g., by FF's heuristic function, we obtain TorchLight's main instrument for
approximate (local) analysis.

For ease of reading, here is a brief synopsis of the results obtained in (A)
and (B). The synopsis contains su�cient information to understand the rest of
the paper, so the reader may choose to skip Sections 5 and 6, and move directly
to the evaluation.

(A) Given an optimal relaxed plan P+(s) for a state s, an optimal rplan depen-
dency graph oDG+ is a sub-graph of SG that identi�es a variable x0 with
transition t0 as in our example, and contains arcs (x, x′) if P+(s) relies on
values of x for moving x′, where x′ is relevant to achieve the conditions of
t0. We say that oDG+ is successful if it is acyclic, all involved transitions
will be usable in our exit path construction (e.g., they have no harmful side
e�ects), and any deletes of t0 are either not relevant to the relaxed plan
at all, or can easily be recovered inside the relaxed plan. The main result,
Theorem 2, states that s is no local minimum if there exists a successful
oDG+ for s. It also derives an exit distance bound from oDG+.

(B) Given a state s, a local dependency graph lDG is a sub-graph of SG that
identi�es a variable x0 moving for its own sake as in the example, and that
includes all SG predecessors of x0 unless the required value is already true in
s. We say that lDG is successful if it is acyclic, all involved transitions will
be usable in our exit path construction, and t0 does not have any relevant
deletes. This implies that a successful oDG+ exists, and thus we have
Theorem 3, stating that s is no local minimum and giving a corresponding
exit distance bound. A global dependency graph gDG is a sub-graph of SG
that identi�es any goal variable x0, and includes all SG predecessors of
x0. Being successful is de�ned in the same way as for lDGs. If all gDGs
are successful then Theorem 3 will apply to every state, and thus we have
Theorem 4 stating that the state space does, then, not contain any local
minima. The exit distance bound is obtained by maximizing over all gDGs.

It is important to note that (A) is not only a minimal result that would
su�ce to prove (B). The cases identi�ed are much richer than what we can
actually infer from support graphs (as yet). In particular, this pertains to (1)
whether �P+(s) relies on values of x for moving x′� in the de�nition of oDG+,
and to (2) whether �any deletes of t0 can easily be recovered inside that relaxed
plan�. For example, the ability to make use of notion (2) enables (A) to succeed
in domains like Gripper, where operators (picking up a ball) do have harmful
side e�ects (making the gripper hand non-empty), but these side e�ects are
always recovered in the relaxed plan (when dropping the ball again later on).

5 Analyzing Optimal Relaxed Plans

We consider a state s and an optimal relaxed plan P+(s) for s. To describe the
circumstances under which a monotone exit path is guaranteed to exist, we will

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 11

need a number of notations pertaining to properties of transitions etc. We will
introduce these notations along the way, rather than up front, in the hope that
this makes them easier to digest.

Given o0 ∈ P+(s), by P+
<0(s) and P+

>0(s) we denote the parts of P+(s) in
front of o0 and behind o0, respectively. By P+(s, x) we denote the sub-sequence
of P+(s) a�ecting x. We capture the dependencies between the variables used
in P+(s) for achieving the precondition of o0, as follows:

De�nition 1. Let (X, sI , sG, O) be a planning task, let s ∈ S with 0 < h+(s) <
∞, let P+(s) be an optimal relaxed plan for s, let x0 ∈ X, and let o0 ∈ P+(s)
be an operator taking a relevant transition of the form t0 = (s(x0), c).

An optimal rplan dependency graph for P+(s), x0 and o0, or optimal rplan
dependency graph for P+(s) in brief, is a graph oDG+ = (V,A) with unique
leaf vertex x0, and where x ∈ V and (x, x′) ∈ A if either: x′ = x0, x ∈ Xpreo0

,

and preo0(x) 6= s(x); or x 6= x′ ∈ V \ {x0} and there exists o ∈ P+
<0(s) taking a

relevant transition on x′ so that x ∈ Xpreo
and preo(x) 6= s(x).

For x ∈ V \{x0}, by oDTG+
x we denote the sub-graph of DTGx that includes

only the values true at some point in P+
<0(s, x), the relevant transitions t using

an operator in P+
<0(s, x), and at least one relevant inverse of such t where a

relevant inverse exists. We refer to the P+
<0(s, x) transitions as original, and to

the inverse transitions as induced.

The transition t0 with responsible operator o0 will be our candidate for reach-
ing the exit state, like t0 in Figure 2. oDG+ collects all variables x connected
to a variable x′ insofar as P+

<0(s) uses an operator preconditioned on x in order
to move x′. These are the variables we will need to move, like x1 and x2 in
Figure 2, to obtain a state s0 where t0 can be taken. For any such variable x,
oDTG+

x captures the domain transition graph fragment that P+
<0(s) traverses

and within which we will stay, like T1 and T2 in Figure 2.
Note that there is no need to consider the operators P+

>0(s) behind o0, simply
because these operators are not used in order to establish o0's precondition. This
is of paramount importance in practice. For example, if o0 picks up a ball b in
Gripper, then P+(s) will also contain � behind o0 � an operator o′ dropping b.
If we considered o′ in De�nition 1, then oDG+ would contain a cycle because
the de�nition would assume that o′ is used for making the respective gripper
hand free. In TorchLight's approximate local analysis, whenever we consider
an operator o0, before we build oDG+ we re-order P+(s) by moving operators
behind o0 if possible. This minimizes P+

<0(s), and oDG+ thus indeed contains
only the necessary variables and arcs.

Under which circumstances will t0 actually �do the job�? The su�cient
criterion we identify is rather complex. To provide an overview of the criterion,
we next state its de�nition. The items in this de�nition will be explained below.

De�nition 2. Let (X, sI , sG, O), s, P+(s), x0, t0, and oDG
+ = (V,A) be as

in De�nition 1. We say that oDG+ is successful if all of the following holds:

(1) oDG+ is acyclic.

(2) We have that either:

(a) the oDG+-relevant deletes of t0 are P+
>0(s)-recoverable; or

(b) s(x0) is not oDG+-relevant, and t0 has replacable side e�ect deletes; or

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 12

(c) s(x0) is not oDG+-relevant, and t0 has recoverable side e�ect deletes.

(3) For x ∈ V \ {x0}, all oDTG+
x transitions either have self-irrelevant deletes,

or are invertible/induced and have irrelevant side e�ect deletes and no side
e�ects on V \ {x0}.
As already outlined, our exit path construction works by staying within the

ranges of oDTG+
x , for x ∈ V \ {x0}, until we have reached a state s0 where

the transition t0 can be taken. To make this a little more precise, consider a
topological order xk, . . . , x1 of V \ {x0} with respect to oDG+ � such an order
exists due to De�nition 2 condition (1). (If there are cycles, then moving a
variable may involve moving itself in the �rst place, which is not covered by our
exit path construction.) Now consider, for 0 ≤ d ≤ k, the d-abstracted task.
This is like the original task except that, for every transition t of one of the
graphs oDTG+

xi
with i ≤ d, we remove each condition (xj , c) ∈ cond(t) where

j > i. The exit path construction can then be understood as an induction over
d, proving the existence of an execution path −→o at whose end t0 can be taken.
We construct −→o exclusively by operators responsible for transitions in oDTG+

x ,
for x ∈ V \ {x0}. For the base case, in the 0-abstracted task, t0 is directly
applicable. For the inductive case, if we have constructed a suitable path −→o d
for the d-abstracted task, then a suitable path −→o d+1 for the d + 1-abstracted
task can be constructed as follows. Assume that o is an operator in −→o d, and
that o has a precondition (xd+1, c) that is not true in the current state. Then,
in −→o d+1, in front of o we simply insert a path through oDTG+

xd+1
that ends

in c. Note here that, by construction, (xd+1, c) is a condition of a transition t
in oDTG+

xi
, for some i < d + 1. If t is taken in P+

<0(s, x), then (xd+1, c) must
be achieved by P+

<0(s) and thus c is a node in oDTG+
xd+1

. If t is an induced
transition � inverting a transition taken in P+

<0(s, x) � then the same is the
case unless the inverse may introduce new outside conditions. We thus need to
exclude this case, leading to the following de�nition of �invertibility�:

� Let t = (c, c′) be a transition on variable x. We say that t is invertible i�
there exists a transition (c′, c) in DTGx so that cond(c′, c) ⊆ cond(c, c′).

A transition is invertible if we can �go back� without introducing any new con-
ditions (e.g. Logistics). There are some subtle di�erences to common de�nitions
of �invertible operators�, e.g. [29]. We do not allow new conditions even if they
are actually established by the operator rop(t) responsible for t. This is because,
on −→o , we do not necessarily execute t before executing its inverse � we may have
got to the endpoint of t via a di�erent path in oDTG+

x . On the other hand,
our de�nition is also more generous than common ones because, per se, it does
not care about any side e�ects the inverse transition may have (side e�ects are
constrained separately as stated in De�nition 2).

Consider De�nition 2 condition (3). Apart from the constraints on conditions
of induced transitions, for the oDTG+

x transitions taken by −→o , we must also
make sure that there are no harmful side e�ects. Obviously, this is the case
if, as in the example from Section 3, the transitions have no side e�ects at all.
However, we can easily generalize this condition. Let t = (c, c′) be a transition
on variable x.

� The context of t is the set ctx(t) of all facts that may be deleted by side
e�ects of t. For each (y, d) ∈ seff(t), (y, cond(t)(y)) ∈ ctx(t) if a condition
on y is de�ned; else all Dy values 6= d are inserted.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 13

� We say that t has irrelevant side e�ect deletes i�

ctx(t) ∩ (sG ∪
⋃
o∈O

preo) = ∅.

� We say that t has self-irrelevant side e�ect deletes i�

ctx(t) ∩ (sG ∪
⋃

rop(t)6=o∈O

preo) = ∅.

� We say that t has self-irrelevant deletes i� it has self-irrelevant side e�ect
deletes and

(x, c) 6∈ sG ∪
⋃

rop(t)6=o∈O

preo.

Irrelevant side e�ect deletes capture the case where no side e�ect delete occurs in
the goal or in the precondition of any operator. Self-irrelevant side e�ect deletes
are slightly more generous in that they allow to delete conditions needed only
for the responsible operator rop(t) itself. Self-irrelevant deletes, �nally, extend
the latter notion also to t's �own delete�. In a nutshell, we need to postulate
irrelevant side e�ect deletes for transitions that may be executed again, on our
path. Examples of irrelevant side e�ect deletes are transitions with no side
e�ects at all, or a move in Simple-TSP, whose side e�ect deletes the target
location's being �not-visited�. An example of an operator with self-irrelevant
side e�ect deletes but no irrelevant side e�ect deletes is departing a passenger
in Miconic-STRIPS, whose side e�ect delete �boarded(passenger)� is used only
for the purpose of this departure. In fact, this transition has self-irrelevant
deletes because its own e�ect deletes �not-served(passenger)� which obviously is
irrelevant. Another example of self-irrelevant deletes is in�ating a spare wheel
in Tyreworld � the wheel is no longer �not-in�ated�.

Clearly, if all oDTG+
x transitions t we may be using on −→o have irrelevant

side e�ect deletes, then, as far as not dis-validating any facts needed elsewhere
is concerned, this is just as good as having no side e�ects at all. To understand
why we need to require that t's side e�ect is not used to move another variable
x′ ∈ V \ {x0}, recall that, for the states s′ visited by −→o , we construct relaxed
plans P+(s′) with |P+(s′)| ≤ |P+(s)| by inverting such transitions t. Now, say
that t's side e�ect is used to move another variable x′ ∈ V \{x0}. Then we may
have to invert both transitions separately (with di�erent operators), and thus
we would have |P+(s′)| > |P+(s)|.

Regarding the own delete of t, this may be important for two reasons. First,
the deleted fact may be needed in the relaxed plan for s′. Second, x may have
to traverse oDTG+

x several times, and thus we may need to traverse the deleted
value again later on. Both are covered if t is invertible, like we earlier on assumed
for all transitions. If t is not invertible but all deletes of t are irrelevant except
maybe for the responsible operator itself, then to obtain P+(s′) we can simply
remove rop(t) from P+(s). Thus |P+(s′)| < |P+(s)| so we have reached an exit
and there is no need to continue the construction of −→o .

Consider now our endpoint transition t0 and its responsible operator o0. We
previously demanded that x0 �moves for its own sake�, i.e., that x0 has a goal
value and is not important for achieving any other goal. This is unnecessarily

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 14

restrictive. For example, in Miconic-STRIPS, if we board a passenger then h+

decreases because we can remove the boarding operator from the relaxed plan.
However, boarding is only a means for serving the passenger later on, so this
variable x0 has no own goal. In Driverlog, a driver may have its own goal and
be needed to drive vehicles, and still t0 moving the driver results in decreased
h+ if the location moved away from is not actually needed anymore. The latter
example immediately leads to a de�nition capturing also the �rst one: all we
want is that �any deletes of t0 are not needed in the rest of the relaxed plan�.
We can then remove o0 from the relaxed plan for s0, and have reached an exit
as desired.

To make this precise, recall the situation we are addressing. We have reached
a state s0 in which t0 = (s(x0), c) can be applied, yielding a state s1. We have
a relaxed plan P+(s0) for s0 so that |P+(s0)| ≤ |P+(s)|, where P+(s0) is
constructed from P+(s) by replacing some operators of P+

<0(s) with operators
responsible for induced oDTG+

x transitions for x ∈ V \ {x0}. We construct P+
1

by removing o0 from P+(s0), and we need P+
1 to be a relaxed plan for s1. What

are the facts possibly needed in P+
1 ? A safe approximation is the union of sG,

the precondition of any o0 6= o ∈ P+(s), and any oDTG+
x values needed by

induced oDTG+
x transitions. Denote that set with R+

1 . The values potentially
deleted by t0 are contained in C0 := {(x0, s(x0))}∪ctx(t0). Thus if R+

1 ∩C0 = ∅
then we are �ne.

We can sharpen this further. Consider the set of facts F0 := s∪
⋃
o∈P+

<0(s) effo
that are true after relaxed execution of P+

<0(s). Say that p 6∈ F0. Then, �rst,
p is not needed in the part of P+

1 pertaining to P+
<0(s). More precisely, p

cannot be an operator precondition in P+
<0(s) because this condition would not

be satis�ed in (relaxed) execution of P+(s). Also, p cannot be the start value of
an induced oDTG+

x transition because, by de�nition, all such values are added
by operators in P+

<0(s). Second, assume that p is needed in the part of P+
1

pertaining to P+
>0(s), i.e., p is either a goal or is an operator precondition in

P+
>0(s). Then, since p 6∈ F0 and P+(s) is a relaxed plan, either o0 or an operator

in P+
>0(s) must establish p. As for o0, all its e�ects are true in s1 anyway. As

for P+
>0(s), this remains unchanged in P+

1 and thus this part is covered, too.
Altogether, this means that p 6∈ F0 is not needed for P+

1 to be a relaxed plan
for s1, and thus it su�ces if R+

1 ∩ C0 ∩ F0 = ∅.
Now, even this last condition can still be sharpened. Say that there exists

a (possibly empty) sub-sequence −→o0 of P+
>0(s) so that −→o0 is guaranteed to be

applicable at the start of P+
1 , and so that −→o0 re-achieves all facts in R+

1 ∩C0∩F0

(both is easy to de�ne and test). Then we can move −→o0 to the start of P+
1 . We

say in this case that the oDG+-relevant deletes of t0 are P+
>0(s)-recoverable �

De�nition 2 condition (2a). For example, consider o0 that picks up a ball b in
the Gripper domain. This operator deletes a fact p =�free-gripper� which may
be needed in the remainder of the relaxed plan, and thus p ∈ R+

1 ∩ C0 ∩ F0.
However, P+

>0(s) will necessarily contain an operator o′ putting b down again.
We can re-order P+

1 to put o′ right at the start, re-achieving p. The same
pattern occurs in any transportation domain with capacity constraints, or more
generally in domains with renewable resources (e.g., [21]).

Finally, we have identi�ed two simple alternative su�cient conditions under
which t0 is suitable, De�nition 2 conditions (2b) and (2c). For the sake of
brevity, we only sketch them here. Both require that s(x0), i.e., the start value

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 15

of t0, is not contained in R+
1 as de�ned above. We say in this case that s(x0)

is not oDG+-relevant. Note that, then, R+
1 ∩ C0 = ∅ unless t0 has side e�ects.

Side e�ects do not hurt if t0 has replacable side e�ect deletes, i.e., if any operator
whose precondition may be deleted can be replaced with an alternative operator
o′ that is applicable and has the same e�ect (this happens, e.g., in Simple-
TSP). Another possibility is that where t0 has recoverable side e�ect deletes:
there exists an operator o′ that is applicable and recovers all relevant side e�ect
deletes. This happens quite frequently, for example in Rovers where taking
a rock/soil sample �lls a �store�, but we can free the store again simply by
emptying it anywhere. We can replace o0 with o′ to obtain a relaxed plan
P+

1 for s1 (and thus h+(s1) ≤ h+(s)). Then we can apply o′, yielding a state
s2 which has h+(s2) < h+(s) because we can obtain a relaxed plan for s2 by
removing o′ from P+

1 .
What will the length of the exit path be? We have one move for x0. Each

non-leaf variable x must provide a new value at most once for every move of
a variable x′ depending on it, i.e., where (x, x′) ∈ A. The new value can
be reached by a oDTG+

x traversal. Denote the maximum length of such a
traversal, i.e., the diameter of oDTG+

x , by diam(oDTG+
x).6 Now, we may have

diam(oDTG+
x) > diam(DTGx) because oDTG+

x removes not only vertices but
also arcs: there may be �short-cuts� not traversed by P+(s). Under certain
circumstances it is safe to take these short-cuts. Say that, in addition to the
restrictions imposed by De�nition 2 condition (3),

(*) all oDTG+
x transitions are invertible or induced, and all other transitions

are either irrelevant, or have empty conditions and irrelevant side e�ect
deletes.

When traversing a short-cut under this condition, as soon as we reach the end of
the short-cut, we are back in the region of states s′ where a relaxed plan P+(s′)
can be constructed as before. The rest of our exit path construction remains
una�ected. Thus, denote by V ∗ the subset of V \ {x0} for which (*) holds. We
de�ne costd∗(oDG+) :=

∑
x∈V costd∗(x), where costd∗(x) :=

1 x = x0

diam(oDTG+
x) ∗

∑
x′:(x,x′)∈A costd∗(x′) x 6= x0, x 6∈ V ∗

min(diam(oDTG+
x),diam(DTGx)) ∗

∑
x′:(x,x′)∈A costd∗(x′) x 6= x0, x ∈ V ∗

Note that costd∗(.) is exponential in the depth of the graph. This is not an
artifact of our length estimation. It is easy to construct examples where exit
distance is exponential in that parameter. This is because, as hinted, a vari-
able may have to move several times for each value required by other variables
depending on it. See Example 6 in Appendix A.4 for such a construction. We
remark that very similar constructions have appeared in the literature on causal
graphs [10].

On the other hand, of course costd∗(.) may over-estimate. It assumes that,
whenever a variable x′ with (x, x′) ∈ Amakes a move, then xmust move through
its entire oDTG+ respectively DTG. Obviously, this is very conservative: (1)

6More precisely, diam(.) is not the diameter of a graph but the maximum distance from
vertex v to vertex v′ where there exists a path from v to v′.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 16

it may be that the move of x′ does not actually have a condition on x; (2) even
if such a condition exists, x may need less steps in order to reach it. One might
be able to ameliorate (1) by somehow making more �ne-grained distinctions
which part of costd∗(x′) pertains to moves conditioned on x; we leave this open
for future work. For now, we note that the over-estimation can be exponential
even just due to (2), i.e., costd∗(oDG+) may be exponentially larger than the
length of a shortest exit path even if, for all (x, x′) ∈ A, all moves of x′ depend
on x. This can be shown by a simple variant of Example 6; we discuss this in
Appendix A.4.

Exit paths using short-cuts in the described way may be non-monotone. Ex-
ample 5 in Appendix A.4 contains a construction showing this. For an intuitive
understanding, imagine a line l0, . . . , ln where our current task, to achieve the
precondition of another operator, is to move from l0 to ln. Say that all loca-
tions on the line need to be visited, in the relaxed plan, e.g. because we need
to load or unload something at all of these locations. Say further that there is
a shortcut via l′ that needs not be visited. If we move to l′ then h+ increases
because we have made it 1 step more costly � for the relaxed plan � to reach
all the locations l0, . . . , ln. For the same reason, costd∗(oDG+) is not an upper
bound on the length of a shortest monotone exit path. This is also shown in
Example 5, where we construct a situation in which the shortest monotone exit
path is longer than costd∗(oDG+).7 To obtain a bound on monotone exit paths,
we can simply set V ∗ := ∅ in the de�nition of costd∗.

If we have De�nition 2 condition (2a) or (2b), then the exit distance is
bounded by costd∗(oDG+) − 1 because costd∗(oDG+) counts the last step re-
ducing h+. If we have De�nition 2 condition (2c), then after that last step we
need 1 additional operator to reduce h+, and so the exit distance is bounded
by costd∗(oDG+). Putting the pieces together yields our main result of this
section:

Theorem 2. Let (X, sI , sG, O), s, P+(s), and oDG+ be as in De�nition 1. If
oDG+ is successful, then s is not a local minimum, and ed(s) ≤ costd∗(oDG+).
If we have De�nition 2 condition (2a) or (2b), then ed(s) ≤ costd∗(oDG+)− 1.

The full proof is given in Appendix A.2. As pointed out earlier, our main
instrument for approximate local analysis will be to feed Theorem 2 with the
relaxed plans returned by FF's heuristic function [30]. It is important to note
that, this way, we do not give any guarantees, i.e., Theorem 2 does not hold if
P+(s) is not optimal, and even if P+(s) is non-redundant and parallel-optimal
like those computed by FF. At the end of the �exit path� we may obtain a relaxed
plan shorter than P+(s) but not shorter than h+(s). In a nutshell, the reason
is that a parallel-optimal relaxed plan � more generally, a relaxed plan not
minimizing the number of operators � may take very di�erent decisions than
a sequentially-optimal relaxed plan, thus constructing an �exit path� leading
into the wrong direction. Example 8 in Appendix A.4 gives a full construction
proving this. We remark that the example is fairly contrived, and it does not
appear likely that situations like this are frequent in practice.8

7We remark that, due to the mentioned sources of over-estimation in costd∗, constructing
such an example requires fairly awkward constructs that do not appear likely to occur in
practice.

8To some extent, evidence supporting this intuition is given by Ho�mann [28], who observes
empirically that the search topology under FF's heuristic function is generally similar to that

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 17

Feeding Theorem 2 with non-optimal relaxed plans can of course also be
imprecise �in the other direction�, i.e., Theorem 2 may not apply although it
does apply for an optimal relaxed plan. Thus �good cases� may go unrecognized.
We demonstrate this with a simple modi�cation of Example 8, explained below
the example in Appendix A.4. Importantly, as we will point out in Section 8, our
empirical results suggest that this weakness does not tend to occur in practice,
at least as far as represented by the benchmarks.

6 Conservative Approximations

We now identify su�cient criteria guaranteeing that Theorem 2 can be applied.
We consider both the local case where a particular state is given, and the global
case where we generalize over all states in the task. We approximate optimal
rplan dependency graphs as follows:

De�nition 3. Let (X, sI , sG, O) be a planning task, let s ∈ S with 0 < h+(s) <
∞, let x0 ∈ XsG

, and let t0 = (s(x0), c) be a relevant transition in DTGx0 with
o0 := rop(t0).

A local dependency graph for s, x0, and o0, or local dependency graph in
brief, is a graph lDG = (V,A) with unique leaf vertex x0, and where x ∈ V and
(x, x′) ∈ A if either: x′ = x0, x ∈ Xpreo0

, and preo0(x) 6= s(x); or x′ ∈ V \ {x0}
and (x, x′) is an arc in SG.

A global dependency graph for x0 and o0, or global dependency graph in
brief, is a graph gDG = (V,A) with unique leaf vertex x0, and where x ∈ V and
(x, x′) ∈ A if either: x′ = x0 and x0 6= x ∈ Xpreo0

; or x′ ∈ V \ {x0} and (x, x′)
is an arc in SG

If an optimal relaxed plan P+(s) for s contains o0, then oDG+ as per Def-
inition 1 will be a sub-graph of lDG and gDG as de�ned here. This is simply
because any optimal rplan dependency graph has only arcs (x, x′) contained
in the support graph of the task.9 We remark that the support graph may
contain a lot more arcs than actually necessary. While SG tells us what may
ever support for what else, it does not tell us what will support what else in
an optimal relaxed plan. Consider our earlier point that, when constructing
oDG+, it is important to consider only operators in front of o0 in P+(s). This
information is of course not contained in SG. In Gripper, to stick with our
previous example, SG will suggest that dropping a ball may be needed in order
to support �free-gripper� for picking up the same ball. Thus SG �detects� a
cyclic dependency here. One of the main open directions is to improve this part
of the approximation, by devising conservative methods recognizing operators
that will never have to precede o0 in an optimal relaxed plan.

The reader who has waded through the cumbersome details in the previous
section will be delighted to hear that de�ning when an lDG respectively gDG
is successful does not involve any additional notations:

De�nition 4. Let (X, sI , sG, O), s, t0, o0, and G = lDG or G = gDG be as in
De�nition 3. We say that G = (V,A) is successful if all of the following hold:

under h+. Thus the di�erence between �decisions taken� in one or the other relaxed plan
appears to be less drastic than in Example 8.

9For gDG, note that preo0
(x0), if de�ned, will be = s(x0) and thus x0 does not need to

be recorded as its own predecessor.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 18

(1) G is acyclic.

(2) If G = lDG then sG(x0) 6= s(x0), and there exists no transitive successor
x′ of x0 in SG so that x′ ∈ XsG

and sG(x′) 6= s(x′).

(3) We have that t0 either:

(a) has self-irrelevant side e�ect deletes; or

(b) has replacable side e�ect deletes; or

(c) has recoverable side e�ect deletes.

(4) For x ∈ V \ {x0}, all DTGx transitions either are irrelevant, or have self-
irrelevant deletes, or are invertible and have irrelevant side e�ect deletes
and no side e�ects on V \ {x0}.

Consider �rst only local dependency graphs G = lDG; we will discuss G =
gDG below. Assume that we have an optimal relaxed plan P+(s) for s that
contains o0, and thus oDG+ is a sub-graph of lDG. Then condition (1) obviously
implies De�nition 2 condition (1). Condition (4) implies De�nition 2 condition
(3) because oDTG+

x does not contain any irrelevant transitions. Condition
(2) implies that s(x0) is not oDG+-relevant, i.e., s(x0) is not needed in the
rest of the relaxed plan. This is simply because no other un-achieved goal
depends on x0. But then, condition (3a) implies De�nition 2 condition (2a)
because R+

1 ∩ C0 = ∅, in the notation introduced previously. Conditions (3b)
and De�nition 2 condition (2b), respectively (3c) and De�nition 2 condition
(2c), are equivalent under this premise.

Regarding exit distance, we do not know which part of x ∈ V \ {x0} will
be traversed by P+(s). An obvious bound on diam(oDTG+

x) is the length
maxPath(DTGx) of a longest non-redundant path through the graph (a path
visiting each vertex at most once). Unfortunately, we cannot compute maxPath(.)
e�ciently. It is easy to see that there exists a Hamiltonian path [14] in a
graph G = (V,A) i� maxPath(G) = |V | − 1. Thus the corresponding decision
problem is NP-hard. In TorchLight, we approximate maxPath(G) simply by
|V | − 1. On a more positive note, we can sometimes use diam(DTGx) instead
of maxPath(DTGx), namely if we are certain that x is one of the variables V ∗

used in the de�nition of costd(oDG+). This can be ensured by postulating that

(**) all DTGx transitions either are irrelevant, or are invertible and have
empty conditions, irrelevant side e�ect deletes, and no side e�ects on V \ {x0}.

Note that this is a strictly stronger requirement than De�nition 4 condition
(4). Clearly, it implies De�nition 2 condition (3) as well as condition (*) in
Section 5. Denote by V ∗∗ the subset of V \{x0} for which (**) holds. We de�ne
costD∗(G) :=

∑
x∈V costD∗(x), where costD∗(x) :=

1 x = x0

maxPath(DTGx) ∗
∑
x′:(x,x′)∈A costD∗(x′) x 6= x0, x 6∈ V ∗∗

diam(DTGx) ∗
∑
x′:(x,x′)∈A costD∗(x′) x 6= x0, x ∈ V ∗∗

Because x0 must move � to attain its own goal � every optimal relaxed plan
must take at least one transition leaving s(x0). Thus, with Theorem 2 and the
above, we have that:

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 19

Theorem 3. Let (X, sI , sG, O) be a planning task, and let s ∈ S be a state
with 0 < h+(s) < ∞. Say that x0 ∈ X so that, for every o0 = rop(s(x0), c)
in DTGx0 where (s(x0), c) is relevant, lDGo0 is a successful local dependency
graph. Then s is not a local minimum, and ed(s) ≤ maxo0 costD∗(lDGo0). If,
for every lDGo0 , we have De�nition 4 condition (3a) or (3b), then ed(s) ≤
maxo0 costD∗(lDGo0)− 1.

Theorem 3 is our tool for guaranteed local analysis, i.e., a search-state analy-
sis that guarantees its information to be correct. For guaranteed global analysis,
we simply look at the set of all global dependency graphs gDG, requiring them
to be successful. In particular, all gDG are then acyclic, from which it is not
di�cult to deduce that any non-goal state s will have a variable x0 ful�lling
De�nition 4 (2). For that x0, we can apply Theorem 3 and thus get:

Theorem 4. Let (X, sI , sG, O) be a planning task. Say that all global depen-
dency graphs gDG are successful. Then S does not contain any local minima
and, for any state s ∈ S with 0 < h+(s) < ∞, ed(s) ≤ maxgDG costD∗(gDG).
If, for every gDG, we have De�nition 4 condition (3a) or (3b), then ed(s) ≤
maxgDG costD∗(gDG)− 1.

The full proofs of Theorems 3 and 4 are given in Appendix A.3. If SG is
acyclic and all transitions are invertible and have no side e�ects, then Theorem 4
applies, whereby we have now in particular proved our basic result. Vice versa,
note that, if Theorem 4 applies, then SG is acyclic. As far as local minima are
concerned, one may thus reformulate Theorem 4 in simpler terms not relying
on a notion of �successful dependency graphs�. The present formulation already
paves the way for future research: a gDG is de�ned relative to a concrete variable
x0 and operator o0, and may thus allow for more accurate analysis which other
variables may actually become important for x0 and o0, in a relaxed plan.

The use of diam(DTGx) instead of maxPath(DTGx) in costD∗(.), for the
variables in V ∗∗, has a rather signi�cant e�ect on the quality of the bounds
computed in many benchmarks. A typical example is that of a transportation
domain where vehicle positions are leaf variables in SG whose transitions have no
side e�ects. Such variables qualify for V ∗∗. If we were to use maxPath(DTGx),
then we would obtain exceedingly large bounds even for trivial road maps.
For example, consider Logistics where the road map is fully connected. We
have diam(DTGx) = 1 and thus costD∗(.) delivers the correct bound 1. Using
maxPath(DTGx) instead, the bound delivered would be the total number of
locations minus 1.

Note that the scope of Theorem 4, i.e., the class of planning tasks to which
Theorem 4 applies, is tractable. There exists a plan for the task i� there exists
a relaxed plan for the initial state. Namely, starting from such a relaxed plan,
we are guaranteed to be able to construct an exit path; iterating this argu-
ment gets us to the goal. In our view, this is a weakness of this form of global
analysis. The analysis does not (always) apply in intractable classes of tasks
that do not contain local minima. Note that such classes do exist, cf. Theo-
rem 1. On the other hand, plan existence is tractable in all known benchmark
domains where local minima are absent, so in practice this does not appear to
be a major limitation. Also, note that optimal planning, as well as plan con-
struction, are still intractable within the scope of Theorem 4. Plan construction
is intractable in the sense that the plans may be exponentially long, cf. Exam-

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 20

ple 6 in Appendix A.4.10 As for optimal planning, just consider Logistics and
Miconic-STRIPS. We will see shortly (Proposition 1, next section) that these
are fully covered by Theorem 4. However, in both of them, deciding bounded
plan existence is NP-hard [23]. Finally, of course the plan constructed by iter-
ating exit paths may be highly non-optimal. Indeed, as is shown in Example 7
in Appendix A.4, this plan may be exponentially longer than an optimal plan.
Thus, even if Theorem 4 applies and we do not need an optimality guarantee,
running a planner still makes sense.

We will discuss the relation of the scope of Theorem 4 to known tractable
classes in Section 9. Note in this context that one can construct local min-
ima even in very small examples involving only two variables and complying
with our basic result except that either the support graph is cyclic (Exam-
ple 2, Appendix A.4), or there is a non-invertible transition whose own delete
is relevant (Example 3, Appendix A.4), or there is a transition with a relevant
side e�ect delete (Example 4, Appendix A.4). These examples are contained in
many known tractable classes, thus underlining that the analysis of h+ topology
and the identi�cation of tractable classes are di�erent (although not unrelated)
enterprises.

7 Benchmark Performance Guarantees

We now state some guarantees that our analysis gives in benchmark domains.
The underlying multi-valued domain formalizations are straightforward, and
correspond to formulations that can be found automatically by Fast-Downward.
They are listed in Appendix A.5, where we also give the proofs of the following
two simple observations.11

Guaranteed global analysis will always succeed in four of our benchmark
domains:

Proposition 1. Let (X, sI , sG, O) be a planning task from the Logistics, Miconic-
STRIPS, Movie, or Simple-TSP domain. Then Theorem 4 applies, and the
bound delivered is at most 1, 3, 1, and 1 respectively.

Note that the bounds for Logistics and Movie are the correct ones, i.e., they
are tight. For Miconic-STRIPS, the over-estimation of the actual bound (1)
arises because the analysis does not realize that boarding a passenger can be
used as the leaf variable x0. For Simple-TSP, the correct bound is 0 (since h+

is the exact goal distance). The over-estimation arises because, in every goal
variable x0 =�visited(location)�, the gDG includes also the variable �at�, not
realizing that the value of �at� does not matter because any location can be
visited from any other one.12

10Note however recent results showing that, sometimes, exponentially long plans can be
constructed in polynomial time by exploiting macros [33, 18].

11We say �can be found automatically� here because Fast-Downward's translator is not
deterministic, i.e., it may return di�erent multi-valued encodings even when run several times
on the same planning task. Some but not all of these encodings correspond to our domain
formalizations. For Elevators, we do not give a full de�nition because, without action costs,
this is merely a variant of Transport.

12More precisely, if l is not yet visited then it can be visited from any location l′ 6= l. In case
we currently are in l, we must be in the initial state (or else l would already be visited). But
then, there exists l′ that is not yet visited, so we can go there �rst, decreasing h+, and then

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 21

For the transportation benchmarks involving capacity constraints, local anal-
ysis of optimal relaxed plan will always succeed, thanks to De�nition 2 condition
(2a) which allows any relevant deletes of t0 to be recovered inside the relaxed
plan:

Proposition 2. Let (X, sI , sG, O) be a planning task from the Elevators, Ferry,
Gripper, or Transport domain, and let s ∈ S. In Ferry and Gripper, for every
optimal relaxed plan P+(s) there exists oDG+ so that Theorem 2 applies, the
bound being at most 1. In Elevators and Transport, there exists at least one
P+(s) and oDG+ so that Theorem 2 applies, the bound being at most 1 in
Elevators and at most the road map diameter in Transport.

This holds because all vehicle capacity deletes are recovered inside the re-
laxed plan. For Elevators and Transport, the result is slightly weaker because
a vehicle may have capacity > 1, allowing � but not forcing � relaxed plans to
use unloading operators recovering a capacity not actually present. We note
that similar patterns are likely to occur in any domain with renewable resources
(e.g., [21]), and will be recognized by De�nition 2 condition (2a) in the same
way. (Unless there are other domain features that cause local minima under
h+, or that are not recognized by our techniques.)

8 Experiments

We report on a large-scale experiment with TorchLight. We start by �lling in a
few details on TorchLight as a system, then we describe the experiments set-up,
in particular the benchmark set. We detail which parts of TorchLight consume
how much runtime, before describing what kind of information TorchLight de-
livers when summarizing its output on a per-domain basis. We assess the quality
of TorchLight's analysis information in terms of predictive capability. We �nally
summarize the kind of information delivered by TorchLight's diagnosis facility
in our benchmarks.

8.1 TorchLight

TorchLight is implemented in C based on FF-v2.3.13 TorchLight currently han-
dles STRIPS only, i.e., no ADL domains. We use Fast-Downward's translator
to �nd the multi-valued variables. Establishing the correspondence between
these variables (respectively their values) and FF's internally used ground facts
is mostly straightforward. There are a few details to take care of; we omit these
for brevity.

After parsing Fast-Downward's variables, TorchLight creates data structures
representing the support graph and the domain transition graphs. It then enters
a phase we refer to as static analysis, where it determines �xed properties such
as, for every transition t, whether t is irrelevant, invertible, etc. The next step
is global analysis, checking the preconditions of Theorem 4 by enumerating all

visit l. It may be possible to capture �this kind of� situation by some variant of gDGs, and
thus obtain the correct bound in Simple-TSP. However the situation appears a bit arti�cial
so we did not look into this yet.

13The source code of TorchLight is available at http://www.loria.fr/~hoffmanj/

TorchLight.zip.

RR n° 7505

http://www.loria.fr/~hoffmanj/TorchLight.zip
http://www.loria.fr/~hoffmanj/TorchLight.zip

Where Ignoring Delete Lists Works, Part II: Causal Graphs 22

global dependency graphs end testing whether they are successful. To be able to
report the percentage of successful gDGs, we do not stop at the �rst unsuccessful
one.

Given a state s, guaranteed local analysis checks Theorem 3 by constructing
the local dependency graph for every suitable variable x0 and every transition
t0 leaving s(x0). We make one simpli�cation pertaining to the choice of x0.
Whereas De�nition 4 requires that there exists no transitive successor x′ of x0 in
SG so that x′ ∈ XsG

and sG(x′) 6= s(x′), we simply consider only leaf variables
x0 (testing whether x0 has no successors in SG at all). The more general
condition did not lead to improved analysis performance in the benchmarks,
however it sometimes consumed signi�cant runtime. If we �nd a non-successful
t0, we stop considering x0; we minimize the exit distance bounds across di�erent
x0.

Approximate local analysis checks Theorem 2 on a relaxed plan P+(s) com-
puted by FF's heuristic function. In case that no relaxed plan exists for s, the
analysis reports failure. Otherwise, the analysis proceeds over all operators o0 in
P+(s), from start to end, and over all variables x0 a�ected by o0. For each pair
o0, x0 we build the optimal rplan dependency graph oDG+ as per De�nition 1.
We skip variables x0 where effo0(x0) is not actually used as a precondition or
goal, in the rest of P+(s). If oDG+ is successful, we stop. (Relaxed plans can
be big in large examples, so continuing the analysis for exit bound minimization
was sometimes costly.) As mentioned in Section 5, before we build oDG+ we
re-order P+(s) by moving operators behind o0 if possible. This is of paramount
importance because it avoids including unnecessary variables into oDG+. The
re-ordering process is straightforward. It starts at the direct predecessor o of o0,
and tests whether P+(s) is still a relaxed plan when moving o directly behind
o0. If yes, this arrangement is kept. Then we iterate to the predecessor of o, and
so forth. It is easy to see that, this way, oDG+ will contain exactly the variables
and transitions used in P+(s) to achieve preo0 . Finally, when we check whether
the oDG+-relevant deletes of t0 are P+

>0(s)-recoverable, we use a simple tech-
nique allowing to recognize situations where failure due to one operator can be
avoided by replacing with an alternative operator. For example, if in Transport
o0 is a loading operator reducing capacity level k to k− 1, then P+(s) may still
contain an unloading operator relying on level k. Thus level k will be contained
in R+

1 ∩ C0, causing failure. However, the unloading can just as well be per-
formed based on capacity level k − 1, removing this di�culty. We catch cases
like this during construction of R+

1 . Whenever we �nd o whose precondition
overlaps C0, we test whether we can replace o with a similar operator.

Local analysis is �rst run on the initial state. TorchLight then generates R
sample states s by random walks. We ran R = 1, 10, 100, 1000 in our experiment.
The length of each random walk is chosen uniformly between 0 and 5 ∗hFF(sI),
i.e., 5 times the FF heuristic value for the initial state. We didn't play with
the parameter 5. It is important, however, that this parameter is not chosen
too small. In domains with many dead ends � where one may do things that
are fatally wrong � it is likely that the �bad� things will happen only if doing
a su�ciently large number of random choices. We will illustrate this below by
comparing results for sampled states to results obtained using the initial states
only.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 23

TorchLight performs the local analyzes for each sample state s. The analysis
return simple statistics, namely the minimum, mean, and maximal exit distance
bound found, as well as the success rate, i.e., the fraction of sample states where
Theorem 3/Theorem 2 could be applied. We will mostly focus on success rates
since they turn out to be the most informative feature returned by TorchLight.
For approximate analysis, an interesting feature also is the dead-end rate, i.e.,
the fraction of sample states for which no relaxed plan existed. Note that, since
the analysis fails on such states, the dead-end rate is �contained in� the success
rate. We will not consider the dead-end rate separately in what follows, but
we will show that, on its own, dead-end rate is not a good predictor of planner
performance.

8.2 Experiments Set-Up

We ran experiments in a set of 35 domains. These include all of Ho�mann's do-
mains as shown in Figure 1, except Dining-Philosophers and Optical-Telegraph
where we experienced di�culties with Fast-Downward. (More precisely, Fast-
Downward's translator has di�culties with the STRIPS versions of these do-
mains.) Note that Ho�mann's domains include all domains from the interna-
tional planning competitions (IPC) up to IPC 2004. Our remaining domains
are the STRIPS (versions of the) domains from IPC 2006 and IPC 2008, ex-
cept IPC 2008 Cyber-Security whose instances were too large for parsing. The
test instances were collected from the respective IPC benchmark collections.
For those domains used in several competitions, we used the earlier one of the
respective test suits (except for Freecell where we used the union of the 2000
and 2002 suits). From IPC 2008, we used the sequential-satis�cing test suits,
removing all constructs pertaining to action costs. In some of the IPC 2006 do-
mains, we removed some of the larger instances because they were too large to
parse. As for the non-IPC domains, in Ferry we generated 30 random instances,
in Blocksworld-NoArm we used the IPC 2000 Blocksworld-Arm benchmark set,
in Hanoi we used 9 instances with 3, . . . , 11 discs, in Simple-TSP we used 30
instances with 2, . . . , 31 locations, and in Tyreworld we used 9 instances with
1, . . . , 9 tires to be replaced.14 In total, our test set contains 1117 instances.

All experiments are run on a 1.8 GHZ CPU, with a 30 minute runtime and 2
GB memory cut-o�. We ran 5 di�erent planners/tools. Apart from TorchLight,
these were FF-v2.3 [30] as available on the author's web page, as well as LAMA
[44, 45] as available on Silvia Richter's web page. The purpose of running
these planners was to assess to what extent TorchLight's output � in particular
the success rate of approximate local analysis � can predict planner success or
failure. To examine this also for a very plain planner, we also ran a version
of FF that uses no goal ordering techniques, and that runs only Enforced Hill-
Climbing, without resorting to best-�rst search if that fails. We will refer to
this planner as EHC in what follows. Finally, we ran an alternative version of

14In several cases, we made minor PDDL changes to avoid simple syntactic di�culties. For
example, in Rovers we removed the �communicate� e�ects that are both added and deleted
(these play no role in sequential planning anyway). In some domains we added preconditions
enforcing parameter inequality to avoid nonsense instantiations (like �(on A A)�) breaking the
synchronization between FF and Fast-Downward's translator. In instance 11 of Woodworking
we removed a minor bug (an empty type declaration) that does not sit well with FF's parser.
We removed two of the 30 Mystery instances because they were proved unsolvable by FF's
pre-processor.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 24

Static/R = 1 R = 10 R = 100 R = 1000
tool/phase mean max mean max mean max mean max

FD Translator 5.81 690.59

SG/DTG 0.12 6.91

Static Analysis 0.23 31.42

gDG Analysis 0.41 53.29

Sampling States 0.01 0.53 0.08 4.81 0.78 50.35 7.68 491.20

lDG Analysis 0.00 0.18 0.01 1.11 0.10 9.56 1.00 94.59

oDG+ Analysis 0.01 1.03 0.03 2.46 0.23 20.09 2.21 194.79

TorchLight total 6.27 727.63 6.39 736.98 7.37 807.70 17.17 1510.74

TorchLight oDG+ 5.85 724.54 5.97 732.98 6.86 795.16 15.76 1413.23

TorchLight oDG+ no FD 0.38 33.95 0.47 40.50 1.36 103.67 10.25 719.27

Search-Sample 0.06 58.02 0.23 138.54 5.68 � 27.24 �

Search-Sample total 0.07 58.03 0.32 138.59 6.56 � 36.36 �

FF 268.35 �

LAMA 144.78 �

Table 1: Summary of runtime data. Mean/max is over all instances of all
domains. For empty �elds, the respective tool/phase does not depend on R.
A dash means time-out, 1800 seconds, which is inserted as the runtime for
each respective instance into the mean computation. Rows �FD Translator�
. . . �oDG+ Analysis� time the di�erent stages of TorchLight. �TorchLight total�
is overall runtime, �TorchLight oDG+� does not run gDG and lDG analysis,
�TorchLight oDG+ no FD� is the latter when disregarding the translation costs.
�Search-Sample� determines a success rate (fraction of sample states deemed
to not be on local minima) via limited local searches. �Search-Sample total�
includes the time for generating the sample states.

TorchLight that uses search in order to compute a success rate. Namely, using
the same sample states as generated by TorchLight, for each state s we ran a
single iteration of FF's Enforced Hill-Climbing, i.e., a breadth �rst search for a
state with better heuristic value. In this search, like FF does, we used helpful
actions pruning to avoid huge search spaces. Further, to simulate the detection
of states not on local minima, we allowed only monotone paths, thus restricting
the search space to states having exactly the same heuristic value as s. The
search was counted as a �success� i� a better state was reached in this way. We
will refer to this analysis technique as Search-Sample in what follows.

8.3 Runtime

Our code is currently optimized much more for readability than for speed. Still,
TorchLight is fast. Up toR = 100, the bottleneck is Fast-Downward's translator.
With R = 1, 10, 100, the actual analysis takes at most as much time as the
translator in 99.82%, 99.82%, and 95.61% of the instances respectively. To
assess this in more detail, consider Table 1 which gives the timing of the di�erent
stages of TorchLight, and of the other planners/tools.

Up to R = 100, TorchLight's total runtime is dominated by Fast-Downward's
translator. Indeed, the translation runtime sometimes hurts considerably, with
a peak of 690.59 in the most costly instance of the Scanalyzer domain. This
is rather exceptional, however. The second most costly domain is Blocksworld-
NoArm, with a peak of 138.33 seconds. In 20 of the 35 domains, the most
costly instance is translated in less than 10 seconds. In 59.44% of the instances,
Fast-Downward's translator takes at most 1 second.

For static analysis, the peak behavior of 31.42 seconds, also in Scanalyzer, is
even more exceptional: in 95.79% of the instances, static analysis takes at most 1
second. The second highest domain peak is 7.88 seconds in Pipesworld-Tankage.
Similarly, while global analysis takes a peak of 53.29 seconds � in Blocksworld-

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 25

NoArm � in 95.97% of the instances it completes in at most 1 second. The only
domain other than Blocksworld-NoArm where the peak instance takes more
than 10 seconds is Airport, with a peak of 41.71 seconds; the next highest
domain peaks are Pipesworld-Tankage (6.8), Scanalyzer (2.91), Logistics (1.89),
and Woodworking (1.17). In all other domains, global analysis always completes
within a second.

Turning focus on the local analyzes, we see that they are even more e�ective.
In particular, we will concentrate below mostly on approximate local analysis,
referred to as oDG+ analysis in the table. We will see that R = 1000 does not
o�er advantages over R ≤ 100 as far as the information obtained goes, so we
will mostly concentrate on R ≤ 100. For R = 1, 10, 100, approximate local anal-
ysis completes in at most 1 second for 99.91%, 99.64%, 95.79% of the instances
respectively. For R = 1000 this still holds for 76.45% of the instances. The
peak runtime of 20.09 seconds for R = 100 occurs in Scanalyzer. The next high-
est domain peaks are Blocksworld-NoArm (9.23), Pipesworld-Tankage (4.24),
Ferry(3.21), Logistics (2.99), Blocksworld-Arm (2.77), and Airport (1.41). In
all other 28 domains, oDG+ analysis with R = 100 always completes within a
second.

The bottleneck in local analysis is the generation of sampling states. This can
be costly because it involves the repeated computation of applicable operators
during the random walks. Its R ≤ 100 peak of 50.35 seconds is in the Scanalyzer
domain. However, once again, this peak behavior is exceptional. With R =
1, 10, 100, the sampling completes within at most 1 second for 100%, 98.21%,
86.93% of the instances respectively.

The main competitor of TorchLight, as far as approximate analysis to obtain
a success rate (oDG+ analysis) goes, is Search-Sample. In theory, Search-Sample
is of course vastly inferior to TorchLight. While the runtime of TorchLight is
low-order polynomial in the size of the (grounded) input, the runtime of Search-
Sample is worst-case exponential in that size. While the runtime of TorchLight
grows linearly with R, for Search-Sample decreasing R only reduces the chance
of hitting a �bad� state, i.e., a sample state on a large plateau (a large region with
identical heuristic value). But does this theoretical superiority also materialize
in practice? As far as the present benchmarks allow to answer this question, the
answer is �yes it does, but only in certain domains, and mostly only for large
R�.

Consider for the moment only the analysis methods themselves, i.e., row
�oDG+ Analysis� vs. row �Search-Sample� in Table 1. We see that oDG+ anal-
ysis is signi�cantly superior across all values of R, both in the mean and in
the max. However, for R ≤ 10 the mean runtime of Search-Sample is quite
tolerable, and even the maximum runtime is not too bad. What is more, bad
runtime behavior of Search-Sample is very exceptional. For R = 1, 10, the
analysis completes in at most 1 second for 99.82% and 98.39% of the instances
respectively, and in 33 respectively 30 of the 35 domains even the maximum run-
time is below 1 second. With R ≥ 100, the picture changes considerably, but
still Search-Sample is far from being hopeless. With R = 100, Search-Sample
has two time-outs, both of which occur in Blocksworld-Arm. With R = 1000,
there are 11 time-outs, in Blocksworld-Arm, Blocksworld-NoArm, Freecell, and
Pipesworld-NoTankage. With R = 100, the maximum runtime is above 10
seconds in 7 domains; with R = 1000, in 12. However, with R = 100, 1000,
the analysis still completes in at most 1 second for 92.03% and 71.26% of the

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 26

instances respectively (compared to 95.79% respectively 76.45% for oDG+ Anal-
ysis, cf. the above).

Now, both oDG+ analysis and Search-Sample are not stand-alone methods.
The former requires all of TorchLight except gDG and lDG analysis. The latter
requires the sampling of random states. The respective total data is given in
rows �TorchLight oDG+� and �Search-Sample total� in Table 1. Here the picture
changes quite a bit in favor of Search-Sample, due to the overhead produced for
TorchLight by the translation to multi-valued variables, and for Static Analysis.
Up to R = 10, �Search-Sample total� is better than �TorchLight oDG+� both in
terms of the mean and the maximum runtimes. The situation is reversed, due
to the increased chance of hitting �bad� states, only for R ≥ 100.

It should be noted here that the whole overhead incurred by translation � by
far the largest contributor to the runtime of �TorchLight oDG+� � is an artifact
of the implementation. Our approach is de�ned for multi-valued state variables,
while the benchmarks are not. Seeing that the multi-valued representation is
in most cases more natural than the binary one, this is a problem of PDDL
more than of TorchLight. The runtimes without translation are given in the
row �TorchLight oDG+ no FD�.

Summing up, producing success rates with TorchLight's approximate local
analysis dominates Search-Sample in theory. In practice, TorchLight is certainly
more reliable than Search-Sample, and apart from the translation overhead is
always more e�cient. However, analyzing the search space via local searches
around sample states is quite feasible. One might be able to get rid of excep-
tionally hard states by imposing a strict search cut-o�. It is a bit surprising
that methods like this have not been used before for performance prediction
purposes (Roberts and Howe [47], for example, use very simple features only).

As one would hope and expect, the analysis methods are signi�cantly faster
than actual planners. LAMA has 83 time-outs in our test suit, FF has 156.

8.4 Analyzing Domains

We now discuss TorchLight's actual analysis capabilities. In the present sub-
section, we look at the data returned on a per-domain basis.

We note �rst that the guarantees of Proposition 1 are con�rmed, i.e., global
analysis succeeds as described in Logistics, Miconic-STRIPS, Movie, and Simple-
TSP. It never succeeds in any other domain, though. In some domains, fractions
of the gDGs are successful. Precisely, the maximum fraction of successful gDGs
is 97% in Satellite, 50% in Ferry, 33.33% in TPP, 22.22% in Driverlog, 20% in
Depots, 13.33% in Tyreworld, and 12.5% in Blocksworld-Arm. However, if the
fraction is below 100% then nothing is proved, so this data may at best be used
to give an indication of which aspects of the domain are �good-natured�. As
for guaranteed local analysis, this generally is not much more applicable than
global analysis. In what follows, we hence concentrate on approximate local
analysis, via oDG+s and Theorem 2, exclusively.

Proposition 2 is backed up impressively. Even with R = 1000, approximate
local analysis succeeds in every single sample state of Ferry, Gripper, Elevators,
and Transport. This indicates strongly that the potentially sub-optimal relaxed
plans do not result in a loss of information here. Indeed, the analysis yields
high success rates in almost all domains where local minima are non-present or
limited. This is not the case for the other domains, and thus TorchLight can

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 27

undirected

Logistics [*,100]

Ferry [+,100]

Gripper [+,100]

unrecognized

Hanoi [0]

Blocksworld−NoArm [57]

Transport [+,100]

Blocksworld−Arm [30]

Depots [81]

Driverlog [100]

Mystery [39]

Mprime [49]

Freecell [56]

Airport [0]

Simple−Tsp [*,100]

Movie [*,100]

Miconic−STRIPS [*,100]

Zenotravel [95]

Satellite [100]

Tyreworld [100]

Grid [80]

PSR [50]

Pipesworld−NoTank [76]

Pipesworld−Tank [40]

harmless recognized

Rovers [100]

Elevators [+,100]

Figure 3: Overview of TorchLight domain analysis results in Ho�mann's [29]
domains plus Elevators and Transport. �*�: global analysis always succeeds. �+�:
local analysis always succeeds if provided an optimal relaxed plan. Numbers
shown are mean success rates per domain, for approximate local analysis (via
oDG+s and Theorem 2) with R = 1, i.e., when sampling a single state per
domain instance.

distinguish Ho�mann's �easy� domains from the �hard� ones. Consider Figure 3,
showing mean oDG+ analysis success rates per-domain with R = 1.

We see quite nicely that �harder� domains tend to have lower success rates.
In particular, the easiest domains in the bottom class all have 100% success
rates (95% in the case of Zenotravel), whereas the hardest domains in the top
right corner only have around 50% or less. We note that, in the top-right corner
domains, to some extent the low success rates result from the recognition of
dead ends by FF's heuristic function. For example, if during random sampling
we make random vehicle moves consuming fuel, like in Mystery and Mprime,
then of course chances are we will end up in a state where fuel is so scarce
that even a relaxed plan does not exist anymore. This is most pronounced in
Airport, where all sample states here have in�nite heuristic values. However,
the capabilities of the analysis go far beyond counting states on recognized dead
ends. In Blocksworld-Arm, for example, there are no dead ends at all and still
the success rate is only 30%, clearly indicating this as a domain with a di�cult
topology.

To some extent, based on the success rates we can even distinguish Pipesworld-
Tankage from Pipesworld-NoTankage, and Mprime from Mystery (in Mprime,
fuel can be transferred between locations). The relatively high success rate in
Depots probably relates to its transportation aspects. In Grid, in 20% of cases
our analysis is not strong enough to recognize the reasons behind non-existence
of local minima; these reasons can be quite complicated, cf. Ho�mann's [28]
discussion of this domain. Apart from this, the only strong outliers are Driver-
log, Rovers, Hanoi, and Blocksworld-NoArm. All of these are more problems of
Ho�mann's analysis than of TorchLight's. In Driverlog and Rovers, deep local
minima do exist, but only in awkward situations that don't tend to arise in the
IPC instances. Thus Ho�mann's analysis, which is of a worst-case nature, is
too pessimistic here. The opposite happens in Hanoi and Blocksworld-NoArm,
where the absence of local minima is due to rather idiosyncratic reasons. For ex-
ample, in Hanoi the reason is that h+ is always equal to the number of discs not
yet in goal position � in the relaxation, one can always accomplish the remain-

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 28

sI R = 1 R = 10 R = 100 R = 1000

domain oDG+ oDG+ SEA oDG+ SEA oDG+ SEA oDG+ SEA

Airport 96.0 0.0 0.0 2.0 2.0 2.8 2.9 2.9 3.0

BW-Arm 38.3 30.0 93.3 28.2 94.5 26.9 91.7 26.5 82.1

BW-NoArm 70.0 56.7 100 57.2 100 55.9 99.9 56.2 98.3

Depots 100 81.8 100 85.9 99.1 86.3 99.7 86.2 99.6

Driverlog 100 100 100 97.5 100 97.4 99.9 97.9 99.8

Elevators 100 100 100 100 100 100 100 100 100

Ferry 100 100 100 100 100 100 100 100 100

Freecell 97.5 55.0 60.0 57.4 62.8 57.9 63.5 58.0 63.2

Grid 60.0 80.0 100 74.0 92.0 69.0 93.8 69.5 93.5

Gripper 100 100 100 100 100 100 100 100 100

Hanoi 0.0 0.0 33.3 11.1 44.4 10.2 41.9 10.6 41.9

Logistics 100 100 100 100 100 100 100 100 100

Miconic 100 100 100 100 100 100 100 100 100

Movie 100 100 100 100 100 100 100 100 100

Mprime 74.3 48.6 74.3 61.1 76.3 64.3 79.0 64.1 78.2

Mystery 75.0 39.3 42.9 37.1 43.9 37.6 45.6 36.3 44.4

PipeNoTank 40.0 76.0 98.0 75.4 97.4 75.2 97.4 75.1 95.4

PipeTank 34.0 40.0 92.0 50.6 90.0 49.4 88.1 48.7 88.2

PSR 66.0 50.0 62.0 57.6 69.8 58.3 71.1 57.0 70.4

Rovers 100 100 100 100 99.5 100 99.8 100 99.8

Satellite 85 100 100 98.5 100 98.4 100 98.0 99.8

SimpleTSP 100 100 100 100 100 100 100 100 100

Transport 100 100 93.3 100 93.0 100 94.8 100 94.4

Tyreworld 100 100 100 95.6 100 96.3 100 95.5 100

Zenotravel 90 95 100 94.5 99.5 95.8 98.4 95.4 98.2

Openstacks 100 0 4.4 14.8 21.3 17.7 22.0 16.6 20.8

ParcPrint 100 3.3 6.7 8.0 8.3 6.3 7.2 6.0 6.8

Pathways 100 10.0 10.0 6.0 6.0 5.4 5.4 4.6 4.6

PegSol 0 0 10 13.3 22.7 13.1 22.3 12.6 22.2

Scanalyzer 0 30.0 96.7 33.0 99.7 33.5 97.9 33.9 98.5

Sokoban 30.0 13.3 33.3 20.3 38.3 19.1 38.2 18.5 37.7

Storage 100 93.3 96.7 89.0 96.3 89.8 96.8 89.3 96.9

TPP 100 80.0 80.0 68.0 67.0 65.4 63.8 65.5 63.9

Trucks 56.3 0 0 2.5 3.1 1.9 2.9 1.4 2.7

Woodwork 100 13.3 13.3 14.3 14.3 15.3 15.4 15.3 15.4

Table 2: Mean success rates per domain. Upper half: domains whose h+ topol-
ogy has been examined by Ho�mann [29] or is trivial to examine based on his
results; lower half: IPC 2006/2008 domains where that is not the case. Columns
�sI � show data for analyzing the initial state only, columns �R = 1, 10, 100, 1000�
for analyzing the respective number of sample states. Columns �oDG+� give
data for approximate local analysis, columns �SEA� give data for Search-Sample.

ing goals one-by-one, regardless of the constraints entailed by their positioning.
Hanoi and Blocksworld-NoArm are not actually �easy to solve� for FF, and in
that sense the low success rates of TorchLight provide a more accurate picture.

Table 2 gives a more complete account of per-domain averaged success rates
data, including all domains, all values of R, and also the rates obtained on initial
states and using Search-Sample instead of TorchLight. This serves to answer
three interesting questions:

(1) Is it important to sample random states, rather than only analyzing the
initial state?

(2) Is it important to sample many random states?

(3) How competitive is TorchLight with respect to a search-based analysis?

The answer to question (1) is a clear �yes�. Most importantly, this pertains to
domains with dead ends, cf. our brief discussion above. It is clear from Table 2

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 29

that, in such domains, analyzing sI results in a tendency to be too optimistic.
To see this, just consider the entries for Airport, Freecell, Mystery, Openstacks,
Parc-Printer, Pathways, TPP, Trucks, and Woodworking. All these domains
have dead ends, for a variety of reasons. The dead ends do not occur frequently
at initial state level, but do occur frequently during random walks: for the
domains listed, with R = 1000 the average dead-end rate is 97.0%, 35.4%, 46.8%,
79.2%, 93.0%, 95.3%, 34.5%, 97.3%, and 84.6% respectively. (For Mprime, the
dead-end rate is 7.2% only, so the ability to transfer fuel does indeed seem to
have a large impact on domain structure.) Interestingly, in a few domains �
most notably the two Pipesworlds � the opposite happens, i.e., success rates are
lower for sI than for the sample states. It is not clear to us what causes this
phenomenon.

If we simply compare the sI column with the R = 1000 column for oDG+,
then we �nd that the result is �a lot� di�erent � more than 10% � in 21 of the
35 domains. To some extent, this di�erence between initial states and sample
states may be just due to the way these benchmarks are designed. Often, the
initial states of every instance are similar in certain ways (no package loaded yet,
etc). On the other hand, it seems quite natural, at least for o�ine problems,
that the initial state is di�erent from states deeper down in the state space
(consider transportation problems or card games, for example).

The answer to question (2) is a clear �no�. For example, compare the R = 1
and R = 1000 columns for oDG+. The di�erence is greater than 10% in only 6
of the 35 domains. The peak di�erence is 16.6% for R = 1000 vs. 0% for R = 1
in Openstacks. The average di�erence over all domains is 4.18%. Similarly,
comparing the R = 1 and R = 1000 columns for Search-Sample results in only
4 of 35 domains where the di�erence is greater than 10%, the peak being again
in Openstacks, 20.8% for R = 1000 vs. 4.4% for R = 1. The average di�erence
over all domains is 3.4%.

The answer to question (3) is a bit more complicated. Look at the columns
for oDG+ respectively Search-Sample with R = 1000. The number of domains
where the di�erence is larger than 10% is now 11 out 35, with a peak of 64.6%
di�erence in Scanalyzer. On the one hand, this still means that in 24 out of
35 domains the analysis result we get is very close to that of search (mean
di�erence 2.32%), without actually running any search! On the other hand,
what happens in the other 11 domains? In all of these, without exception, the
success rate of search is higher than that of TorchLight. This is not surprising
� it basically means that TorchLight's analysis is not strong enough here to
recognize all states that are not on local minima. It is interesting to note that
this weakness (which one would expect any non-search based analysis to have,
in some cases) can actually turn into an unexpected advantage. Consider the
domains in question � Blocksworld-Arm, Blocksworld-NoArm, Depots, Grid,
Hanoi, Mprime, Pipesworld-Tankage, Pipesworld-NoTankage, PSR, Scanalyzer,
and Sokoban. From the 9 of these domains whose h+ topology is known, 6 do
contain deep local minima. The other 3 � Blocksworld-NoArm, Grid, Hanoi �
are exactly those where the absence of local minima is due to complex and/or
idiosyncratic reasons, and that are not actually �easy� for FF to solve. As for
Scanalyzer and Sokoban, Sokoban of course has unrecognized dead-ends (in the
relaxation, blocks can be pushed across each other) and therefore local minima.
Similarly, in Scanalyzer one can construct arbitrarily deep local minima: ana-
lyzing plants misplaces them as a side e�ect, and bringing them back to their

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 30

start position, across a large circle of conveyor belts, may take arbitrarily many
steps (although this may not occur a lot in the IPC instances and in reality).

What causes the high success rates for Search-Sample? The author's best
guess is that the problem lies in an observation made, e.g., by Ho�mann [28]: in
many domains, the chance of randomly �nding a state on a local minimum is low.
That is why Ho�mann [28] measures instead the fraction of states on �valleys�,
i.e., states that do not have a monotonically decreasing path to a goal state.15

It seems that Search-Sample mistakes too many valley states for �good� ones.
Now, why does this not happen as much to TorchLight? Because its analysis
is �more picky� � it takes as �good� only states that qualify for stricter criteria.
This tends to not happen as much in the more di�cult domains. Of course, it
would be easy to construct examples turning this �strength� into a real weakness
of analysis quality. This just does not seem to happen a lot in the benchmarks.

8.5 Predicting Planner Performance

As a direct measure of the �predictive quality� of our analysis data, speci�cally
of the success rates we just discussed, we conducted preliminary experiments
examining the behavior of primitive classi�ers, and of runtime distributions for
large vs. small success rates. We consider �rst the classi�ers. They predict, given
a planning task, whether EHC, FF, respectively LAMA will succeed in solving
the task, within the given time and memory limits. The classi�ers answer �yes�
i� the success rate is ≥ a threshold T in 0, 10, . . . , 100. Obviously, to do this,
we need R > 1. We consider in what follows only R = 10 and R = 100 because,
as shown above, R = 1000 can be costly.

For EHC, both TorchLight and Search-Sample deliver fairly good-quality
predictions, considering that no actual machine learning is involved. In partic-
ular, the prediction quality of TorchLight is just as good as � even better than
� that of search. Whether we use R = 10 or R = 100 does not make much of
a di�erence. EHC solves 61.68% of the instances, so that is the rate of correct
predictions for a trivial baseline classi�er always answering �yes�. For R = 10,
the best rate of correct predictions is 72.16% for TorchLight (with T = 80) and
70.37% for Search-Sample (with T = 90). For R = 100, these numbers are
72.02% (T = 60) and 71.39% (T = 100). Dead-end rate is a very bad predic-
tor. Its best prediction is for the baseline classi�er T = 0, and the best other
classi�er (T = 10) is only 32.68% correct.

Interestingly, there are major di�erences between the di�erent sets of do-
mains. On Ho�mann's [29] domains (without Elevators and Transport), the
best prediction is 76.34% correct for TorchLight with T = 70, and 74.55% cor-
rect for Search-Sample with T = 100, vs. a baseline of 65.39%. On the IPC
2006 domains only, these numbers are 57.98% and 61.34% vs. baseline 55.46%,
and T = 10 in both cases, i.e., the best classi�er is very close to the baseline.
IPC 2008, on the other hand, appears to be exceptionally good-natured, the
numbers being 79.52% (T = 60) and 82.38% (T = 80) vs. baseline 51.90%. It
is not clear to us what causes these phenomena.

The quality of prediction is always clearly above the baseline, around 10%
when looking at all domains, and even up to 30% when looking at the IPC 2008

15As Ho�mann [28] reports, it is very costly to compute whether or not a state lies on a
valley, so for a quick search space analysis this is not an option.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 31

domains only. For comparison, using state-of-the-art classi�cation techniques
but only simple features, Roberts and Howe [47] get 69.47% correctness vs.
baseline 74% (for saying �no�), on unseen testing domains for FF. Having said
that, if setting T in the above is considered to be the �learning�, then the above
does not actually distinguish between learning data and testing data. Roberts
and Howe's unseen testing domains are those of IPC 2006 (in a di�erent setting
than ours including also all ADL test suits). If we set T on only Ho�mann's [29]
domains, we get the best prediction at T = 70 for TorchLight and T = 100 for
Search-Sample. With this setting of T , the prediction correctness on our IPC
2006 suit is 29.41% respectively 51.26% only, vs. the baseline 55.46%. On the
other hand, this seems to pertain only to IPC 2006 speci�cally. For IPC 2008,
T = 70 respectively T = 100 are fairly good settings, giving 76.67% respectively
76.19% correctness vs. the baseline 51.90%.

Importantly, Roberts and Howe are not predicting the performance of EHC
but that of FF, which is a more complex algorithm. For FF and LAMA, the
prediction quality of both TorchLight and Search-Sample is rather bleak, using
the described primitive classi�ers. In all cases, the best prediction correctness is
obtained when always answering �yes�. The best that can be said is that success
rate still predicts much better than dead-end rate. To give some example data,
with R = 10 across all domains for FF, the baseline is 86.03% correct. With
T = 10, this goes down to 78.87% for TorchLight, 80.66% for Search-Sample,
and 33.57% for dead-end rate. For LAMA, the baseline is 92.48% correct, and
with T = 10 this goes down to 82.63% for TorchLight, 84.96% for Search-
Sample, and 29.81% for dead-end rate. For both FF and LAMA, with growing
T the prediction quality decreases monotonically in all cases.

It may be a bit surprising at �rst that prediction quality is so much worse
for FF (and LAMA) than for EHC, which after all is the main building block
of FF. However, the di�erence is easily explained. Whereas EHC typically
fails on tasks whose h+ topology is not favorable, FF's and LAMA's complete
search algorithms are able to solve many of these cases, too. For example, with
TorchLight success rates and R = 10, EHC solves only 19.23% of the tasks with
success rate 0, and solves less than 50% up to success rate 70% (hence T = 80
is the best classi�er). By contrast, FF and LAMA solve 73.81% respectively
82.74% of the tasks with success rate 0, and solve at least 70% for all success
rates.

Despite the above, the success rates are far from being devoid of information,
even for FF and LAMA. Setting the threshold T in 10, . . . , 100, we looked at
the distribution of planner runtime in the instance subset (A) where success
rate is < T , vs. instance subset (B) where success rate is ≥ T (for T = 0, (A) is
empty so there is nothing to compare to). Taking the null hypothesis to be that
the means of the two runtime distributions are the same, we ran the Student's
T-test for unequal sample sizes to determine the con�dence with which the null
hypothesis can be rejected. That is, we determine the con�dence with which
distribution (B) has a lower mean than distribution (A). Using TorchLight's
success rate on FF runtimes, with R = 10, in all but one of the 10 settings of
T we get a con�dence of at least 99.9%. In the single exception, T = 30, the
con�dence is still 99%. The di�erence between the means in our data, i.e., the
mean runtime of (A) minus the mean runtime of (B), tends to grow over T . It
peaks at 315 seconds for T = 100; the average di�erence over all values of T is
220. With R = 100, all settings of T yield a con�dence of 99.9%, the average

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 32

di�erence being 221 seconds. For LAMA runtimes, all settings of T and R yield
a con�dence of 99.9%, with average di�erence 165 and 163 for R = 10 and
R = 100 respectively. Interestingly, the results for Search-Sample are slightly
worse. For FF runtimes, with R = 10 the con�dence is 99.9% only for T = 10,
and is below 95% for T = 60, 70, 90. The di�erence peaks at 246 seconds (vs.
315 for TorchLight), with an average of 115 seconds (vs. 220). With R = 100,
thresholds T = 10, 100 yield 99.9% con�dence and T = 70, 90 yield < 95%
con�dence, the average di�erence being 129. For LAMA runtimes, the picture
is better. We have con�dence at least 95% in all cases, and less than 99.9% in
5 respectively 3 cases for R = 10 respectively R = 100. The average di�erence
is 129 respectively 137.

Again perhaps a little surprisingly, for the simpler planner EHC the run-
time distributions behave very di�erently. For TorchLight success rates, we do
get several cases with con�dence < 95%, and average di�erences of around 70
seconds. For Search-Sample, in most cases we get a 99.9% con�dence that the
mean of (B) is larger than that of (A). Again, the reason is simple. On many
tasks with unfavorable h+ topology, enforced hill-climbing quickly exhausts the
space of states reachable by FF's helpful actions. EHC then gives up on solving
the task, although it has consumed only little runtime � a peculiar behavior
that one would certainly not expect from a planner trying to be competitive.

Summing up, success rates as a planning task feature provide a very good
coverage predictor for EHC even without any signi�cant learning. For FF and
LAMA, things are not that easy, however the consideration of runtime distri-
butions clearly shows that the feature is highly informative. Exploiting this
informativeness for predicting planner performance presumably requires combi-
nation with other features, and actual machine learning techniques, along the
lines of Roberts and Howe [47]. This is a topic for future research.

8.6 Diagnosis

To close our description of the experiments, let us say a few words on Torch-
Light's diagnosis facility. The idea behind this facility is to summarize the
reasons for analysis failure. Since we test su�cient criteria for the absence of
local minima, such diagnosis is not guaranteed to identify domain features caus-
ing their presence. Still, at least for analysis using Theorem 2, the diagnosis can
be quite accurate.

The current diagnosis facility is merely a �rst-shot implementation based
on reporting all pairs of (variable x, operator o0) that caused problems when
testing whether an oDG+ for o0 is successful. That is, we report the pair (x, o0)
if o0 has an e�ect on x, and a context fact (x, c) of the transition t0 taken by
o0 is contained in R+

1 ∩ C0 ∩ F0, and is not recoverable by a sub-sequence of
P+
>0(s). In brief, we record (x, o0) if o0 has a harmful e�ect on x. We also

perform a test whether the �main� e�ect of o0, i.e., that on x0, is invertible; in
this case we do not record x0 since the problem appear to be the side e�ects. To
avoid redundancies in the reporting, we record not the grounded operator o0 but
only the name of the action schema (�load� instead of �load(package1 truck7)�).
Similarly, as an option we record not x but the name of the predicate underlying
the fact (x, c). In the latter con�guration, the diagnosis comes in the form of
�operator-name, predicate-name�, which has a direct match with the high-level
PDDL input �les. To have some measure of which parts of the diagnosis are

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 33

�more important�, we associate each pair with a count of occurrences, and weight
the pairs by frequency.

In Zenotravel, the diagnosis output always has the form �fuel-level, �y� and
�fuel-level, zoom�, indicating correctly that it's the fuel consumption which is
causing the local minima. In Mprime and Mystery, the cause of local minima is
the same, however the diagnosis is not as reliable because of the speci�c structure
of the domain, associating fuel with locations instead of vehicles. This sometimes
causes the diagnosis to conclude that it is the e�ect changing locations which is
causing the trouble. Concretely, with R = 1000 in Mystery fuel consumption is
the top-weighted diagnosis in 17 out of the 28 tasks; in Mprime, this happens in
30 out of the 35 tasks. In Satellite and Rovers, the diagnosis always takes the
form �calibrated, switch-on� respectively �calibrated, take-image�, thus reporting
the problem to be that switching on an instrument, respectively taking an image,
deletes calibration. This is precisely the only reason why local minima exist
here.16 In Tyreworld, most often the diagnosis reports the problem to be that
jacking up a hub results in no longer having the jack (which is needed elsewhere,
too). While this does not actually cause local minima (there are none), it indeed
appears to be a crucial aspect of the domain. Similarly, in Grid the most frequent
diagnosis is that picking up a key results in the arm no longer being empty �
again, not actually a cause of local minima, but a critical resource in the domain.
In Blocksworld-Arm, the dominant diagnoses are that a block is no longer clear
if we stack something on top of it, and that the hand is no longer empty when
picking up a block. Similarly, in Freecell, the dominant diagnoses are �cellspace,
send-to-free� and �colspace, send-to-new-col�.

One could make the above list much longer, however it seems clear already
that this diagnosis facility, although as yet primitive, has the potential to identify
interesting aspects of the domain. Note that we are making use of only one of the
information sources in TorchLight. There are many other things to be recorded,
pertaining to other reasons for analysis failure, like support graph cycles etc,
and also to reasons for analysis success, like successful gDGs and x0, o0 pairs
yielding successful oDG+s. It appears promising to try to improve diagnosis
by combining some of these information sources. A combination with other
domain analysis techniques, like landmarks or invariants extraction, could also
be useful.17 We leave this open for future work.

9 Related Work

As stated, there exists no prior work at all � other than the already described
work by Ho�mann [29] � trying to automatically infer properties of a heuristic
function. Thus our work does not relate strongly to other domain analysis tech-

16We remark that, since analysis failure is rare in these two domains, often diagnosis does
not give any output at all. With R = 1000, the output is non-empty in 10 instances of Satellite
and in 8 instances of Rovers. For R = 100 this reduces to 4 instances in Satellite, and not a
single one in Rovers.

17In this context it should be noted that Fast-Downward's translator is not always perfect
in detecting the multi-valued variables underlying benchmarks. For example, in Satellite it
often does not detect that electricity is available in exactly one of the instruments mounted
on a satellite. This can lead to pointless diagnosis output, which for now we handle using
a simple notion of predicates �exchanged� by every operator. For doing things like this in a
more principled manner, further invariants analysis could be useful.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 34

niques. The closest relation is with other techniques relying on causal graphs. In
what follows we discuss in some detail what the commonalities and di�erences
are, discussing also some other connections arising in that context.

If local analysis succeeds, then we can construct a path to the better state
(to the supposedly better state, in case the analysis is approximate). In this, our
work relates to work on macro-actions (e.g., [5, 48]). Its distinguishing feature
is that this macro-action is (would be) constructed in a very targeted and ana-
lytical way, even giving a guarantee, in the conservative case, to make progress
towards the goal. The machinery behind the analysis is based on causal graphs,
and shares some similarities with known causal-graph based execution path gen-
eration methods (e.g., [34, 49, 6]). The distinguishing feature here is that we
focus on h+ and individual states rather than the whole task. This allows us to
consider small fragments of otherwise arbitrarily complex planning tasks � we
look at oDG+ instead of SG. Note that this ability is quite powerful as far as
applicability goes. As we have seen in Section 8, the success rate of (local) ap-
proximate analysis � and therewith the fraction of states for which we would be
able to generate a macro-action � is non-zero in almost all benchmark domains.
Of course, this broad applicability comes with a prize. While traditional causal
graph methods guarantee to reach the goal, in the worst case the macro-actions
may only lead into h+ local minima. Still, it may be interesting to look into
whether other, traditional, causal-graph based methods can be �localized� in
this or a similar manner as well.

Global analysis, where we focus on the whole planning task and thus the
whole causal graph, is even more closely related to research on causal graphs
based tractability analysis. The major di�erence between tractability analysis
and h+ topology analysis, in principle, is that tractability and absence of local
minima are orthogonal properties � in general, neither one implies the other.
Now, as we pointed out at the end of Section 6, our global analysis does imply
tractability (of plan existence). Vice versa, do the restrictions made in known
tractable classes imply the absence of local minima?

In many cases, we can answer this question with a de�nite �no�; some inter-
esting questions are open; in a single case � corresponding to our basic result �
the answer is �yes�. Example 3 in Appendix A.4 shows that one can construct
a local minimum with just 2 variables of domain size 3, 1-arc SG, unary opera-
tors, and strongly connected DTGs with a single non-invertible transition. This
example (and various scaling extensions not breaking the respective conditions)
falls into a variety of known tractable classes. The example is in the tractable
class F∨n identi�ed by Domshlak and Dinitz [10], because every transition of the
dependent variable depends on the other variable. The example is in Helmert's
[24, 25] SAS+-1 class with strongly connected DTGs. The example is �solved�,
i.e., reduced to the empty task, by Haslum's [22] simpli�cation techniques (also,
these techniques solve tasks from the Satellite domain, which do contain local
minima). The example has a fork and inverted fork causal graph, with bounded
domain size and 1-dependent actions only (actions with at most 1 prevail condi-
tion), thus it quali�es for the tractable classes identi�ed by Katz and Domshlak
[38]. The example's causal graph is a chain, and thus in particular a polytree
with bounded indegree, corresponding to the tractable class identi�ed by Braf-
man and Domshlak [6] except that, there, variables are restricted to be binary
(domain size 2). It is an open question whether plan existence with chain causal
graphs and domain size 3 is tractable; the strongest known result is that it is

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 35

NP-hard for domain size 5 [20].18 Similarly, the example �ts the prerequisites
stated by Katz and Domshlak [37] except that these are for binary variables
only; it is an open question whether local minima exist in the tractable classes
identi�ed there. Finally, the example, and a suitable scaling extension, obvi-
ously quali�es for (the �rst part of) Theorem 3.1 of Chen and Gimenez [9], which
requires only a constant bound on the size of the connected components in the
undirected graph induced by the causal graph. The same holds true for (the
�rst part of) Theorem 4.1 of Chen and Gimenez [9], which requires a constant
bound on the size of the strongly connected components in the causal graph and
pertains to a notion of �reversible� tasks requiring that we can always go back
to the initial state.

Next, consider the line of works restricting not the causal graph but the
DTGs of the task [1, 2, 35]. The simplest class identi�ed here, contained in
all other classes, is SAS+-PUBS where each fact is achieved by at most one
operator (�post-unique�, �P�), all operators are unary (�U�), all variables are
binary (�B�), and all variables have at most one value required in the condition
of a transition on any other variable (�single-valued�, �S�). Now, Example 2 in
Appendix A.4 shows a local minimum in an example that has the U and S
properties. The example has two variables, x and y, and the local minimum
arises because a cyclic dependency prevents y from attaining its goal value dn
via the shortest path as taken by an optimal relaxed plan. If we remove all but
two values from the domain of y, and remove the alternative way of reaching
dn,19 then the example still contains a local minimum and also has the P and
B properties. We remark that the modi�ed example is unsolvable. It remains
an open question whether solvable SAS+-PUBS tasks with local minima exist;
more generally, this question is open even for the larger SAS+-PUS class, and
for the (yet larger) SAS+-IAO class identi�ed by Jonsson and Bäckström [35].

Another open question is whether the �3S� class of Jonsson and Bäckström
[34] contains local minima. The class works on binary variables only; it re-
quires unary operators and acyclic causal graphs, however it allows facts to
be �splitting� instead of reversible. If p is splitting then, intuitively, the task
can be decomposed into three independent sub-tasks with respect to p; it is an
open question whether local minima can be constructed while satisfying this
property. Disallowing the �splitting� option in 3S, we obtain the single �posi-
tive� case, where a known tractable class does not contain any local minima.
This class corresponds to our basic result � acyclic causal graphs and invertible
transitions � except that the variables are restricted to be binary. Williams
and Nayak [49] mention restrictions (but do not make formal claims regarding
tractability) corresponding exactly to our basic result except that they allow
irreversible �repair� actions. The latter actions are de�ned relative to a special-
ized formal framework for control systems, but in spirit they are similar to what
we term �transitions with self-irrelevant deletes� herein.

Finally, it is easy to see that, of Bylander's [7] three tractability criteria,
those two allowing several e�ects do not imply the absence of local minima. For
his third criterion, restricting action e�ects to a single literal and preconditions
to positive literals (but allowing negative goals), we leave it as an open question

18Although, of course, it is clear that, if the DTGs are strongly connected as in our case,
then deciding plan existence is tractable no matter what the domain size is.

19This modi�cation is given in detail below the example in Appendix A.4.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 36

whether or not local minima exist. We remark that this criterion does not apply
in any benchmark we are aware of.

To close this section, while we certainly do not wish to claim the identi�cation
of tractable classes to be a contribution of our work, we note that the scope
of Theorem 4 � which is a tractable class, cf. the above � is not covered by
the known tractable classes.20 The tractable cases identi�ed by Bylander [7]
obviously do not cover any of Logistics, Miconic-STRIPS, Movie, and Simple-
TSP. Many causal graph based tractability results require unary operators [34,
10, 6, 24, 25, 38, 37, 33, 18, 19], which does not cover Miconic-STRIPS, Movie,
and Simple-TSP. Theorem 4.1 of Chen and Gimenez [9] requires reversibility
which is not given in either of Movie, Miconic-STRIPS, or Simple-TSP, and
Theorem 3.1 of Chen and Gimenez [9] requires a constant bound on the size
of the connected components in the undirected graph induced by the causal
graph, which is given in none of Logistics, Miconic-STRIPS, and Simple-TSP.
Other known tractability results make very di�erent restrictions on the DTGs
[1, 2, 35]. Even the most general tractable class identi�ed there, SAS+-IAO,
covers none of Miconic-STRIPS, Logistics, and Simple-TSP (because vehicle
variables are not �acyclic with respect to requestable values�), and neither does
it cover Movie (because rewinding a movie is neither unary nor �irreplacable�:
it has a side e�ect un-setting the counter, while not breaking the DTG of the
counter into two disjoint components).

As far as coverage of the benchmarks goes, the strongest competitor of The-
orem 4 are Haslum's [22] simpli�cation techniques. These iteratively remove
variables where all paths relevant for attaining required conditions are �free�,
i.e., can be traversed using transitions that have neither conditions nor side ef-
fects. Haslum's Theorem 1 states that such removal can be done without jeop-
ardizing solution existence, i.e., a plan for the original task can be reconstructed
easily from a plan for the simpli�ed task. In particular, if the task is �solved�
� simpli�ed completely, to the empty task � then a plan can be constructed in
polynomial time. Haslum combines this basic technique with a number of do-
main reformulation techniques, e.g., replacing action sequences by macros under
certain conditions. The choice which combination of such techniques to apply
is not fully automated, and parts of these techniques are not fully described,
making a comparison to Theorem 4 di�cult. Haslum reports his techniques
to solve tasks from Logistics, Miconic-STRIPS, and Movie, plus Gripper and
Satellite. Haslum does not experiment with Simple-TSP. His Theorem 1, in
its stated form, does not solve Simple-TSP, because there the transitions of the
root variable have side e�ects (with irrelevant deletes); extending the theorem to
cover such irrelevant deletes should be straightforward. A more subtle weakness
of Haslum's Theorem 1 relative to our Theorem 4 pertains to reaching required
values from externally caused values. Haslum requires these moves to be free,
whereas, in the de�nition of recoverable side e�ect deletes, Theorem 4 allows the
recovering operators to a�ect several variables and to take their precondition
from the prevails and e�ects of o0.

20This is not true of our basic result. Like we just explained, this is essentially covered by
Jonsson and Bäckström [34] and Williams and Nayak [49]. Formally, its prerequisites imply
those of (the �rst part of) Theorem 4.1 of Chen and Gimenez [9], namely, the postulated
bound is 1.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 37

10 Conclusion

We have identi�ed a connection between causal graphs and h+ topology, and
devised a domain analysis tool allowing to analyze search space topology without
actually running any search. The tool is not yet an �automatic Ho�mann�, but
its analysis quality is impressive even when compared to a search-based analysis.

Technically, a main open question is whether global analysis can more tightly
approximate the scope of Theorem 2. As we have outlined, a good starting
point appears to be trying to include, in a gDG for operator o0, only variable
dependencies induced by operators o that may actually precede o0 in an optimal
relaxed plan. An approach towards automatically recognizing such operators
could possibly be developed along the lines of Ho�mann and Nebel [31], or using
a simpli�ed version of Ho�mann's [29] �fact generation tree�. Additionally, it
would be great to recognize situations in which harmful side e�ects of o0 � like
making the hand non-empty if we pick up a ball in Gripper � will necessarily be
recovered inside the relaxed plan. Our speculation is that such analysis could
be based on a variant of action landmarks [32, 36].

Another interesting line of research is to start from results given for indi-
vidual states s by local analysis, then extract the reasons for success on s, and
generalize those reasons to determine a generic property under which success is
guaranteed. Taken to the extreme, it might be possible to automatically identify
domain sub-classes, i.e., particular combinations of initial state and goal state,
in which the absence of local minima is proved.

Our work highlights two new aspects of causal graph research. First, we
show that, in certain situations, one can �localize� the causal graph analysis,
and consider only the causal graph fragment relevant for solving a particular
state. Second, we use causal graphs for constructing paths not to the global goal,
but to a state where the value of a heuristic h is decreased. The former enables
the analysis to succeed in tasks whose causal graphs are otherwise arbitrarily
complex, and thus has the potential to greatly broaden the scope of applicability.
The latter is not necessarily limited to only h+ � as a simple example, it is
obvious that similar constructions can be made for the trivial heuristic counting
the number of unsatis�ed goals � and thus opens up a completely new avenue of
causal graph research. It remains to investigate to what extent these directions
are fruitful for existing methods (e.g., [34, 49, 6]).

Another possibility is planner performance prediction, along the lines of
Roberts and Howe [47]. TorchLight provides a way of �looking into a planner's
search space� without actually running any search, and hence without jeopardiz-
ing runtime. Our experimental results indicate that the feature computed thus
is highly informative. This could also be useful for automatic planner con�g-
uration, o�-line or even on-line during search. Regarding online con�guration,
note that a single relaxed plan can already deliver interesting information. For
example, one might make the search more or less greedy � choosing a di�er-
ent search strategy, switching helpful actions on or o�, etc. � depending on the
outcome of checking Theorem 2.

As mentioned in Section 9, a direction worth trying is to use local analysis
for generating macro-actions. In domains with high success rate, it seems likely
that the macro-actions would lead to the goal with no search at all. It is a priori
not clear, though, whether such an approach would signi�cantly strengthen, at

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 38

least in the present benchmarks, existing techniques for executing (parts of) a
relaxed plan [48].

One could use TorchLight's diagnosis facility as the basis of an abstraction
technique for deriving search guidance, much as it is currently done with other
relaxation/abstraction techniques. The diagnosis can pin-point which operator
e�ects are causing problems for search. If we remove enough harmful e�ects to
end up with a task to which Theorem 4 applies, then the abstracted problem is
tractable. If we do not abstract that much, then the information provided may
still outweigh the e�ort for abstract planning. For example, in Mystery/Mprime
the abstract task could be transportation without fuel consumption (for which
known planners are very e�ective indeed), and in Grid it could be a problem
variant allowing to carry several keys at once (which may still take a bit to solve,
but should provide very good guidance). One could also focus the construction
of di�erent heuristics � not based on ignoring deletes � on the harmful e�ects.

Finally, an interesting research line is domain reformulation. As is well
known, the domain formulation can make a huge di�erence for planner perfor-
mance. However, it is very di�cult to choose a �good� formulation, for a given
planner. This is a black art even if the reformulation is done by the developer
of the planner in question. If the reformulation is done by an outside user of
planning technology, then the �black art� turns into what is best described as a
blind search, in a very literal sense. If the reformulation is supposed to happen
automatically then it's the computer who needs to �understand� the domain
and planner, which is possibly even more challenging. The lack of guidance is
one of the main open problems identi�ed by Haslum [22] for his reformulation
approach. The most frequent question the author has been asked by non-expert
users is how to model a domain so that FF can handle it more easily.

TorchLight's diagnosis facility, pin-pointing problematic e�ects, might be
instrumental for addressing these di�culties. For the case where the reformu-
lation is done by a computer, one possibility to use the analysis outcome could
be to produce macro-actions �hiding� within them the operators having harmful
e�ects. Another possibilities could be to pre-compose variable subsets touched
by the harmful e�ects.

For the case where the reformulation is done by a human user, the sky is the
limit. To name just one example, the local minima in Satellite could be removed
by allowing to switch on an instrument only when pointing in a direction where
that instrument can be calibrated. More generally, note that end-user PDDL
modeling � writing of PDDL by a non-expert user wanting to solve her problem
using o�-the-shelf planners � is quite di�erent from the PDDL modeling that
planning experts do when developing benchmarks. For example, if an expert
models a transportation benchmark with fuel consumption, then it may seem
quite pointless for TorchLight to determine that fuel consumption will hurt
planner performance. Indeed this may be the reason why the fuel consumption
was included in the �rst place. By contrast, for an end-user (a) this information
may come as a surprise, and (b) the user may actually choose to omit fuel
consumption because this may yield a better point in the trade-o� between
planner performance and plan usability. Generally speaking, such an approach
could give the user guidance in designing a natural hierarchy of increasingly
detailed � and increasingly problematic � domain formulations. This could help
making planning technology more accessible, and thus contribute to a challenge
that should be taken much more seriously by the planning community.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 39

Acknowledgments

I thank the anonymous reviewers of the short version of this paper at ICAPS
2011, for their constructive comments. In particular, one of the reviewers sug-
gested the future research line trying to generalize the reasons for success in local
analysis. I thank Carmel Domshlak for discussions, feedback on early stages of
this work, and an executive summary of the status quo of causal graph research.
A very special thank you goes to Carlos Areces and Luciana Benotti, for inspir-
ing this work in the �rst place. I had long ago given up on this problem. It
was Carlos' and Luciana's insistence that �nally made me see the connection to
causal graphs � while trying to convince them that an analysis like this is not
possible.

A Technical Details and Proofs

We give the proofs to the theorems stated earlier on. In order to be able to do
so, we also need to �ll in some technical de�nitions (to the extent where that
was not already done). We proceed by topics. We �rst prove our complexity
result (Appendix A.1, Theorem 1), then the result pertaining to the analysis of
optimal relaxed plans (Appendix A.2, Theorem 2), then the result pertaining to
conservative approximations (Appendix A.3, Theorems 3 and 4). We construct
a number of examples relevant to both kinds of analysis (Appendix A.4), before
giving the proofs of domain-speci�c performance guarantees (Appendix A.5,
Propositions 1 and 2).

A.1 Computational Complexity

Theorem 1. It is PSPACE-hard to decide whether or not the state space of
a given planning task contains a local minimum, and given an integer K it is
PSPACE-hard to decide whether or not for all states s we have ed(s) ≤ K.
Further, it is PSPACE-hard to decide whether or not a given state s is a local
minimum, and given an integer K it is PSPACE-hard to decide whether or
not ed(s) ≤ K.

Proof. We show �rst the part of the claim pertaining to deciding whether or not
an individual state s is a local minimum. We reduce the problem of deciding
whether any given planning task is solvable. Let (X ′, s′I , s

′
G, O

′) be the planning
task whose solvability we wish to decide. We design a task (X, sI , sG, O) as
follows. Start with (X ′, s′I , s

′
G, O

′), then make the following modi�cations:

(1) Add a new variable Task to X, with domain {nil, org, side}, sI(Task) =
nil, and sG(Task) unde�ned.

(2) Add a new variable Dist to X, with domain {0, 1}, sI(Dist) = 1, and
sG(Dist) = 1.

(3) Add (Task, org) as a new precondition into all operators from O′. Add
two new operators oorg = ({(Task, nil)}, {(Task, org)}) and oside =
({(Task, nil)}, {(Task, side), (Dist, 0)}).

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 40

(4) Add a new variableGoal toX, with domain {alive, dead}, sI(Goal) = alive,
and sG(Goal) = alive. Add a new operator oGoal = (∅, s′G ∪ {(G, dead)).

(5) Add a new operator oDist = ({(Task, side), (Dist, 0)}, {(Dist, 1), (G, alive)}).

Now consider the new initial state sI , as well as its successor state sorg
produced by oorg, and sside produced by oside. We have h+(sI) = h+(sorg) = 1
due to oGoal. However, h+(sside) = 2 because oside deletes the goal (Dist, 1)
which we need to re-achieve with oDist (in addition to using oGoal. Note also
that sside has the plan oGoal, oDist, which clearly constitutes a monotonically
decreasing path to a goal state, thus sside is not a local minimum. The only
other successor state of sI is the one where oGoal has actually been applied.
There, no relaxed plan exists and thus h+ = ∞ because oGoal deletes the goal
(G, alive) which we cannot re-achieve.

Altogether, it clearly follows that sI is a local minimum unless sorg has a
monotone path to a state s with h+(s) < h+(sorg). Now, clearly, (a) such s is
a goal state. Also, (b) all successor states of sorg have h+ value 1 due to oGoal,
unless oGoal has actually been applied in which case h+ = ∞. With (a) and
(b), sorg has a monotone path to a state s with h+(s) < h+(sorg) i� there exists
a plan for sorg. The latter, however, is obviously equivalent to solvability of
(X ′, s′I , s

′
G, O

′). This concludes the argument for the second part of the claim.
Consider next the part of the claim pertaining to deciding whether or not S

contains a local minimum. This now follows trivially because the state space of
(X, sI , sG, O) contains a local minimum i� sorg is a local minimum.

Assume now that we are given an integer K and need to decide for an
individual state s whether or not ed(s) ≤ K. We reduce the problem of deciding
whether any given planning task is solvable within a given number of steps. For
this purpose, in the above, we introduce a binary counter using dlog2(K − 2)e
new binary variables Biti that are all at 0 in sI , and operators for each bit
allowing to set it to 1 if all the lower bits are 1, in e�ect setting all these bits
back to O. Each such operator has the additional precondition (Task, side),
but has no e�ect other than modifying the bits. We then modify the operator
oDist by adding new preconditions encoding counter position K − 2. With this
construction, clearly h+(sside) > 1, and the distance to goal of sside is K (count
up to K − 2, apply oGoal, oDist). Thus, the shortest exit path for sI via oside
has length K + 1. But then, ed(sI) ≤ K i� (X ′, s′I , s

′
G, O

′) has a plan of length
at most K − 1, which concludes this part of the claim.

Finally, consider the hardness of deciding whether or not for all s ∈ S we
have ed(s) ≤ K. Note �rst that sside and all its successors necessarily have exit
distance at most K (the goal can be reached in at most that many steps), and
that the exit distance of sorg and all its successors is equal to the length of a
shortest plan for the respective state in (X ′, s′I , s

′
G, O

′). The latter length may,
for some states in (X ′, s′I , s

′
G, O

′), be longer than K even if the shortest plan for
(X ′, s′I , s

′
G, O

′) (i.e., for the initial state) has length K. We thus introduce an-
other binary counter, this time counting up toK−1, conditioned on (Task, org),
and with a new operator whose precondition demands the new counter to be at
K − 1 and that achieves all goals. Then, clearly, sorg and all its descendants
have exit distance at most K. Thus the only state that may have exit distance
greater than K is sI � precisely, we have ed(sI) = K + 1 i� the new counter is
the shortest plan for sorg, which obviously is the case i� (X ′, s′I , s

′
G, O

′) has no
plan of length at most K − 1. This concludes the argument.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 41

A.2 Analyzing Optimal Relaxed Plans

We need to �ll in some notations. For the sake of self-containedness of this
section, we �rst re-state the de�nitions given in Section 5:

De�nition 1. Let (X, sI , sG, O) be a planning task, let s ∈ S with 0 < h+(s) <
∞, let P+(s) be an optimal relaxed plan for s, let x0 ∈ X, and let o0 ∈ P+(s)
be an operator taking a relevant transition of the form t0 = (s(x0), c).

An optimal rplan dependency graph for P+(s), x0 and o0, or optimal rplan
dependency graph for P+(s) in brief, is a graph oDG+ = (V,A) with unique
leaf vertex x0, and where x ∈ V and (x, x′) ∈ A if either: x′ = x0, x ∈ Xpreop0

,

and preo0(x) 6= s(x); or x 6= x′ ∈ V \ {x0} and there exists o ∈ P+
<0(s) taking a

relevant transition on x′ so that x ∈ Xpreo
and preo(x) 6= s(x).

For x ∈ V \{x0}, by oDTG+
x we denote the sub-graph of DTGx that includes

only the values true at some point in P+
<0(s, x), the relevant transitions t using

an operator in P+
<0(s, x), and at least one relevant inverse of such t where a

relevant inverse exists. We refer to the P+
<0(s, x) transitions as original, and to

the inverse transitions as induced.

De�nition 2. Let (X, sI , sG, O), s, P+(s), x0, t0, and oDG
+ = (V,A) be as

in De�nition 1. We say that oDG+ is successful if all of the following holds:

(1) oDG+ is acyclic.

(2) We have that either:

(a) the oDG+-relevant deletes of t0 are P+
>0(s)-recoverable; or

(b) s(x0) is not oDG+-relevant, and t0 has replacable side e�ect deletes; or

(c) s(x0) is not oDG+-relevant, and t0 has recoverable side e�ect deletes.

(3) For x ∈ V \ {x0}, all oDTG+
x transitions either have self-irrelevant deletes,

or are invertible/induced and have irrelevant side e�ect deletes and no side
e�ects on V \ {x0}.
We next de�ne two general notions that will be helpful to state our proofs.

� The prevail condition prevo of an operator o ∈ O results from restricting
preo to the set of variables Xpreo

\Xeffo .

� Let x ∈ X, let (c, c′) be a transition in DTGx, and let (y, d) ∈ seff(c, c′) be
a side e�ect of the transition. The context of (y, d) in (c, c′) is ctx(c, c′, y, d) :={

(y,prerop(c,c′)(y)) y ∈ Xprerop(c,c′)

{(y, d′) | d′ ∈ Dy, d
′ 6= d} y 6∈ Xprerop(c,c′)

The context of (c, c′) is the set ctx(c, c′) of all partial variable assign-
ments ψ so that, for every (y, d) ∈ seff(c, c′), y ∈ Xψ and (y, ψ(y)) ∈
ctx(c, c′, y, d). We identify ctx(c, c′) with the set of all facts that occur in
any of its assignments.

Note here that the de�nition of ctx(c, c′) over-writes our previous one from
Section 5, but only in the sense that we now also distinguish all possible tuples
of context values, rather than just collecting the overall set. We need the more
�ne-grained de�nition to precisely formulate De�nition 2 condition (2c), i.e.,
under which conditions a transition has �recoverable side e�ect deletes�. Namely,
De�nition 2 conditions (2b) and (2c) are formalized as follows:

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 42

� A transition (c, c′) has replacable side e�ect deletes i� ctx(c, c′) ∩ sG = ∅
and, for every rop(c, c′) 6= o ∈ O where preo ∩ ctx(c, c′) 6= ∅ there exists
o′ ∈ O so that effo′ = effo and preo′ ⊆ prevrop(c,c′) ∪ effrop(c,c′).

� A transition (c, c′) has recoverable side e�ect deletes i� the following two
conditions hold:

� Either (c, c′) has irrelevant side e�ect deletes or, for every ψ ∈ ctx(c, c′),
there exists a recovering operator o so that preo ⊆ prevrop(c,c′) ∪
effrop(c,c′) and effo ⊆ ψ, effo ⊇ {(y, d) | (y, d) ∈ ψ, (y, d) ∈ sG ∪⋃

rop(c,c′) 6=o′∈O preo′}.

� Every (y, d) ∈ seff(c, c′) is not in the goal and appears in no operator
precondition other than possibly those of the recovering operators.

If t0 has replacable side e�ect deletes, then upon its execution we can remove
o0 from the relaxed plan because any operator relying on deleted facts can be
replaced. If t0 has recoverable side e�ect deletes, then, due to the �rst clause
of this de�nition, no matter what the state s0 in which we apply t0 is � no
matter which context ψ holds in s0 � we have a recovering operator o that is
applicable after t0 and that re-achieves all relevant facts. Due to the second
clause, o will not delete any facts relevant elsewhere in the relaxed plan (note
here that anything deleted by o must have been a side e�ect of t0).

Finally, to formally de�ne the notion used in De�nition 2 condition (2a) �
�the oDG+-relevant deletes of t0 are P+

>0(s)-recoverable� � we now assume the
surroundings pertaining to Theorem 2, i.e., (X, sI , sG, O) is a planning task, s
is a state, P+(s) is an optimal relaxed plan for s, oDG+ = (V,A) is an optimal
rplan dependency graph with leaf variable x0 and transition t0 = (s(x0), c) with
responsible operator o0. We are considering a state s0 where t0 can be executed,
reaching a state s1, and we are examining a relaxed plan P+

1 for s1 constructed
from P+(s) by removing o0, and by replacing some operators of P+

<0(s) with
operators responsible for induced oDTG+

x transitions for x ∈ V \ {x0}.

� By C0 := {(x0, s(x0))} ∪ ctx(t0) we denote the values potentially deleted
by t0.

� By R+
1 we denote the union of sG, the precondition of any P+(s) operator

other than o0, and the precondition of any operator which is the responsi-
ble operator for an induced transition in oDTG+

x , with x ∈ V \ {x0}. As
discussed in Section 5, this is a super-set of the facts possibly needed in
P+

1 .

� By F0 := s∪
⋃
o∈P+

<0(s) effo we denote the set of facts true after the relaxed

execution of P+
<0(s) in s. As discussed in Section 5, if p 6∈ F0 then p is not

needed in s1 for P+
1 to be a relaxed plan.

� By S1 we denote the union of: (1) prevo0 ∪ effo0 ; (2) the set of facts
(x, c) ∈ s where there exists no o such that x ∈ Xeffo

and o is either o0

or in P+
<0(s) or is the responsible operator for an induced transition in

oDTG+
x , with x ∈ V \ {x0}; (3) the set F de�ned as F := {(x, c) | (x, c) ∈

F0, x ∈ V \ {x0}} if Xeffo0
∩ (V \ {x0}) = ∅, else F := ∅. Here, (1) and (2)

are facts of which we are certain that they will be true in s1; (3) is a set of

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 43

facts that we will be able to achieve at the start of P+
1 , by appropriately

re-ordering the operators.

� If −→o = 〈o1, . . . , on〉 is a sub-sequence of P+(s), then the relaxed-plan

macro-precondition of −→o is de�ned as pre+
−→o :=

⋃n
i=1(preoi

\
⋃i−1
j=1 effoi

).
The relaxed-plan macro-e�ect of −→o is de�ned as pre+

−→o :=
⋃n
i=1 effoi

. If −→o
is empty then both sets default to the empty set. These notions simply
capture the �outside� needs and e�ects of a relaxed plan sub-sequence.

� The oDG+-relevant deletes of t0 are P+
>0(s)-recoverable i� P+

>0(s) contains
a sub-sequence −→o0 so that pre+

−→o0
⊆ S1 and eff+

−→o0 ⊇ R
+
1 ∩C0 ∩ F0. The �rst

condition here ensures that −→o0 will be applicable at the appropriate point
within P+

1 . The second clause ensures that all facts relevant for P+
1 will

be re-achieved by −→o0.

We now proceed with our exit path construction. In what follows, we �rst
consider the part of the path leading up to s0, i.e., where we move only the
non-leaf variables x ∈ V \ {x0}. We show how to construct the relaxed plans
P+(s′) for the states s′ visited on this path.

First, note that we can assume P+(s) to be sorted according to the op-
timal rplan dependency graph oDG+ = (V,A). Precisely, let xk, . . . , x1 be
a topological ordering of V \ {x0} according to the arcs A. Due to the con-
struction of (V,A) as per De�nition 1, and because previous values are never
removed in the relaxed state space, we can re-order P+(s) to take the form
P+
<0(s, xk) ◦ · · · ◦ P+

<0(s, x1) ◦ P . That is, we can perform all moves within each
oDTG+

x up front, in an order conforming with A. We will henceforth assume,
wlog, that P+(s) has this form.

Recall in what follows that original oDTG+
x transitions are those taken by

P+
<0(s), whereas induced oDTG+

x transitions are those included as the inverse
of an original transition. For a path −→p of invertible transitions traversing
〈c0, . . . , cn〉, the inverse path ←−p traverses 〈cn, . . . , c0〉 by replacing each tran-
sition with its inverse. By rop(−→p) we denote the operator sequence responsible
for the path.

We say that a state s′ ∈ S is in the invertible surroundings of s according
to oDG+ if s′ is reachable from s by executing a sequence −→o of responsible
operators of invertible/induced transitions in oDTG+

x for x ∈ V \ {x0}. The
adapted relaxed plan for such s′, denoted P+(s→s′), is constructed as follows.
Let xk, . . . , x1 be a topological ordering of V \ {x0} according to A, and denote
P+(s) = P+(s, xk)◦· · ·◦P+(s, x1)◦P . Initialize P+(s→s′) := P+(s). Then, for
each xi ∈ V \ {x0}, let −→p be a path of original invertible transitions in oDTG+

xi

leading from s(xi) to s′(xi) � clearly, such a path must exist. Remove rop(−→p)
from P+(s→s′), and insert rop(←−p) at the start of P+(s→s′, xi).

We next show that adapted relaxed plans indeed are relaxed plans, under
restricting conditions that are in correspondence with De�nition 2 condition (3):

Lemma 1. Let (X, sI , sG, O) be a planning task, let s ∈ S be a state with
0 < h+(s) < ∞, and let P+(s) be an optimal relaxed plan for s. Say that
oDG+ = (V,A) is an optimal rplan dependency graph for P+(s) where, for
every x ∈ V \ {x0}, the invertible/induced oDTG+

x transitions have irrelevant
side e�ect deletes and no side e�ects on V \ {x0}. Let s′ ∈ S be a state in the

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 44

invertible surroundings of s according to oDG+. Then P+(s→s′) is a relaxed
plan for s′, and |P+(s→s′)| ≤ |P+(s)|.

Proof. By de�nition, we know that P+(s) takes the form P+
<0(s, xk) ◦ · · · ◦

P+
<0(s, x1)◦P , and that P+(s→s′) takes the form P+

<0(s′, xk)◦· · ·◦P+
<0(s′, x1)◦P ,

where xk, . . . , x0 is a topological ordering of V , and P is some operator sequence
that is common to both, but whose content will not be important for this proof.
For simplicity, we denote in the rest of the proof P+(s→s′) as P+(s′), and we
leave away the �< 0� subscripts.

Consider �rst the (relaxed) execution of P+(s, xk) and P+(s′, xk). Say that
−→p is the path in oDTG+

xk
considered in the de�nition of P+(s′), i.e., a path of

original invertible transitions in oDTG+
xi

leading from s(xk) to s′(xk). Clearly,
〈o1, . . . , on〉 := rop(−→p) is a sub-sequence of P+(s, xk). Say that −→p visits the
vertices s(xk) = c0, . . . , cn = s′(xk); denote C := {c0, . . . , cn}. Assume wlog
that P+(s, xk) starts with 〈o1, . . . , on〉 � note here that we can re-order P+(s, xk)
(and relaxed plans in general) in any way we want as long as we do not violate
operator preconditions. The latter is not the case here because: 〈o1, . . . , on〉
constitutes a path in oDTG+

xk
; because all other operators depending on a

value in C are ordered to occur later on in P+(s, xk); and because, since all
transitions in −→p have no side e�ects on V \ {x0}, by construction of (V,A) as
per De�nition 1 the operators in 〈o1, . . . , on〉 do not support each other in any
way, in P+(s), other than by a�ecting the variable xk.

Given the above, wlog P+(s, xk) has the form 〈o1, . . . , on〉◦P1. By construc-
tion, P+(s′, xk) has the form rop(←−p) ◦ P1 =: 〈←−on, . . . ,←−o1〉 ◦ P1. Consider now
the endpoints of the pre�xes, i.e., s+

1 := s∪
⋃n
i=1 effoi

and s+
2 := s′ ∪

⋃1
i=n eff←−oi

.
Clearly, since all the transitions on −→p have irrelevant side e�ect deletes, we have
that the relevant part of s is contained in s′. But then, as far as the variables
outside V \ {x0, xk} are concerned, the relevant part of s+

1 is contained in s+
2 :

any relevant side e�ects of 〈o1, . . . , on〉 are already contained in s′; the values
C are obviously true in s+

2 ; if the induced transitions have side e�ects, then
these can only increase the fact set s+

2 . Further, the sequence 〈←−on, . . . ,←−o1〉 is
applicable in the relaxation. To see this, note �rst that the preconditions on
xk itself are satis�ed by de�nition, because 〈←−on, . . . ,←−o1〉 constitutes a path in
DTGxk

. Any side e�ects, if they occur, are not harmful because old values are
not over-written in the relaxation. As for preconditions on other variables, due
to invertibility � the outside conditions of←−oi are contained in those of oi � those
are a subset of those for 〈o1, . . . , on〉. Hence, with De�nition 1 and since xk has
no incoming edges in oDG+, all these preconditions are satis�ed in s. They are
then also satis�ed in s′ because (vk being a root of oDG+) these variables x
are not contained in V and hence s′(x) = s(x) by prerequisite � note here that
precondition facts cannot have been deleted by the side e�ects whose deletes
are irrelevant by prerequisite.

The above has shown that the relevant part of the outcome of relaxed ex-
ecution of P+(s, xk) in s is contained in the outcome of relaxed execution of
P+(s′, xk) in s′, on all variables outside V \ {x0, xk}. We can now iterate this
argument. Assume as induction hypothesis that we have already shown that the
relevant part of the outcome of relaxed execution of P+(s, xk)◦. . . P+(s, xi+1) in
s is contained in the outcome of relaxed execution of P+(s′, xk)◦· · ·◦P+(s′, xi+1)
in s′, on all variables outside V \{x0, xk, . . . , xi+1}. Now consider P+(s, xi) and
P+(s′, xi). The only thing that changes with respect to xk above is that there

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 45

may be preconditions on variables xj that are not true in s; we have j > i
because such preconditions must belong to predecessors of xi in oDG+ by De�-
nition 1. Since P+(s) = P+(s, xk)◦· · ·◦P+(s, x1)◦P is a relaxed plan for s, those
conditions are established after relaxed execution of P+(s, xk)◦· · ·◦P+(s, xi+1)
in s. Given this, by induction hypothesis the conditions � which are clearly
not irrelevant � are established also after relaxed execution of P+(s′, xk) ◦ · · · ◦
P+(s′, xi+1) in s′, which concludes the argument for the inductive case. With
i = 1, it follows that the relevant part of the outcome of relaxed execution of
P+(s, xk) ◦ · · · ◦ P+(s, x1) in s is contained (on all variables) in the outcome
of relaxed execution of P+(s′, xk) ◦ · · · ◦ P+(s′, x1) in s′. From this, the claim
follows trivially because P+(s) is a relaxed plan for s, and the remainder P of
both operator sequences is identical.

The second part of the claim follows because, for any i 6= j, we have that the
original transitions we use for xi respectively xj have no operators in common.
This is because, as argued above, all the relevant operators have no side e�ects
on V \ {x0}. Since each of these operators a�ects the variable xi, it cannot
a�ect any other variable in V \ {x0}. Thus, for each inverse transition that we
introduce via an inverse operator, P+(s) contains a separate operator. From
this, obviously we get that |P+(s→s′)| ≤ |P+(s)|.

Lemma 1 captures the second case of De�nition 2 condition (3), transitions
that are invertible/induced and have irrelevant side e�ect deletes and no side
e�ects on V \ {x0}. The next lemma captures the �rst case of De�nition 2
condition (3):

Lemma 2. Let (X, sI , sG, O) be a planning task, let s ∈ S be a state with
0 < h+(s) < ∞, and let P+(s) be an optimal relaxed plan for s. Say that
oDG+ = (V,A) is an optimal rplan dependency graph for P+(s) where, for
every x ∈ V \ {x0}, the invertible/induced oDTG+

x transitions have irrelevant
side e�ect deletes and no side e�ects on V \ {x0}. Let s′ ∈ S be a state in the
invertible surroundings of s according to oDG+. Let s′′ be a state reached from
s′ by a P+(s→s′, x) operator o constituting a transition (c, c′) for x ∈ V , where
s′(x) = c, that has self-irrelevant deletes. Then removing o from P+(s→ s′)
yields a relaxed plan for s′′.

Proof. By Lemma 1, P+(s→s′) is a relaxed plan for s′. Now, upon execution of
o, in s′′, its e�ects are true, i.e., we have (x, c′) and any side e�ects (if present).
On the other hand, obviously the only facts (z, e) that are true in s′ but not
in s′′ are in ctx(c, c′) ∪ {(x, c)}. Since, by prerequisite, the transition (c, c′)
has self-irrelevant deletes, all facts in ctx(c, c′) ∪ {(x, c)} are either irrelevant
or rop(c, c′)-only relevant, meaning they are not in the goal and occur in no
operator precondition other than, possibly, that of o itself. The claim follows
directly from that.

We remark that a much more easily formulated, and more general, version
of Lemma 2 could be proved simply by associating the notion of �self-irrelevant
deletes� with operators rather than transitions, and postulating only that o be
used in P+(s). That argument corresponds to part (A) in the proof to Lemma 3
of Ho�mann [29]. We state the argument in the particular form above since that
will be the form we need below.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 46

We are now almost ready to prove the main lemma behind our exit path
construction. We need one last notation, capturing a simpler form of the cost
function costd∗(oDG+) that we considered in Section 5. The simpler function
does not make use of the �short-cut� construction; that construction will be in-
troduced separately further below. We de�ne costd(oDG+) :=

∑
x∈V costd(x),

where costd(x) :={
1 x = x0

diam(oDTG+
x) ∗

∑
x′:(x,x′)∈A costd(x′) x 6= x0

Lemma 3. Let (X, sI , sG, O) be a planning task, let s ∈ S be a state with
0 < h+(s) < ∞, and let P+(s) be an optimal relaxed plan for s. Say that
oDG+ = (V,A) is a successful optimal rplan dependency graph for P+(s). Then
there exists an operator sequence −→o so that:

(I) −→o constitutes a monotone path in S from s to a state s1 with h+(s) >
h+(s1).

(II) The length of −→o is at most costd(oDG+) if we have De�nition 2 condition
(2a) or (2b), and is at most costd(oDG+) + 1 if we have De�nition 2
condition (2c).

Proof. Let xk, . . . , x1 be a topological ordering of V \ {x0} according to the
arcs A. Consider a state s0 where for every x ∈ V \ {x0} we have that s0(x)
is a vertex in oDTG+

x , and for every variable x outside V \ {x0} we have that
s0(x) = s(x) unless s(x) is irrelevant. Say that preo0 ⊆ s0. Note �rst that
such a state s0 exists. By de�nition, we have that either preo0(x0) is unde�ned
or that preo0(x0) = s(x0) = s0(x0). (Note that �for every variable x outside
V \{x0} we have that s0(x) = s(x) unless s(x) is irrelevant� covers also the case
where a transition on V \{x0} has a side e�ect on x0, whose delete must then by
prerequisite be irrelevant and thus either the side e�ect is x0 := s(x0) or o0 is not
actually preconditioned on x0.) By De�nition 1 and because P+(s) is a relaxed
plan for s, each variable x ∈ Xpreo0

is contained in V unless preo0(x) = s(x).
For the same reasons, by construction of oDTG+

x , we have that preo0(x) is a
vertex in oDTG+

x .
Now, consider the state s1 that results from applying o0 to s0. We �rst

consider the situation where s0 is in the invertible surroundings of s according
to oDG+; the opposite case will be discussed further below. We can apply
Lemma 1 to s0, and hence have a relaxed plan P+(s→s0) for s0 that results
from replacing, in P+(s), some moves of P+

<0(s, x), for x ∈ V \ {x0}, with their
inverses. In particular, h+(s) ≥ h+(s0), and P+(s→s0, x

′) = P+(s, x′) for all
x′ 6∈ V . What is a relaxed plan for s1? We distinguish De�nition 2 condition
(2) cases (a), (b), and (c).

In case (a), by de�nition we have that P+
>0(s) contains a sub-sequence −→o0 so

that pre+
−→o0
⊆ S1 and eff+

−→o0 ⊇ R+
1 ∩ C0 ∩ F0. This implies that we can remove

o0 from P+(s→s0) and obtain a relaxed plan P+
1 for s1, thus getting h+(s) >

h+(s1). More precisely, we construct P+
1 by: removing o0 from P+(s→ s0);

if Xeffo0
∩ (V \ {x0}) 6= ∅ then moving −→o0 to occur at the start of P+

1 ; if
Xeffo0

∩ (V \ {x0}) = ∅ then moving −→o0 to occur at the start of P+
>0(s) (which is

unchanged in P+(s→s0)). Observe �rst that o0 ∈ P+(s→s0) and −→o0 is a sub-
sequence of P+(s→s0) since the adaptation pertains exclusively to operators

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 47

that precede o0 in P+(s). Second, of course the values established by o1 are
true in s1.

Third, −→o0 is applicable (in the relaxation) at its assigned point in P+
1 . To see

this, consider �rst the case where Xeffo0
∩ (V \ {x0}) 6= ∅. Then, by de�nition

of S1, pre+
−→o0

is contained in (prevo0 ∪ effo0) and the set of facts (x, c) ∈ s where
there exists no o such that x ∈ Xeffo

and o is either o0 or in P+
<0(s) or is

the responsible operator for the inverse of a transition taken by an operator
o′ ∈ P+

<0(s). All these facts will be true in s1. This is obvious for prevo0 ∪ effo0
and follows for the other facts because they were true in s and cannot have
been a�ected by any operator on the path to s1. Consider now the case where
Xeffo0

∩ (V \ {x0}) = ∅. By de�nition of S1, pre+
−→o0

is contained in the previous
sets of facts, plus {(x, c) | (x, c) ∈ F0, x ∈ V \ {x0}}. The latter facts, as far
as relevant, will all be true at the start of −→o0 in P+

1 . This is because execution
of o0 does not a�ect the execution of P+(s→s0), and thus of P+

1 , up to this
point. But then, with what was argued in Lemma 1, we have that the outcome
of such execution in s0 contains, on the variables V \ {x0}, the relevant part of
the outcome of P+

<0(s) in s � that is, the relevant part of F0. Since o0 does not
a�ect these variables, the same is true of s1, which concludes this point.

Finally, consider any facts (z, e) that are true in s0 but not in s1, and that
may be needed by P+

1 behind −→o0, i.e., that either are in the goal or in the
precondition of any of these operators. Observe that, since inverse operators
are performed only for transitions on variables V \ {x0}, and since they do not
include any new outside preconditions, any such (z, e) is contained in R+

1 .
21

Now, say �rst that (z, e) ∈ F0. Then, with the above, (z, e) ∈ (ctx(s(x0), c) ∪
{(x0, s(x0))})∩F0 ∩R+

1 and thus (z, e) ∈ eff+
−→o0 by prerequisite and we are done.

What if (z, e) 6∈ F0? Note that, then, (z, e) 6∈ preo for any o ∈ P+
<0(s) � else,

this precondition would not be true in the relaxed execution of P+(s) and thus
P+(s) would not be a relaxed plan. Neither is (z, e) added by any o ∈ P+

<0(s),
and thus (z, e) is not needed as the precondition of any inverse operator used in
P+(s→s0) � these operators do not introduce new outside preconditions, and of
course use only own-preconditions previously added by other operators a�ecting
the respective variable. Thus the only reason why (z, e) could be needed in P+

1

is if either (z, e) ∈ sG or (z, e) ∈ preo for some o ∈ P+
>0(s). If (z, e) ∈ sG then

certainly, since P+(s) is a relaxed plan, it is achieved by some operator o in
P+(s). We cannot have o = o0 since the e�ect of o0 is true in s1, and we cannot
have o ∈ P+

<0(s) since (z, e) 6∈ F0. Thus o ∈ P+
>0(s), and thus o is contained in

P+
1 and we are done. If (z, e) ∈ preo′ for some o′ ∈ P+

>0(s), the same arguments
apply, i.e., there must be o ∈ P+

>0(s), ordered before o′, that adds (z, e). This
concludes the proof for case (a).

Consider now case (b), where s(x0) 6∈ R+
1 , and the transition (s(x0), c)

has replacable side e�ect deletes, i.e., ctx(s(x0), c) ∩ sG = ∅ and, for every
o0 6= o ∈ O where preo ∩ ctx(s(x0), c) 6= ∅ there exists o′ ∈ O so that effo′ = effo
and preo′ ⊆ prevo0 ∪ effo0 . We obtain a relaxed plan for P+

1 by removing o0

from P+(s→s0), and replacing any other operators o with the respective o′ if

21Note in particular the special case of inverse transitions on non-leaf variables x, which
may have a precondition in x that is added by, but not needed as a prerequisite of, the actions
in P+(s, x). Such preconditions � and only such preconditions � may be needed in P+(s→s0)
and thus in P+

1 , but not in P+(s). It is for this reason that we include these facts in the

de�nition of R+
1 .

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 48

needed. Precisely, say that (z, e) is true in s0 but not in s1. If z = x0 then
e = s(x0) is not needed in P+

1 by construction. For every other z, we must have
(z, e) ∈ ctx(s(x0), c). Then (z, e) is not a goal by prerequisite. For any operator
o ∈ P+

1 that has (z, e) as a precondition, we can replace o with the postulated
operator o1 that is obviously applicable in s1 and has the same e�ect. This
concludes this case.

Consider last case (c), where by de�nition s(x0) 6∈ R+
1 , and the transition

(s(x0), c) has recoverable side e�ect deletes. Here, the guarantee to decrease
h+ is obtained not for s1 itself, but for a successor state s2 of s1. Namely,
let o0 be the operator recovering the relevant side e�ect deletes of (s(x0), c).
Precisely, let ψ ∈ ctx(s(x0), c) so that ψ ⊆ s0 (such a ψ exists by de�nition of
ctx(s(x0), c)). Then, let o0 be an operator so that preo0 ⊆ (prevo0 ∪ effo0) and
effo0 ⊆ ψ, effo0 ⊇ {(y, d) | (y, d) ∈ ψ, (y, d) ∈ sG ∪

⋃
o0 6=o′∈O preo′} (such an

operator exists by case (b)). Say that we obtain P+
1 by replacing, in P+(s→s0),

o0 with o0. Then P
+
1 is a relaxed plan for s1. To see this, note �rst that o0 is

applicable in s1 by virtue of preo0 ⊆ (prevo0 ∪effo0). Further, note that the only
values deleted by o0 are those in ψ plus (x0, s0(x0)). Since s0(x0) = s(x0), by
s(x0) 6∈ R+

1 we know that s0(x0) 6∈ R+
1 and thus this delete is of no consequence.

As for ψ, by virtue of effo0 ⊇ {(y, d) | (y, d) ∈ ψ, (y, d) ∈ sG∪
⋃
o0 6=o′∈O preo′} all

facts that could possibly be relevant are re-achieved by o0. Finally, the values
established by o0 are true in s1.

Now, say we obtain s2 by applying o0 in s1. Then removing o0 from P+
1 yields

a relaxed plan for s2. This is simply because its established e�ects are true in s2,
and by virtue of effo0 ⊆ ψ the only facts it deletes are side-e�ects of the transition
(s(x0), c). By case (b), these are not relevant for anything except possibly the
recovering operators. The recovering operator o0 we have just removed from
P+

1 . As for any other recovering operators o′ that could still be contained in
P+

1 , since effo′ ⊆ ψ and effo0 ⊇ {(y, d) | (y, d) ∈ ψ, (y, d) ∈ sG∪
⋃
o0 6=o′∈O preo′},

all relevant facts that o′ could possibly achieve are already true in s2 and thus
we can remove o′ as well. Hence, overall, h+(s) > h+(s2).

In cases (a) and (b) we can prove (I) by constructing a monotone path
to s1, in case (c) the same is true of s2. (Of course, we will also show (II),
by constructing a path that has at most the speci�ed length; we will ignore
this issue for the moment.) The only di�culty in constructing such a path is
achieving the preconditions of o0. These preconditions may not be satis�ed in
s, so we need to reach the state s0 where they are satis�ed. We need to do
so without ever increasing the value of h+. With Lemma 1, the latter can be
accomplished by starting at s, and always taking only oDTG+

x transitions of
variables x ∈ V pertaining to the second case in De�nition 2 condition (3), i.e.,
transitions that are invertible/induced and have irrelevant side e�ect deletes
and no side e�ects on V \ {x0}. In what follows we will, for brevity, refer to
such transitions as �case2�. Note here that, this way, we will reach only states
in the invertible surroundings of s according to oDG+. For any such operator
sequence −→o , by Lemma 1 we know that h+(s) ≥ h+(s′) for all states s′ along
the way. Now, what if we cannot reach s0 by using such a sequence, i.e., what
if we would have to take a non-case2 oDTG+

x transition (c, c′) of variable x, at
some state s′? By prerequisite we know that transition (c, c′) has self-irrelevant
deletes. We can apply Lemma 2 because: s′ is in the invertible surroundings of
s according to oDG+; since we're following a transition path, clearly s′(x) = c,

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 49

i.e., the value of the relevant variable in s′ is the start value of the last transition
we are taking; and by construction, P+(s→s′) changes P+(s) only in the case2
transitions, and thus the responsible operator rop(c, c′) (which is not case2) is
guaranteed to be contained in P+(s→s′). Note here that rop(c, c′) cannot be
used in any of the case2 transitions for any other V \ {x0} variable we might
have taken on the path to s′, because by prerequisite all these transitions have
no side e�ects on V \ {x0}, in contradiction to o constituting a transition for
the variable x at hand. Thus we know that h+(s) > h+(s′) so we have already
constructed our desired monotone path to an exit and can stop. Else, if we do
can reach s0 by such a sequence −→o , then with the above, −→o ◦ 〈o0〉 (respectively−→o ◦ 〈o0, o0〉, in case (c)) constitutes the desired path.

It remains to show how exactly to construct the operator sequence −→o . Con-
sider a topological ordering of V , xk, . . . , x1. In what follows, we consider
�depth� indices k ≥ d ≥ 0, and we say that a variable x ∈ V �has depth�
d, written depth(x) = d, i� x = xd. Each d characterizes the d-abstracted
planning task which is identical to the original planning task except that all
(and only) those outside preconditions, of all oDTG+

x transitions for variables
x where depth(x) ≤ d, are removed that pertain to values of variables x′ where
depth(x′) > d. We prove by induction over d that:

(*) For the d-abstracted task, there exists an operator sequence −→o d so that:

(a) either (1) −→o d ◦ 〈op0〉 is an execution path applicable in s, or (2) −→o d is an
execution path applicable in s, and the last transition (c, c′) for variable x
taken in −→o d is relevant, has self-irrelevant deletes, its responsible operator
is contained in the adapted relaxed plan for the state s′ it is applied to,
and s′(x) = c;

(b) −→o d, except in the last step in case (2) of (a), uses only case2 oDTG+
x

transitions for variables x with 1 ≤ depth(x) ≤ d;

(c) the number of operators in −→o d ◦ 〈op0〉 pertaining to any x ∈ V is at most
costd(x).

Our desired path −→o then results from setting d := k. To see this, note that
the k-abstracted planning task is identical to the original planning task. The
claim then follows with our discussion above: (a) and (b) together mean that
h+ decreases monotonically on −→o d and is less than h+(s) at its end. Given (c),
the length of −→o d is bounded by

∑
x∈V,depth(x)≤d costd(x). Along with the trivial

observation that, in case (ii) above, we need to add one additional operator at
the end of the path, this proves the claim.

We now give the proof of (*). The base case, d = 0, is trivial. Just set −→o 0 to
be empty. By the construction of (V,A) as per De�nition 1, and by construction
of the 0-abstracted task, all outside preconditions of o0 are either true in s or
have been removed. All of (a) (case (1)), (b), (c) are obvious.

Inductive case, d → d + 1. Exploiting the induction hypothesis, let −→o d be
the operator sequence as per (*). We now turn −→o d into the requested sequence
−→o d+1 for the d+ 1-abstracted planning task.

For the remainder of this proof, we will consider oDTG+
x , for any x ∈ V \

{x0}, to contain also any irrelevant transitions, i.e., we omit this restriction from
De�nition 1. This is just to simplify our argumentation � as we will show, the
oDTG+

x paths we consider do not contain any irrelevant transitions, and hence
are contained in the actual oDTG+

x as per De�nition 1.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 50

Let o be the �rst operator in −→o d ◦ 〈op0〉. o may not be applicable in s, in
the d + 1-abstracted planning task. The only reason for that, however, may
be a precondition that was removed in the d-abstracted planning task but that
is not removed in the d + 1-abstracted planning task. By construction, that
precondition must pertain to xd+1. Say the precondition is (xd+1, c). By induc-
tion hypothesis, we know that o is contained in P+

<0(s), or is responsible for an
inverse transition of such an operator. In both cases, since inverse transitions
introduce no new outside preconditions, (xd+1, c) is a precondition of an opera-
tor in P+

<0(s). Thus c is a vertex in oDTG+
xd+1

� this is trivial if (xd+1, c) is true
in s (which actually cannot be the case here because else o would be applicable
in s in the d + 1-abstracted planning task), and if (xd+1, c) is not true in s it
follows because P+(s) is a relaxed plan and must thus achieve (xd+1, c) before
it is needed as a precondition. Hence, P+

<0(s, xd+1) must contain a shortest
path −→q in oDTG+

xd+1
from s(xd+1) to c. All the transitions on the path are not

irrelevant. To see this, note �rst that the endpoint is an operator precondition
by construction, and thus the last transition (c1, c) is not irrelevant. But then,
neither is the previous transition, (c2, c1): if it was, then (xd+1, c1) would be
in no operator precondition; but then, rop(c1, c) � which is contained in P+

<0(s)
by construction � would also constitute the transition (c2, c) in oDTG+

xd+1
and

thus −→q would not be a shortest path in contradiction. Iterating the argument,
−→q does not contain any irrelevant transitions. Thus, since depth(xd+1) = d+1,
by De�nition 1 (which includes all non-satis�ed preconditions of relevant transi-
tions) and by construction of the d+ 1-abstracted planning task, all the outside
preconditions used in rop(−→q) are either true in s or have been removed. Hence
we can execute rop(−→q). We do so until either we have reached the end of the
sequence, or until the last transition taken in oDTG+

xd+1
was not case2, and

hence has self-irrelevant deletes by prerequisite. In the latter case, since we
are following a path and since as discussed above the adapted relaxed plan ex-
changes only operators pertaining to case2 transitions and thus not the last one
we just executed, we clearly have attained (a) case (2) and can stop � the part of
rop(−→q) that we executed is, on its own, an operator sequence −→o d+1 as desired.
In the former case, we reach a state s′ where s′(xd+1) = c (and nothing else
of relevance has been deleted, due to the non-existence of relevant side-e�ect
deletes). In s′, o can be applied, leading to the state s′′.

Let now o′ be the second operator in −→o d ◦ 〈op0〉. Like above, if o′ is not
applicable in s′′, then the only reason may be an unsatis�ed precondition of the
form (xd+1, c

′). Like above, o′ or its inverse is contained in P+
<0(s), and hence

c′ is a vertex in oDTG+
xd+1

. Likewise, s′′(xd+1) = c is a vertex in oDTG+
xd+1

.
Now, we have not as yet used any non-case2 transition in oDTG+

xd+1
, or else we

wouldn't get here. This means that we are still in the invertible surroundings
around s(xd+1) of oDTG+

xd+1
. Clearly, this implies that there exists a path in

oDTG+
xd+1

from c to c′ (we could simply go back to s(xd+1) and move to c′ from
there). Taking the shortest such path −→q , clearly the path length is bounded by
the diameter of oDTG+

xd+1
. The path does not contain any irrelevant transitions

� the endpoint c′ has been selected for being an operator precondition, the values
in between are part of a shortest path in oDTG+

xd+1
, and thus the same argument

as given above applies. Thus the outside preconditions used by the operators
constituting −→q are either true in s or have been removed � this follows from
the construction of (V,A) as per De�nition 1 and by construction of the d+ 1-

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 51

abstracted planning task for operators in P+
<0(s), and follows for inverses thereof

because inverse operators introduce no new outside preconditions. Hence we can
execute −→q in s′′. We do so until either we have reached the end of the path,
or until the last transition taken was not case2, and hence has self-irrelevant
deletes by prerequisite.

Consider the latter case. The state s′ just before the last transition is reached
only by case2 transitions, and since the transition is in oDTG+

xd+1
but not

case2, the responsible operator must be contained in P+(s) and with that in
the adapted relaxed plan P+(s→ s′) for s′ � recall here that, as pointed out
above, since case2 transitions are postulated to have no side e�ects on V \{x0},
the responsible operator cannot be used by any of them. Further, clearly since
we are following a path of transitions, we have that the value of xd+1 in s′ is
the start value of the transition. Hence we have attained (a) case (2) and can
stop. In the former case, we have reached a state where o′ can be applied (and
nothing of relevance has been deleted, due to the postulated non-existence of
relevant side-e�ect deletes, for case2 transitions). Iterating the argument, we
get to a state where the last operator of −→o d ◦ 〈op0〉 can be applied, by induction
hypothesis reaching a state s1 as desired by (a) case (1).

Properties (a) and (b) are clear from construction. As for property (c),
to support any operator of −→o d ◦ 〈op0〉, clearly in the above we apply at most
diam(oDTG+

xd+1
) operators pertaining to xd+1 (or we stop the sequence earlier

than that). Note further that, for all operators o in −→o d ◦ 〈op0〉 with unsat-
is�ed preconditions on xd+1 in the above, if o pertains to variable x then we
have (xd+1, x) ∈ A. This is a consequence of the construction of (V,A) as per
De�nition 1, and the fact that inverse transitions do not introduce new outside
preconditions. Thus, in comparison to −→o d ◦ 〈op0〉, overall we execute at most

diam(oDTG+
xd+1

) ∗
∑

x:(xd+1,x)∈A

k(x)

additional operators in −→o d+1 ◦ 〈op0〉, where k(x) is the number of operators in
−→o d ◦ 〈op0〉 pertaining to variable x. By induction hypothesis, property (c) of
(*), we have that k(x) ≤ costd(x), for all x with depth(x) < d+ 1, and thus for
all x with (xd+1, x) ∈ A. Hence we get, for the newly inserted steps a�ecting
xd+1, the upper bound

diam(oDTG+
xd+1

) ∗
∑

x:(xd+1,x)∈A

costd(x)

which is identical to costd(xd+1). This concludes the argument.

We next note that we can improve the exit distance bound in case we do not
insist on monotone exit paths:

Lemma 4. Let (X, sI , sG, O) be a planning task, let s ∈ S be a state with 0 <
h+(s) <∞, and let P+(s) be an optimal relaxed plan for s. Say that oDG+ =
(V,A) is a successful optimal rplan dependency graph for P+(s). Let V ∗ ⊆
V \{x0} so that, for every x ∈ V ∗, all oDTG+

x transitions are invertible/induced
and have irrelevant side e�ect deletes and no side e�ects on V \ {x0}, and all
other DTGx transitions either are irrelevant, or have empty conditions and
irrelevant side e�ect deletes. Then there exists an operator sequence −→o so that:

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 52

(I) −→o constitutes a path in S from s to a state s1 with h+(s) > h+(s1).

(II) The length of −→o is at most costd∗(oDG+) if we have De�nition 2 condition
(2a) or (2b), and is at most costd∗(oDG+) + 1 if we have De�nition 2
condition (2c).

Proof. This is a simple adaptation of Lemma 3, and we adopt in what follows
the terminology of the proof of that lemma. The only thing that changes is
that the bound imposed on exit path length is sharper, and that we do not
insist on that path being monotone. At the level of the proof mechanics, what
happens is that, whenever xd+1 ∈ V ∗, when we choose a path −→q to achieve
the next open precondition of an operator o already chosen to participate in
−→o d◦〈op0〉, then we do not restrict ourselves to paths within oDTG+

xd+1
, but allow

also any shortest path through DTGxd+1 . Being a shortest path in DTGxd+1

to a value that occurs as an operator precondition, −→q contains no irrelevant
transitions (same argument as in the proof of Lemma 3). Further, −→q will
be executable because by prerequisite the alternative (non-oDTG+

x) transitions
in it have no outside conditions; for original/induced transitions, precondition
achievement works exactly as before. Note here the important property that
open preconditions to be achieved for xd+1 will only ever pertain to values
contained in oDTG+

xd+1
. This is trivial to see by induction because alternative

transitions do not have any outside preconditions. Since by prerequisite any
deletes of the alternative transitions are irrelevant, executing them does no
harm � all we need is a minor extension to Lemma 1, allowing s′ to be identical
with a state s′′ in the invertible surroundings of s, modulo a set of irrelevant
values that hold in s′′ but not in s; it is obvious that this extension is valid.
With this extension, it is also obvious that the arguments pertaining to s0

and s1 remain valid. Finally, consider the case where −→q involves a non-case2
oDTG+

xd+1
transition. Then the state where this transition is applied is in the

invertible surroundings of s. This holds for any x 6∈ V ∗ because for these our
construction remains the same. It holds for any x ∈ V ∗ because, �rst, alternative
transitions have no outside conditions, hence cause no higher-depth transitions
to be inserted in between, hence the value of all lower-depth variables x is
in oDTG+

x ; second, by prerequisite, oDTG+
x does not contain any non-case2

transitions, and thus the value of x we're at clearly can be reached by case2
transitions.

Theorem 2. Let (X, sI , sG, O), s, P+(s), and oDG+ be as in De�nition 1. If
oDG+ is successful, then s is not a local minimum, and ed(s) ≤ costd∗(oDG+).
If we have De�nition 2 condition (2a) or (2b), then ed(s) ≤ costd∗(oDG+)− 1.

Proof. This is a direct consequence of Lemmas 3 and 4.

We note that the prerequisites of Lemma 4 could be weakened by allowing,
for x ∈ V ∗, outside conditions that are already true in s. This extension obvi-
ously does not break the proof arguments. We have omitted it here to not make
the lemma prerequisite even more awkward than it already is.

As indicated, the exit path constructed in Lemma 4 is not necessarily mono-
tone. Example 5 in Appendix A.4 contains a construction showing this.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 53

A.3 Conservative Approximations

For the sake of self-containedness of this section, we re-state the de�nitions given
in Section 6:

De�nition 3. Let (X, sI , sG, O) be a planning task, let s ∈ S with 0 < h+(s) <
∞, let x0 ∈ XsG

, and let t0 = (s(x0), c) be a relevant transition in DTGx0 with
o0 := rop(t0).

A local dependency graph for s, x0, and o0, or local dependency graph in
brief, is a graph lDG = (V,A) with unique leaf vertex x0, and where x ∈ V and
(x, x′) ∈ A if either: x′ = x0, x ∈ Xpreo0

, and preo0(x) 6= s(x); or x′ ∈ V \ {x0}
and (x, x′) is an arc in SG.

A global dependency graph for x0 and o0, or global dependency graph in
brief, is a graph gDG = (V,A) with unique leaf vertex x0, and where x ∈ V and
(x, x′) ∈ A if either: x′ = x0 and x0 6= x ∈ Xpreo0

; or x′ ∈ V \ {x0} and (x, x′)
is an arc in SG.

De�nition 4. Let (X, sI , sG, O), s, t0, o0, and G = lDG or G = gDG be as in
De�nition 3. We say that G = (V,A) is successful if all of the following holds:

(1) G is acyclic.

(2) If G = lDG then sG(x0) 6= s(x0), and there exists no transitive successor
x′ of x0 in SG so that x′ ∈ XsG

and sG(x′) 6= s(x′).

(3) We have that t0 either:

(a) has self-irrelevant side e�ect deletes; or

(b) has replacable side e�ect deletes; or

(c) has recoverable side e�ect deletes.

(4) For x ∈ V \ {x0}, all DTGx transitions either are irrelevant, or have self-
irrelevant deletes, or are invertible and have irrelevant side e�ect deletes
and no side e�ects on V \ {x0}.

Lemma 5. Let (X, sI , sG, O) be a planning task, and let s ∈ S be a state with
0 < h+(s) < ∞. Say that x0 ∈ X and, for every o0 = rop(s(x0), c) in DTGx0

where t0 = (s(x0), c) is relevant, lDGo0 is a successful local dependency graph
for s, x0, and o0. Then, for at least one of the o0, there exist an optimal relaxed
plan P+(s) for s, and a successful optimal rplan dependency graph oDG+ for
P+(s), x0, and o0, where oDG

+ is a sub-graph of lDGo0 .

Proof. Observe �rst that De�nition 4 property (2) forces any relaxed plan P+(s)
to move x0, i.e., we have that P+(s, x0) is non-empty. In particular, P+(s, x0)
takes a path in DTGx0 from s(x0) to sG(x0). Let −→q be a shortest such path
taken by P+(s, x0), and let o0 be the responsible operator of the �rst transition
in −→q . Clearly, this transition has the form (s(x0), c), i.e., o0 is one of the
operators o0 in the claim. Lying on a shortest path from s(x0) to sG(x0) in
the sub-graph of DTGx0 taken by P+(s, x0), the transition (s(x0), c) is not
irrelevant. This can be seen with exactly the same argument as given in the
proof to Lemma 3 for the transitions on the paths −→q constructed there, except
that the endpoint is now a goal instead of an operator precondition.

Next, observe that any optimal P+(s) contains at most one operator o with
x0 ∈ Xpreo

and preo(x0) = s(x0). This also follows from De�nition 4 property

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 54

(2): x0 cannot become important for any non-achieved goal, i.e., no P+(s) op-
erator outside P+(s, x0) relies on a precondition on x0. To see this, assume
that such an operator o does exist. Then, since P+(s) is optimal, there ex-
ists a �reason� for the inclusion of o. Precisely, o must achieve at least one
fact that is �needed� in the terms of Ho�mann and Nebel [31]: a fact that
is either in the goal or in the precondition of another operator o′ behind o
in P+(s). Iterating this argument for o′ (if necessary), we obtain a sequence
o = o1, (x1, c1), o2, (x2, c2), . . . , on, (xn, cn) where (xn, cn) is a goal fact not sat-
is�ed in s and where oi achieves (xi, ci) in P+(s). Obviously, SG then contains
a path from x0 to xn, and xn ∈ XsG

and sG(xn) 6= s(xn), in contradiction to
De�nition 4 property (2). Thus such o does not exist. With the same argu-
ment, it follows also that every operator in P+(s, x0) either has no side e�ect
used elsewhere in the relaxed plan, or has no precondition on x0. Thus those
operators in P+(s, x0) that are preconditioned on x0 serve only to transform
s(x0) into sG(x0). Of course, then, at most a single one of these operators relies
on s(x0) or else P+(s) is not optimal.

Say in what follows that lDGo0 = (V,A). Denote by (V ′, A′) the result of
backchaining by De�nition 1 from o0 with P+

<0(s). De�nition 3 will include all
variables and arcs included by De�nition 1. To see this, just note that all arcs
(x, x′) included by De�nition 1 are due to relevant transitions. Hence (V ′, A′)
is a sub-graph of (V,A). In particular, since (V,A) is acyclic, (V ′, A′) is acyclic
as well.

Our next observation is that, assuming that De�nition 4 condition (2) holds
true, De�nition 4 condition (3a) implies De�nition 2 condition (2a), De�nition 4
condition (3b) implies De�nition 2 condition (2b), and De�nition 4 condition
(3c) implies De�nition 2 condition (2c).

Consider �rst case (a) where t0 has self-irrelevant side e�ect deletes. We
show that R+

1 ∩ C0 = ∅. Recall here the notations of Appendix A.2 � C0 =
{(x0, s(x0))} ∪ ctx(t0), and R+

1 is a super-set of the set of facts that we will
need for the relaxed plan after removing o0. For all variables except x0, it is
clear that there is no fact in this intersection: all facts in ctx(t0) are irrelevant
or o0-only relevant by prerequisite, and are thus not contained in R+

1 . Hence,
(x0, s(x0)) remains as the only possible content of R+

1 ∩ C0. We show in what
follows that (x0, s(x0)) 6∈ R+

1 , and thus (x0, s(x0)) 6∈ R+
1 ∩ C0 and the latter

intersection is empty, as desired. Recall that R+
1 denotes the union of sG, the

precondition of any o0 6= o ∈ P+(s), and the precondition of any operator
which is the responsible operator for an induced transition in oDTG+

x , with
x ∈ V \ {x0}. By De�nition 4 condition (2), (x0, s(x0)) 6∈ sG. As argued above,
o0 is the only operator in P+(s) that may be preconditioned on s(x0) and thus
it is not in the precondition of any o0 6= o ∈ P+(s). Lastly, say that p is a
precondition of a responsible operator for an induced transition in oDTG+

x , the
corresponding original transition being t. Then, since inverse transitions do
not introduce any new conditions, p ∈ cond(t) and thus p ∈ prerop(t) where,
by de�nition, rop(t) ∈ P+

<0(s). But then, since o0 6= rop(t) ∈ P+(s), we have
(x0, s(x0)) 6∈ prerop(t), which implies that p 6= (x0, s(x0)). Thus (x0, s(x0)) 6∈ R+

1

like we needed to show.
Consider now case (b) where t0 has recoverable side e�ect deletes. To show

De�nition 2 condition (2b) for o0 = rop(t0), all we need to prove is that s(x0)
is not oDG+-relevant, i.e., that s(x0) 6∈ R+

1 . This was already shown above.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 55

For case (c), t0 has replacable side e�ect deletes. Again, to show De�nition 2
condition (2c) for t0), all we need to prove is that s(x0) is not oDG+-relevant.

Consider �nally the conditions imposed on non-leaf variables x ∈ V \ {x0},
i.e., De�nition 4 condition (4) and De�nition 2 condition (3). By De�nition 4
condition (4), the DTGx transitions of every x ∈ V \ {x0} either are irrelevant,
or have self-irrelevant deletes, or are invertible and have irrelevant side e�ect
deletes and no side e�ects on V \ {x0}. If a DTGx transitions is irrelevant
then it cannot be in oDTG+

x , thus the 2nd or 3rd case is true of the oDTG+
x

transitions of every x ∈ V ′ \ {x0}. This concludes the argument.

Theorem 3. Let (X, sI , sG, O) be a planning task, and let s ∈ S be a state
with 0 < h+(s) < ∞. Say that x0 ∈ X so that, for every o0 = rop(s(x0), c)
in DTGx0 where (s(x0), c) is relevant, lDGo0 is a successful local dependency
graph. Then s is not a local minimum, and ed(s) ≤ maxo0 costD∗(lDGo0). If,
for every lDGo0 , we have De�nition 4 condition (3a) or (3b), then ed(s) ≤
maxo0 costD∗(lDGo0)− 1.

Proof. By Lemma 5, for some choice of o0 = rop(s(x0), c) there exists an optimal
relaxed plan P+(s) and a successful optimal rplan dependency graph oDG+ =
(V ′, A′) for P+(s), so that oDG+ is a sub-graph of lDGo0 with the same unique
leaf vertex x0. We can apply Lemma 3 and obtain that s is not a local minimum.

To see the other part of the claim, let V ∗∗ be de�ned as in Section 6, i.e., V ∗∗

is the subset of V \ {x0} for which all DTGx transitions either are irrelevant,
or are invertible and have empty conditions, irrelevant side e�ect deletes, and
no side e�ects on V \ {x0}. Then, for each DTGx transition t where x ∈ V ∗∗, t
satis�es both the restriction required by Lemma 4 on oDTG+

x transitions � if t
is irrelevant, then it cannot be in oDTG+

x , else it is invertible and has irrelevant
side e�ect deletes and no side e�ects on V \ {x0} � and the restriction required
by Lemma 4 on the other transitions � either irrelevant, or empty conditions and
irrelevant side e�ect deletes. We can hence apply Lemma 4 to oDG+, and obtain
a (not necessarily monotone) path to an exit, with length bound costd∗(oDG+)
if (s(x0), c) has irrelevant side e�ect deletes or replacable side e�ect deletes, and
costd∗(oDG+)+1 if (s(x0), c) has recoverable side e�ect deletes. It thus su�ces
to show that costD∗(lDGo0) ≥ costd∗(oDG+). That, however, is obvious be-
cause V ⊇ V ′, costD∗(x) ≥ 0 for all x, and maxPath(DTGx) ≥ diam(oDTG+

x)
for all x ∈ V ′.

Theorem 4. Let (X, sI , sG, O) be a planning task. Say that all global depen-
dency graphs gDG are successful. Then S does not contain any local minima
and, for any state s ∈ S with 0 < h+(s) < ∞, ed(s) ≤ maxgDG costD∗(gDG).
If, for every gDG, we have De�nition 4 condition (3a) or (3b), then ed(s) ≤
maxgDG costD∗(gDG)− 1.

Proof. Let s ∈ S be a state. We need to prove that s is no local minimum.
If h+(s) = 0 or h+(s) = ∞, there is nothing to show. Else, assume that
the variables X are topologically ordered according to the strongly connected
components of SG, and let x0 ∈ X be the uppermost variable so that x0 ∈ XsG

and sG(x0) 6= s(x0); obviously, such x0 exists. Clearly, the only chance for x0

to not satisfy De�nition 4 condition (2) � �there exists no transitive successor
x′ of x0 in SG so that x′ ∈ XsG

and sG(x′) 6= s(x′)� � is if there exists x′

in the same strongly connected SG component, with x′ ∈ XsG
(and sG(x′) 6=

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 56

s(x′)). But then, there exists a transition t′ in DTGx′ with an outside condition
eventually leading, by backwards chaining in SG, to x0. Let gDG′ be the global
dependency graph for x′ and rop(t′) (such a gDG′ exists because x′ ∈ XsG

).
Since De�nition 3 includes all transitive SG-predecessors of x′ pertaining to
the conditions of t′, gDG′ includes x0. But then, since x0 and x′ lie in the
same strongly connected component, De�nition 3 eventually reaches x′. Thus
gDG′ contains a cycle, in contradiction to the prerequisite. It follows that the
strongly connected SG component of x0 contains only x0, and thus De�nition 4
condition (2) holds true.

Now, say that o0 is responsible for a relevant transition of the form (s(x0), c)
in DTGx0 . Then there exists a local dependency graph lDG for s, x0, and o0

so that lDG is a sub-graph of gDG. This follows from the simple observation
that De�nition 3 will include, for gDG, all variables and arcs that it will include
for lDG. (Note here that any precondition of o0 on x0, if present, is satis�ed
in s because o0 = rop(s(x0), c), and thus De�nition 3 will not include x0 as a
predecessor for achieving o0 preconditions in lDG.)

Obviously, given the above, lDG is successful. Since this works for any choice
of not-irrelevant (s(x0), c), we can apply Theorem 3. The claim follows directly
from this and the fact that costD∗(gDG) ≥ costD∗(lDG). The latter is obvious
because costD∗ increases monotonically when adding additional variables.

A.4 Example Constructions

Our �rst example shows that, even within the scope of our basic result, operators
are not necessarily respected by the relaxation in the sense of Ho�mann [29],
i.e., an operator may start an optimal real plan yet not occur in any optimal
relaxed plan.

Example 1. Consider the planning task in Figure 4.

c
2

c
1

c
3

3
dd

1

d
1

d
7

Y

d
2

d
3

X

Figure 4: Planning task underlying Example 1. Circles represent variable values,
and lines represent DTG transitions. Transitions with a condition are longer
lines, with the condition inscribed below the line (in blue). For each variable, a
dashed arrow indicates the value in the initial state sI . Where a goal value is
de�ned, this is indicated by a circled value. Where needed, we will refer to the
operators responsible for a transition in terms of the respective variable followed
by the indices of the start and end value. For example, the operator moving
x from c1 to c2 will be referred to as �x12�. We stick to these conventions
throughout this section.

The DTG of x consists of three vertices whose connection requires the con-
ditions d1 and d2, or alternatively d7 as a shortcut. The domain of y is a
line of length 7 requiring no conditions. We abbreviate in what follows states
{(x, c), (y, d)} as (c, d).

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 57

Clearly, the support graph of this planning task is acyclic, and all transitions
in all DTGs have no side e�ects and are invertible. However, operator y34
(for example) is not respected by the relaxation. To see this, note �rst that
h+(sI) = 4: the only optimal relaxed plan is 〈y32, y21, x12, x23〉 because the
relaxed plan ignores the need to �move back� to d3 for operator x23. On the
other hand, the only optimal (real) plan for sI is 〈y34, y45, y56, y67, x17〉. If we
choose to use y32 instead, like the optimal relaxed plan does, then we end up
with the sequence 〈y32, y21, x12, y12, y23, x23〉 which is 1 step longer. Hence, in
sI , y34 starts an optimal plan, but does not start an optimal relaxed plan.

We next give three examples showing how local minima can arise in very
simple situations generalizing our basic result only minimally. We consider, in
this order: cyclic support graphs; non-invertible transitions; transitions with
side e�ects.

Example 2. Consider the planning task in Figure 5.

c
2

c
1

d
1

d
1

X

Y

d
2

d
n−1

d
n

c
1

Figure 5: Planning task underlying Example 2.
The DTG of x is just two vertices whose connection requires the condition

d1. The domain of y is a line of length n requiring no conditions, with a shortcut
between d1 and dn that requires c1 as condition. Clearly, all transitions in all
DTGs have no side e�ects and are invertible. However, SG contains a cycle
between x and y because they mutually depend on each other. We will show now
that this mutual dependence causes the initial state sI = {(x, c1), (y, d1)} to be
a local minimum, for n ≥ 5. We abbreviate, as before, states {(x, c), (y, d)} as
(c, d). We have h+(sI) = 2: the only optimal relaxed plan is 〈x12, y1n〉. Now
consider the operators applicable to sI = (c1, d1):

� Execute x12, leading to s1 = (c2, d1) with h+(s1) = 2 due to 〈x21, y1n〉.
From here, the only new state to be reached is via y12, giving s2 = (c2, d2)
with h+(s2) = 3 due to 〈y21, x21, y1n〉. (Note here that n − 2 ≥ 3 by
prerequisite, so a relaxed plan composed of ypp operators also has ≥ 3
steps.) We have h+(s2) > h+(sI) so this way we cannot reach an exit on
a monotone path.

� Execute y12, leading to s3 = (c1, d2) with h+(s3) = 3 due to 〈y21, x12, y1n〉.
(Note here that n − 2 ≥ 3 by prerequisite, so a relaxed plan moving y by
ypp operators has ≥ 4 steps.) Again, the path is not monotone.

� Execute y1n, leading to s4 = (c1, dn) with h+(s4) = 2 due to 〈yn1, x12〉.
From here, the only new state to be reached is via yn(n− 1), giving s5 =
(c1, dn−1) with h+(s5) = 3 due to 〈y(n − 1)n, yn1, x12〉. (Note here that
n−2 ≥ 3 by prerequisite, so a relaxed plan moving y to d1 via dn−2, . . . , d2

has ≥ 3 + 2 steps.) Again, the path is not monotone.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 58

No other operators are applicable to sI , thus we have explored all states reachable
from sI on monotone paths. None of those states is an exit, proving that sI is
a local minimum (as are s1 and s4). There is, in fact, only a single state s with
h+(s) = 1, namely s = (c2, dn−1). Clearly, reaching s from sI takes n−1 steps:
�rst apply x12, then traverse d2, . . . , dn−2. So the exit distance of sI is n − 3,
thus this distance is unbounded.

In Section 9, the following modi�cation of Example 2 is considered. We set
n := 2, i.e., the domain of y is reduced to the two values d1, d2; and we remove
the line d2, . . . , dn−2, i.e., y can move only via what was previously the short-
cut. This modi�ed example falls into the SAS+-PUBS tractable class identi�ed
by Bäckström and Klein [1], and it still contains a local minimum (the example
is unsolvable, though).

Example 3. Consider the planning task in Figure 6.

c
2

c
1

c
3

d
1

X
d
2 1

d

Y

d
2

d
n

Figure 6: Planning task underlying Example 3. The arrow between d1 and d2

indicates that the respective DTG transition is directed, i.e., there exists no
transition from d2 to d1.

The DTG of x is three vertices whose connection requires (starting from the
initial value c1) �rst condition d2, then condition d1. The domain of y is a
circle of length n requiring no conditions, and being invertible except for the arc
from d1 to d2.

Clearly, the support graph is acyclic and all transitions in all DTGs have
no side e�ects. However, the non-invertible arc from d1 to d2 causes the initial
state sI = (c1, d1) to be a local minimum for all n ≥ 3. This is very easy to see.
We have h+(sI) = 3 due to the only optimal relaxed plan 〈y12, x12, x23〉. Note
here that the relaxed plan does not have to �move y back� because (y, d1) is still
true after executing y12. Now, the only operator applicable to sI is y12, leading
to the state s1 = (c1, d2) where h+(s1) = n+ 1: x12, n−1 steps to complete the
circle from d2 back to d1, x23. Thus, for n ≥ 3, the only neighbor of sI (namely
s1) has a larger h+ value. Hence sI is a local minimum. The nearest exit to sI
is s2 = (c2, dn−1): s2 has the relaxed plan 〈y(n−1)n, yn1, x23〉 of length 3, and
after applying y(n − 1)n we get h+ value 2. Reaching s2 from sI takes 1 step
moving x and n−2 steps moving y. So the exit distance of sI is n−1, thus this
distance is unbounded.

Example 4. Consider the planning task in Figure 7.
The DTG of x is a line of length n requiring no conditions. The DTG of y

contains just two vertices. Moving from d1 to d2 has the side-e�ect cn.
The support graph is acyclic � the only operator involving two variables is

y12 (which has an e�ect on x and a precondition on y), inducing an edge from
y to x. Obviously, all transitions are invertible. However, the side-e�ect of y12

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 59

c
n

Y

d
1

d
2

c
n

X

c
2

c
1

Figure 7: Planning task underlying Example 4. The (red) inscription cn above
the line between d1 and d2 indicates that the transition from d1 to d2 has the
side e�ect cn.

causes the initial state sI = (c1, d1) (using the same state notation as in the
previous examples) to be a local minimum for all n ≥ 3. This is very easy to
see. We have h+(sI) = 1 due to the only optimal relaxed plan 〈y12〉. Note here
that the relaxed plan does not care about the side e�ect of y12, because c1 is still
true afterward. Now, if we apply x12 in sI then clearly we increase h+ by 1
since we have to include the move back to c1. If we apply y12 to sI , we get the
state s1 = (cn, d2) where h+(s1) = n − 1. Thus, for n ≥ 3, this neighbor of sI
has h+ value ≥ 2 and thus > h+(sI). Hence sI is a local minimum. Clearly,
the nearest exit to sI is s2 = (c2, d2): s2 has the relaxed plan 〈x21〉 of length
1, and after applying x21 we get h+ value 0. Reaching s2 from sI takes 1 step
moving y and n−2 steps moving x. So the exit distance of sI is n−1, thus this
distance is unbounded.

We next show that the exit path constructed using �short-cuts�, leading to
the improved bound costd∗ instead of costd, may be non-monotone, and that the
improved bound may indeed under-estimate the length of a shortest monotone
exit path.

Example 5. Consider the planning task in Figure 8.

d
2k+2n

e
2n d

1
d
2

e
0 e

2n d
2k

e
0

e
1

e
2n

Y

d
0 d

2k+1
e
2 d

2k+2n

X

c
0

c
1

Z

e
2

e
2n−1

e
2n

e
0

e’

Figure 8: Planning task underlying Example 5.
In this example, the only optimal relaxed plan for the initial state moves

z along the path e0, . . . , e2n � note here that all these values are needed for
moving y � then moves y to d2k+2n, then moves x to c1. This gives a total of
h+(sI) = 2n+ (2k + 2n) + 1 = 4n+ 2k + 1 steps.

The only operators applicable to sI move z. If we move along the line
e0, . . . , e2n, then h+ remains constant: we always need to include the moves
back in order to achieve the own goal of z. Once we reach e2n, we can move y
one step, then need to move z back, etc. During all these moves, up to the state

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 60

where y = d2k+2n, as long as z stays within e0, . . . , e2n, h
+ remains constant.

To see this, observe �rst that of course it su�ces for a relaxed plan to reach
once, with z, all the values on this line, taking 2n moves wherever we are on the
line; the moves for y are as before. Second, observe that indeed all these moves
are needed: wherever y is on the line d0, . . . , d2k+2n, it needs to move to d2k+2n

in order to suit x, and it needs to move to d0 to suit its own goal. Every value in
e0, . . . , e2n appears as a condition of one of these y moves. Thus, from sI , the
nearest exit reached this way is the state s where y = d2k+2n and z = e2n: there,
we can move x to c1 which decreases h

+ to 4n+2k. The length of the exit path −→o
we just described, from sI to s, obviously is 2k∗(2n+1)+2n∗2 = 4kn+2k+4n.

What happens if we move z to e′? Consider �rst that we do this in sI . Then
h+ increases to 4n+ 2k+ 2: we need to reach all values on the line e0, . . . , e2n,
which from e′ takes one step more. The same argument applies for any state
traversed by −→o , because, as argued, in any such state we still need to reach all
values on the line e0, . . . , e2n. Thus

−→o is the shortest monotone path to an exit.
The only optimal rplan dependency graph oDG+ for sI is the entire SG,

and oDTG+
z contains all of DTGz except e

′. The only global dependency graph
gDG is the entire SG.

Clearly, in sI , the next required value to reach for any variable is e2n, so the
construction in the proof to Theorem 2 will �rst try to reach that value. When
using �short-cuts� as accounted for by costd∗(.), the exit path constructed will
move to e2n via e′ rather than via the line e0, . . . , e2n, and thus as claimed this
exit path is not monotone.

Finally, consider the bound returned by costd∗(oDG+). We obviously have
that costd∗(oDG+) = costD∗(gDG). We obtain the bound (−1)+costd∗(oDG+) =
(−1) + 1[costd∗(x)] + 1 ∗ (2k + 2n)[costd∗(x) ∗ diam(oDTG+

y)] + (2k + 2n) ∗
(n+ 1)[costd∗(y) ∗ diam(DTGz)]. Note here that diam(DTGz) = n+ 1 because
DTGz is a circle with 2n+ 2 nodes. Overall, we have (−1) + costd∗(oDG+) =
(2k+2n)∗(n+2) = 2kn+4k+2n2 +4n. For su�ciently large k, this is less than
4kn+2k+4n, as claimed. In detail, we have 4kn+2k+4n > 2kn+4k+2n2+4n
i� 2kn − 2k > 2n2 i� kn − k > n2 i� k > n2

n−1 . This holds, for example, if we
set n := 2 and k := 5.

The reader will have noticed that Example 5 is very contrived. The reason
why we need such a complicated unrealistic example is that costd, and with
that costd∗, contains two sources of over-estimation, cf. the discussion in Sec-
tion 5. In particular, everymove of non-leaf variables is supposed to take a whole
oDTG+/DTG diameter. To show that costd∗ is not in general an upper bound
on the length of a monotone exit path, we thus need the presented construction
around k so that its under-estimation � considering diam(DTGz) instead of
diam(oDTG+

z) � outweighs this over-estimation. Importantly, constructing ex-
amples where the �short-cuts� temporarily increase h+ (but costd∗ nevertheless
delivers an upper bound on monotone exit path length) is much easier. All that
needs to happen is that, for whatever reason, we have a variable z like here,
where the currently required value (e2n in Example 5) is reached in oDTG+

z

values along an unnecessarily long path all of whose values are needed in the
relaxed plan. This happens quite naturally, e.g., in transportation domains if
the same vehicle needs to load/unload objects along such a longer path.

We now demonstrate that, in a case where our analyzes apply, exit distance
may be exponential.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 61

Example 6. Consider the planning task in Figure 9.

X
0

c
1
0

c
2
n c

3
n c

4
n c n

5

n
X

c
1
n

1
X

c
1
1

c
2
0

c
2
1 c

3
1 c

4
1 c

5
1c

1
2

c
5
2

c
1
2

c
5
2

c
5
1

Figure 9: Planning task underlying Example 6.

The DTG of x0 is two vertices whose connection is conditioned on c15. For
all other variables xi, we have �ve vertices on a line, alternatingly requiring
the last vertex ci+1

5 of xi+1 and the �rst vertex ci+1
1 of xi+1. Clearly, the only

optimal rplan dependency graph oDG+ for sI , and the only global dependency
graph gDG for the task is the full support graph SG. This is acyclic, and all
transitions are invertible and have no side e�ects, thus our analyzes apply.

What are h+(sI) and ed(sI)? For a relaxed plan, we need to move x0 to c02.
Due to the conditioning, for each variable both �extreme� values � left and right
hand side � are required so we need 4 moves for each xi with 1 ≤ i ≤ n. Thus
h+(sI) = 1 + 4n.

Now, consider any state s where s(x0) = c01. To construct a relaxed plan,
obviously we still need 1 move for x0. We also still need 4 moves for each other
variable. Consider x1. If s(x1) = c11 then we need to move it to c15 in order
to be able to move x0. If s(x1) = c12 then we need to move it to c15 in order
to be able to move x0, and to c11 for its own goal, and so forth. In all cases,
all four transitions must be taken in the relaxed plan. Due to the conditioning,
recursively the same is true for all other variables. Thus, h+(s) = 1 + 4n.

This means that the nearest exit is a state s′ where x0 has value c01 and x1

has value c15: in s′, we can move x0 and afterward, de�nitely, 4n steps su�ce
for a relaxed plan. What is the distance to a state s′? We need to move x1 four
times. Let's denote this as d(x1) = 4. Each move requires 4 moves of x2, so
d(x2) = 16. The sequence of moves for x2 �inverses direction� three times. At
these points, x3 does not need to move so d(x3) = (d(x2)− 3) ∗ 4. Generalizing
this, we get d(xi+1) = [d(xi)− (d(xi)

4 − 1)] ∗ 4 = 3d(xi) + 4, so the growth over
n is exponential.

Obviously, Example 6 also shows that plan length can be exponential in
cases where Theorem 4 applies. We remark that Example 6 is very similar to
an example given by Domshlak and Dinitz [10]. The only di�erence is that
Domshlak and Dinitz's example uses di�erent conditions for transitions to the
left/to the right, which enables them to use smaller DTGs with only 3 nodes. In
our setting, we cannot use di�erent conditions because we need the transitions to
be invertible. This causes the �loss� of exit path steps in those situations where

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 62

the next lower variable �inverses direction� and thus relies on the same outside
condition as in the previous step. Indeed, for DTGs of size 3, this loss of steps
results in a polynomially bounded exit distance. The recursive formula for d(xi)
becomes d(xi+1) = [d(xi)−(d(xi)

2 −1)]∗2 = d(xi)+2, resulting in ed(sI) = n2+n.
On the other hand, costd∗ and costD∗ still remain exponential in this case,
because they do not consider the loss incurred by inversing directions. Precisely,
it is easy to see that costd∗(oDG+) = costD∗(gDG) = 1 +

∑n
i=1 2i = 2n+1 − 1.

This proves that these bounds can over-estimate by an exponential amount.
The next example shows that the exit path constructed (implicitly) by our

analyzes may be exponentially longer than an optimal plan for the task.

Example 7. Consider the planning task in Figure 10.

X
0

c
1
0

1
X

c
1
1

c
2
n c

3
n c

4
n c n

5

c
2
1 c

3
1 c

4
1 c

5
1c

1
2

c
5
2

c
1
2

c
5
2

n
X

c
1
n

c
2
0c

5
1

4n+1
0

1
0 c’c’

Figure 10: Planning task underlying Example 7.

In this example, the only optimal relaxed plan for the initial state is the
same as in Example 6, because the �alternative� route via c′01, . . . , c

′
0(4n+1) takes

1 + 4n + 1 = 4n + 2 > 4n + 1 steps. Thus the exit path constructed remains
the same, too, with length exponential in n. However, the length of the shortest
plan is 4n+ 2.

Note in Example 7 that the observed weakness � being guided into the
�wrong� direction � is caused by a weakness of optimal relaxed planning, rather
than by a weakness of our analysis. The relaxation overlooks the fact that
moving via x1, . . . , xn will incur high costs due to the need to repeatedly undo
and re-do conditions achieved beforehand. Note also that, in this example too,
we get an exponential over-estimation of exit distance.

We �nally show that feeding Theorem 2 with non-optimal relaxed plans does
not give any guarantees:

Example 8. Consider the planning task in Figure 11.
There are two ways to achieve the goal c2: either via moving y and z, or by

moving v1, . . . , vn+2. The only optimal relaxed plan chooses the former option,
giving h+(sI) = n + 1. As soon as n ≥ 3, however, the only parallel-optimal
relaxed plan P+(sI) chooses the latter option because moving y and z results in

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 63

g2
1

g2
n+2

c1 c2
d2

X

Vn+2

g1
1 g2

1

c’

d2
en

Y

d1

Z

e1 en−1 en g1
n+2

1V

g2
n+2

Figure 11: Planning task underlying Example 8. The arrow between en−1 and
en indicates that the respective DTG transition is directed, i.e., there exists no
transition from en to en−1.

n + 1 sequential moves, whereas v1, . . . , vn+2 can be moved in parallel, giving
parallel length 3.

Consider what happens to h+ in either of the options. If we move z, then
h+ remains constant because we need to move z back into its own goal. As soon
as we reach z = en, h

+ = ∞ because the last transition is uni-directional and
we can no longer achieve the own goal of z. Thus there is no exit path, and in
particular no monotone exit path, via this option.

Say we move v1, . . . , vn+2 instead. In the �rst move (whichever vi we choose),
h+ increases because the shortest option is to undo this move and go via y and
z: this takes n+ 2 steps whereas completing the vi moves and going via c′ takes
(n+ 1) + 2 = n+ 3 steps. Thus there is no monotone exit path via this option
either, and sI is a local minimum. After completing the n+ 2 moves of vi and
moving to x = c′, we have h+ = (n+ 2) + 1 due to the shortest relaxed plan that
moves back all vi and moves to x = c2. To reduce this heuristic value to the
initial value h+(sI) = n+ 1, we need to execute a further 2 of these steps. The
state we have then reached has a better evaluated neighbor, so the exit distance
is n+ 5.

Consider now the e�ect of feeding Theorem 2 with the parallel-optimal plan
P+(sI). Clearly, the optimal rplan dependency graph oDG+ constructed for
P+(sI) consists of x and all the vi variables, but does not include y nor z.
Thus the theorem applies, and it wrongly concludes that sI is not a local min-
imum. The exit distance bound computed is (−1) + costd∗(oDG+) = (−1) +
1[costd∗(x)] +

∑n+2
i=1 (1 ∗ 1)[costd∗(x) ∗ diam(DTGvi

)] = n+ 2. This is less than
the actual distance ed(sI) = n+ 5, and thus this result is also wrong.

Say we modify Example 8 by making the last transition of z undirected,
but making one of the vi transitions unidirectional to the right. Then the
v1, . . . , vn+2 option leads into a dead end, whereas the y, z option succeeds. In
particular, Theorem 2 does not apply to oDG+ constructed for the parallel-
optimal relaxed plan P+(sI), and thus this is an example where using non-
optimal relaxed plans results in a loss of information.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 64

A.5 Benchmark Performance Guarantees

We give de�nitions of the 7 domains mentioned in Propositions 1 and 2. For each
domain, we explain why the respective property claimed holds true. In most of
the domains, we assume some static properties as are used in PDDL to capture
unchanging things like the shape of the road network in a transportation domain.
We assume in what follows that such static predicates have been removed prior
to the analysis, i.e., prior to testing the prerequisites of Theorem 4.

De�nition 5. The Logistics domain is the set of all planning tasks Π =
(V,O, sI , sG) whose components are de�ned as follows. V = P ∪ V where P
is a set of �package-location� variables p, with Dp = L ∪ V where L is some set
representing all possible locations, and V is a set of �vehicle-location� variables
v, with Dv = Lv for a subset Lv ⊆ L of locations. O contains three types of oper-
ators: �move�, �load�, and �unload�, where move(v, l1, l2) = ({v = l1}, {v = l2})
for l1 6= l2, load(v, l, p) = ({v = l, p = l}, {p = v}), and unload(v, l, p) = ({v =
l, p = v}, {p = l}). sI assigns an arbitrary value to each of the variables, and
sG assigns an arbitrary value to some subset of the variables.

Every global dependency graph gDG in Logistics either has a package p as
the leaf variable x0, or has a vehicle variable v as the leaf variable x0. In the
latter case gDG consists of only x0, with no arcs. In the former case, o0 is
preconditioned on a single vehicle v only, leading to a single non-leaf variable v.
In both cases, gDG is acyclic, all involved transitions have no side e�ects, and
all involved transitions are invertible. Thus we can apply Theorem 4. We have
costD∗(gDG) = 1 + 1 ∗ 1 for packages and costD∗(gDG) = 1 for vehicles, thus
overall we obtain the correct bound 1.

De�nition 6. The Miconic-STRIPS domain is the set of all planning tasks
Π = (V,O, sI , sG) whose components are de�ned as follows. V = O ∪D ∪ B ∪
S ∪ {e} where |O| = |D| = |B| = |S| and: O is a set of �passenger-origin�
variables o, with Do = L where L is some set representing all possible locations
(�oors); D is a set of �passenger-destination� variables d with Dd = L; B is a
set of �passenger-boarded� variables b with Db = {1, 0}; S is a set of �passenger-
served� variables s with Ds = {1, 0}; e is the �elevator-location� variable with
De = L. O contains three types of operators: �move�, �board�, and �depart�,
where move(l1, l2) = ({e = l1}, {e = l2}) for l1 6= l2, board(l, i) = ({e = l, oi =
l}, {bi = 1}), and depart(l, i) = ({e = l, di = l, bi = 1}, {bi = 0, si = 1}). sI
assigns arbitrary locations to the variables O, D, and e, and assigns 0 to the
variables B and S. sG assigns 1 to the variables S.

Passenger-origin and passenger-destination variables are static, i.e., not af-
fected by any operator. Thus the common pre-processes will remove these vari-
ables, using them only to statically prune the set of operators that are reachable.
We assume in what follows that such removal has taken place.

Every global dependency graph gDG in Miconic-STRIPS has a passenger-
served variable si as the leaf variable x0. This leads to non-leaf variables bi and
e, with arcs from e to both other variables and from bi to si. Clearly, gDG
is acyclic. The transitions of e are all invertible and have no side e�ects. The
transition (0, 1) of bi (is not invertible since departing has a di�erent condition on
e but) has an irrelevant own-delete � bi = 0 does not occur anywhere in the goal
or preconditions � and has no side e�ects and thus irrelevant side e�ect deletes.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 65

The transition (1, 0) of bi (is not invertible but) is irrelevant � bi = 0 doesn't
occur anywhere. The transition (0, 1) of the leaf variable si has self-irrelevant
side e�ect deletes � bi = 1 occurs only in the precondition of the transition's own
responsible operator rop(0, 1) = depart(ld, i). Hence we can apply Theorem 4.
This delivers the bound costD∗(gDG) − 1 = −1 + 1[si] + (1 ∗ 1)[costD∗(si) ∗
maxPath(DTGbi

)] + (2 ∗ 1)[(costD∗(si) + costD∗(bi)) ∗ diam(DTGe)] = 3.

De�nition 7. The Simple-TSP domain is the set of all planning tasks Π =
(V,O, sI , sG) whose components are de�ned as follows. V = {p} ∪ V where:
p is the �position� variable, with Dp = L where L is some set representing all
possible locations; and V , with |V | = |L|, is a set of �location-visited� variables
v, with Dv = {1, 0}. O contains a single type of operators: move(l1, l2) = ({p =
l1}, {p = l2, vl2 = 1}) for l1 6= l2. sI assigns an arbitrary value to p and assigns
0 to the variables V . sG assigns 1 to the variables V .

Every global dependency graph gDG in Simple-TSP has a location-visited
variable vi as the leaf variable x0. This leads to the single non-leaf variable p.
Clearly, gDG is acyclic. Every transition (0, 1) of vi considered, induced by o0 =
move(l1, li), has replacable side e�ect deletes. Any operator o = move(l1, x)
can be replaced by the equivalent operator move(li, x) unless x = li. In the
latter case, we have o0 = o which is excluded in the de�nition of replacable
side e�ect deletes. Every transition (l1, l2) of p clearly is invertible; it has the
irrelevant side e�ect delete vl2 = 0; its side e�ect is only on vl2 which is not a
non-leaf variable of gDG. Hence we can apply Theorem 4. This delivers the
bound costD∗(gDG)− 1 = −1 + 1[vi] + (1 ∗ 1)[costD(vi) ∗ diam(DTGp)] = 1.

We consider an extended version of the Movie domain, in the sense that,
whereas the original domain version considers only a �xed range of snacks (and
thus the state space is constant across all domain instances), we allow to scale
the number of di�erent snacks.22

De�nition 8. The Movie domain is the set of all planning tasks Π = (V,O,
sI , sG) whose components are de�ned as follows. V = {c0, c2, re} ∪ H. Here,
c0 is the �counter-at-zero� variable, with Dc0 = {1, 0}; c2 is the �counter-at-
two-hours� variable, with Dc2 = {1, 0}; re is the �movie-rewound� variable, with
Dre = {1, 0}; H are �have-snack� variables h with Dh = {1, 0}. O contains
four types of operators: �rewindTwo�, �rewindOther�, �resetCounter�, and �get-
Snack�, where rewindTwo = ({c2 = 1}, {re = 1}), rewindOther = ({c2 =
0}, {re = 1, c0 = 0}), resetCounter = (∅, {c0 = 1}), and getSnack(i) =
(∅, {hi = True}). sI assigns an arbitrary value to all variables. sG assigns
the re, c0, and H variables to 1.

Note that, depending on the value of the static variable c2, the operator set
will be di�erent: if sI(c2) = 1 then rewindOther is removed, if sI(c2) = 0 then
rewindTwo is removed. We refer to the former as case (a) and to the latter as
case (b).

22The original version, on the other hand, allows to scale the number of operators adding
the same snack. All these operators are identical except for their name (their parameter
instantiation) according to PDDL. Obviously, all but one of the operators within each of
these operator sets can be removed, without changing the nature of the task. All planning
pre-processors (we are aware of) do perform such removal. We assume here that the removal
has already taken place � note that our planning task formalism doesn't even allow such
duplicate operators, since O is a set of operators identi�ed only through their precondition
and e�ect.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 66

Every global dependency graph gDG consists of a single (leaf) variable.
The transitions of each h variable have no side e�ects and thus have irrelevant
side e�ect deletes. The transition (0, 1) of c0 has no side e�ects and thus has
irrelevant side e�ect deletes. The transition (1, 0) of c0 is irrelevant. For case (a),
the transition (0, 1) of re has no side e�ects and thus has irrelevant side e�ect
deletes so we can apply Theorem 4. For case (b), the transition (0, 1) of re has
the side e�ect c0 = 0. Observe that (1) this fact itself is irrelevant; and (2) that
the only ψ ∈ ctx(0, 1) is {c0 = 1}, and o := resetCounter satis�es ∅ = preo ⊆
(prevrop(0,1) ∪ effrop(0,1)) = {re = 1, c0 = 0}, {c0 = 1} = effo ⊆ ψ = {c0 = 1},
and {c0 = 1} = effo ⊇ {(y, d) | (y, d) ∈ ψ, (y, d) ∈ sG ∪

⋃
rop(c,c′)6=o′∈O preo′} =

{c0 = 1}. Thus the transition has recoverable side e�ect deletes, and again we
can apply Theorem 4. In case (a), for all gDGs the bound costD(gDG) − 1
applies. Obviously, costD(gDG) = 1 and thus we obtain the correct bound 0.
In case (b), the bound costD(gDG) applies, and again costD(gDG) = 1 so we
obtain the correct bound 1.

De�nition 9. The Ferry domain is the set of all planning tasks Π =
(V,O, sI , sG) whose components are de�ned as follows. V = C ∪ {f, e} where:
C is a set of �car-location� variables c, with Dc = L ∪ {f} where L is some set
representing all possible locations; f is the �ferry-location� variable with Df = L;
e is the �ferry-empty� variable with De = {1, 0}. O contains three types of oper-
ators: �sail�, �board�, and �debark�, where sail(l1, l2) = ({f = l1}, {f = l2})
for l1 6= l2, board(l, c) = ({f = l, c = l, e = 1}, {c = f, e = 0}), and
debark(l, c) = ({f = l, c = f}, {c = l, e = 1}). sI assigns 1 to variable e,
assigns an arbitrary value to variable f , and assigns an arbitrary value other
than f to the variables C. sG assigns an arbitrary value 6= f to (some subset
of) the variables C and f .

Let s be an arbitrary reachable state where 0 < h+(s) <∞, and let P+(s) be
an arbitrary optimal relaxed plan for s. Then we can always apply Theorem 2.
To show this, we distinguish three cases: (a) s(e) = 1, o0 = board(l, c) is the
�rst board operator in P+(s), and we set x0 = c; (b) s(e) = 0, o0 = debark(l, c)
is the �rst debark operator in P+(s), and we set x0 = c; (c) P+(s) contains no
board or debark operator and we set o0 to be the �rst operator, sail(l1, l2), in
P+(s), with x0 = f . Obviously, exactly one of these cases will hold in s. Let
oDG+ = (V,A) be the sub-graph of SG including x0 and the variables/arcs
included as per De�nition 1. Let t0 be the transition taken by o0.

In case (a), obviously we can reorder P+(s) so that either board(l, c) is the
�rst operator in P+(s), or all its predecessors are sail operators. oDG+ then
either (1) includes no new (non-leaf) variables at all, or (2) includes only f . As
for f , clearly all its transitions are invertible and have no side e�ects. The tran-
sition t0 has the own e�ect (c, f) deleting (c, l) which clearly is not needed in the
rest of P+(s). It has the side e�ect e = 0 deleting e = 1. That latter fact may be
needed by other board operators in P+(s). However, necessarily P+(s) contains
an operator of the form debark(l′, c), which is applicable after board(l, c) and a
sequence of moves that P+(s) must contain from l to l′; debark(l′, c) recovers
e = 1. Thus the oDG+-relevant deletes of t0 are P+

>0(s)-recoverable. In case
(b), similarly we can reorder P+(s) so that either (1) debark(l, c) is the �rst
operator in P+(s), or (2) all its predecessors are sail operators. The transition
t0 has the own e�ect (c, l) deleting (c, f) which clearly is not needed in the rest
of P+(s); it has the side e�ect e = 1 deleting e = 0 which clearly is not needed

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 67

in the rest of P+(s). Thus, again, the oDG+-relevant deletes of t0 are P+
>0(s)-

recoverable. In case (c), �nally, oDG+ contains only f , t0 has no side e�ects,
and its own delete (f, l1) is not needed anymore (in fact, in this case l2 must be
the goal for f , and P+(s) contains only the single operator o0). Hence, in all
cases, we can apply Theorem 2. costd∗(oDG+) = 1 in cases (a1), (b1), and (c)
so there we get the bound 0. costd∗(oDG+) = 1 + diam(DTGf) = 2 in cases
(a2) and (b2) so there we get the bound 1.

De�nition 10. The Gripper domain is the set of all planning tasks Π = (V,O,
sI , sG) whose components are de�ned as follows. V = {ro, f1, f2} ∪ B. Here,
ro is the �robot-location� variable, with Dro = {L,R}; f1, f2 are �gripper-free�
variables, with Df1 = Df2 = {1, 0}; and B are �ball-location� variables, with
Db = {L,R, 1, 2}. O contains three types of operators: �move�, �pickup�, and
�drop�, where move(l1, l2) = ({ro = l1}, {ro = l2}) for l1 6= l2, pickup(g, b, l) =
({ro = l, b = l, fg = 1}, {b = g, fg = 0}), and drop(g, b, l) = ({ro = l, b =
g}, {b = l, fg = 1}). sI assigns L to ro, assigns 1 to f1 and f2, and assigns L
to the variables B. sG assigns R to the variables B.

Let s be an arbitrary reachable state where 0 < h+(s) <∞, and let P+(s) be
an arbitrary optimal relaxed plan for s. Then we can always apply Theorem 2.
We distinguish two cases: (a) there exists b ∈ B so that s(b) = g for g ∈ {1, 2},
o0 = drop(g, b, R), and we set x0 = b; (b) there exists no b ∈ B so that s(b) = g
for g ∈ {1, 2}, o0 = pickup(g, b, L) for some b ∈ B is in P+(s), and we set
x0 = b. Obviously, exactly one of these cases will hold in s. Let oDG+ = (V,A)
be the sub-graph of SG including x0 and the variables/arcs included as per
De�nition 1. Let t0 be the transition taken by o0.

In case (a), obviously we can reorder P+(s) so that either drop(g, b, R) is
the �rst operator in P+(s), or its only predecessor is move(L,R). oDG+ then
either (1) includes no new (non-leaf) variables at all, or (2) includes only ro.
As for ro, clearly all its transitions are invertible and have no side e�ects. The
transition t0 has the own e�ect (b, R) deleting (b, g) which clearly is not needed
in the rest of P+(s); it has the side e�ect fg = 1 deleting fg = 0 which clearly
is not needed in the rest of P+(s). Thus the oDG+-relevant deletes of t0 are
P+
>0(s)-recoverable. In case (b), similarly we can reorder P+(s) so that either

(1) pickup(g, b, L) is the �rst operator in P+(s), or (2) its only predecessor is
move(R,L). The transition t0 has the own e�ect (b, g) deleting (b, L) which
clearly is not needed in the rest of P+(s). It has the side e�ect fg = 0 deleting
fg = 1; that latter fact may be needed by other pickup operators in P+(s).
However, necessarily P+(s) contains the operatorsmove(L,R) and drop(g, b, R),
which are applicable after board(l, c); drop(g, b, R) recovers fg = 1. Thus, again,
the oDG+-relevant deletes of t0 are P+

>0(s)-recoverable. Hence, in both cases,
we can apply Theorem 2. costd∗(oDG+) = 1 in cases (a1) and (b1), so there
we get the bound 0. costd∗(oDG+) = 1 + diam(ro) = 2 in cases (a2) and (b2)
so there we get the bound 1.

De�nition 11. The Transport domain is the set of all planning tasks Π =
(V,O, sI , sG) whose components are de�ned as follows. V = P ∪ V ∪ C where:
P is a set of �package-location� variables p, with Dp = L ∪ V where L is
some set representing all possible locations; V is a set of �vehicle-location� vari-
ables v, with Dv = L; and C is a set of �vehicle-capacity� variables cv, with
Dcv

= {0, . . . ,K} where K is the maximum capacity. O contains three types

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 68

of operators: �drive�, �pickup�, and �drop�, where: drive(v, l1, l2) = ({v =
l1}, {v = l2}) for (l1, l2) ∈ A where GR = (V,A) is an undirected graph of
roads over L; pickup(v, l, p, c) = ({v = l, p = l, cv = c}, {p = v, cv = c − 1}),
and drop(v, l, p, c) = ({v = l, p = v, cv = c}, {p = l, cv = c + 1}). sI assigns
an arbitrary value in L to each of the variables P ∪ V , and assigns K to the
variables C. sG assigns an arbitrary value in L to some subset of the variables
P ∪ V .

Note here the use of numbers and addition/subtraction. These are, of course,
not part of the planning language we consider here. However, they can be easily
encoded (on the �nite set of number {0, . . . ,K}) via static predicates. After pre-
processing, in e�ect the resulting task will be isomorphic to the one obtained by
the simple arithmetic above, which we thus choose to reduce notational clutter.

Let s be an arbitrary reachable state where 0 < h+(s) < ∞. Then there
exists an optimal relaxed plan P+(s) for s so that we can apply Theorem 2.
We distinguish three cases: (a) there exists p ∈ P so that s(p) = v for v ∈ V ,
o0 = drop(v, l, p, c) where s(cv) = c is in P+(s), and we set x0 = p; (b) there
exists no p ∈ P so that s(p) = v for v ∈ V , o0 = pickup(v, l, p,K) for some
p ∈ P is in P+(s), and we set x0 = p; (c) P+(s) contains no drop or pickup
operator and we set o0 to be the �rst operator, drive(v, l1, l2), in P+(s), with
x0 = v. Obviously, we can choose P+(s) so that exactly one of these cases will
hold in s (the choice of P+(s) is arbitrary for (b) and (c), but in (a) there may
exist optimal relaxed plans where s(cv) 6= c). Let oDG+ = (V,A) be the sub-
graph of SG including x0 and the variables/arcs included as per De�nition 1.
Let t0 be the transition taken by o0.

In case (a), obviously we can reorder P+(s) so that either o0 = drop(v, l, p, c)
is the �rst operator in P+(s), or all its predecessors are drive operators. oDG+

then either (1) includes no new (non-leaf) variables at all, or (2) includes
only v. As for v, clearly all its transitions are invertible and have no side
e�ects. The transition t0 has the own e�ect (p, v) deleting (p, l) which clearly
is not needed in the rest of P+(s). It has the side e�ect cv = c + 1 deleting
cv = c. That latter fact may be needed by other operators in P+(s), either
taking the form drop(v, l′, p′, c) or the form pickup(v, l′, p′, c). Clearly, if P+(s)
contains these operators then we can replace them with drop(v, l′, p′, c + 1)
and pickup(v, l′, p′, c + 1) respectively � the value (cv, c + 1) will be true at
their point of (relaxed) execution. Thus we can choose P+(s) so that the
P+(s)-relevant deletes of t0 are P+(s)-recoverable on V \ {x0}. In case (b),
similarly we can reorder P+(s) so that either (1) o0 = pickup(v, l, p,K) is
the �rst operator in P+(s), or (2) all its predecessors are drive operators.
The transition t0 has the own e�ect (p, v) deleting (p, l) which clearly is not
needed in the rest of P+(s). It has the side e�ect cv = K − 1 deleting
cv = K. That latter fact may be needed by other operators in P+(s), taking
the form pickup(v, l′, p′,K). However, necessarily P+(s) contains an operator
of the form drop(v, l′, p, c′). If c′ 6= K − 1 then we can replace this operator
with drop(v, l′, p,K − 1) since, clearly, the value (cv,K − 1) will be true at
the point of (relaxed) execution. Now, drop(v, l′, p,K − 1) is applicable after
pickup(v, l, p,K) and a sequence of drive operators that P+(s) must contain
from l to l′; drop(v, l′, p,K − 1) recovers cv = K. Thus, again, we can choose
P+(s) so that the P+(s)-relevant deletes of t0 are P+(s)-recoverable on V \{x0}.
In case (c), �nally, oDG+ contains only v, t0 has no side e�ects, and its own

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 69

delete (v, l1) is not needed anymore. Hence, in all cases, we can apply Theo-
rem 2. costd∗(oDG+) = 1 in cases (a1), (b1), and (c) so there we get the bound
0. costd∗(oDG+) = 1 + min(diam(oDTG+

v),diam(DTGv)) in cases (a2) and
(b2) so there the bound is at most the diameter of the road map GR.

When ignoring action costs, the Elevators domain of IPC 2008 is essentially
a variant of Transport. The variant is more general in that (a) each vehicle (each
elevator) may have its own maximal capacity, and (b) each vehicle can reach
only a subset of the locations, i.e., each vehicle has an individual road map.
On the other hand, Elevators is more restricted than Transport in that (c) each
vehicle road map is fully connected (every reachable �oor can be navigated to
directly from every other reachable �oor), and (d) goals exist only for packages
(passengers, that is), not for vehicles. Even when ignoring restrictions (c) and
(d), it is trivial to see that the arguments given above for Transport still hold
true. Therefore, whenever s is a reachable state with 0 < h+(s) < ∞, there
exists an optimal relaxed plan P+(s) for s so that we can apply Theorem 2. As
before, the bound is at most the diameter of the road map. Due to (c), this
diameter is 1.

References

[1] Christer Bäckström and Inger Klein. Planning in polynomial time: The
SAS-PUBS class. Computational Intelligence, 7(4), November 1991.

[2] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+

planning. Computational Intelligence, 11(4):625�655, 1995.

[3] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Arti�cial Intelligence, 90(1-2):279�298, 1997.

[4] Blai Bonet and Héctor Ge�ner. Planning as heuristic search. Arti�cial
Intelligence, 129(1�2):5�33, 2001.

[5] Adi Botea, Martin Müller, and Jonathan Schae�er. Using component ab-
straction for automatic generation of macro-actions. In Koenig et al. [40],
pages 181�190.

[6] Ronen Brafman and Carmel Domshlak. Structure and complexity in plan-
ning with unary operators. Journal of Arti�cial Intelligence Research,
18:315�349, 2003.

[7] Tom Bylander. The computational complexity of propositional STRIPS
planning. Arti�cial Intelligence, 69(1�2):165�204, 1994.

[8] A. Cesta and D. Borrajo, editors. Recent Advances in AI Planning. 6th
European Conference on Planning (ECP'01), Lecture Notes in Arti�cial
Intelligence, Toledo, Spain, September 2001. Springer-Verlag.

[9] Hubie Chen and Omer Giménez. Causal graphs and structurally restricted
planning. Journal of Computer and System Sciences, 76(7):579�592, 2010.

[10] Carmel Domshlak and Ye�m Dinitz. Multi-agent o�ine coordination:
Structure and complexity. In Cesta and Borrajo [8], pages 34�43.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 70

[11] Stefan Edelkamp and Malte Helmert. Exhibiting knowledge in planning
problems to minimize state encoding length. In S. Biundo and M. Fox,
editors, Recent Advances in AI Planning. 5th European Conference on
Planning (ECP'99), Lecture Notes in Arti�cial Intelligence, pages 135�147,
Durham, UK, September 1999. Springer-Verlag.

[12] Maria Fox and Derek Long. The automatic inference of state invariants in
TIM. Journal of Arti�cial Intelligence Research, 9:367�421, 1998.

[13] Maria Fox and Derek Long. The detection and exploitation of symmetry
in planning problems. In M. Pollack, editor, Proceedings of the 16th In-
ternational Joint Conference on Arti�cial Intelligence (IJCAI-99), pages
956�961, Stockholm, Sweden, August 1999. Morgan Kaufmann.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability�A
Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA,
1979.

[15] Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, edi-
tors. Proceedings of the 19th International Conference on Automated Plan-
ning and Scheduling (ICAPS9), Thessaloniki, Greece, Sep 2009. AAAI.

[16] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through
stochastic local search and temporal action graphs. Journal of Arti�cial
Intelligence Research, 20:239�290, 2003.

[17] Alfonso Gerevini and Lenhart Schubert. Inferring state-constraints for do-
main independent planning. In Jack Mostow and Charles Rich, editors,
Proceedings of the 15th National Conference of the American Association
for Arti�cial Intelligence (AAAI-98), pages 905�912, Madison, WI, USA,
July 1998. MIT Press.

[18] Omer Giménez and Anders Jonsson. The complexity of planning prob-
lems with simple causal graphs. Journal of Arti�cial Intelligence Research,
31:319�351, 2008.

[19] Omer Giménez and Anders Jonsson. The in�uence of k-dependence on the
complexity of planning. In Gerevini et al. [15], pages 138�145.

[20] Omer Giménez and Anders Jonsson. Planning over chain causal graphs for
variables with domains of size 5 is NP-hard. Journal of Arti�cial Intelli-
gence Research, 34:675�706, 2009.

[21] Patrick Haslum and Hector Ge�ner. Heuristic planning with time and
resources. In Cesta and Borrajo [8], pages 121�132.

[22] Patrik Haslum. Reducing accidental complexity in planning problems. In
M. Veloso, editor, Proceedings of the 20th International Joint Conference
on Arti�cial Intelligence (IJCAI-07), pages 1898�1903, Hyderabad, India,
January 2007. Morgan Kaufmann.

[23] Malte Helmert. Complexity results for standard benchmark domains in
planning. Arti�cial Intelligence, 143:219�262, 2003.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 71

[24] Malte Helmert. A planning heuristic based on causal graph analysis. In
Koenig et al. [40], pages 161�170.

[25] Malte Helmert. The fast downward planning system. Journal of Arti�cial
Intelligence Research, 26:191�246, 2006.

[26] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and ab-
stractions: What's the di�erence anyway? In Gerevini et al. [15], pages
162�169.

[27] Jörg Ho�mann. Local search topology in planning benchmarks: An empiri-
cal analysis. In B. Nebel, editor, Proceedings of the 17th International Joint
Conference on Arti�cial Intelligence (IJCAI-01), pages 453�458, Seattle,
Washington, USA, August 2001. Morgan Kaufmann.

[28] Jörg Ho�mann. Utilizing Problem Structure in Planning: A Local Search
Approach, volume 2854 of Lecture Notes in Arti�cial Intelligence. Springer-
Verlag, 2003.

[29] Jörg Ho�mann. Where `ignoring delete lists' works: Local search topology
in planning benchmarks. Journal of Arti�cial Intelligence Research, 24:685�
758, 2005.

[30] Jörg Ho�mann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Arti�cial Intelligence Re-
search, 14:253�302, 2001.

[31] Jörg Ho�mann and Bernhard Nebel. RIFO revisited: Detecting relaxed
irrelevance. In Cesta and Borrajo [8], pages 325�336.

[32] Jörg Ho�mann, Julie Porteous, and Laura Sebastia. Ordered landmarks in
planning. Journal of Arti�cial Intelligence Research, 22:215�278, 2004.

[33] Anders Jonsson. The role of macros in tractable planning. Journal of
Arti�cial Intelligence Research, 36:471�511, 2009.

[34] Peter Jonsson and Christer Bäckström. Incremental planning. In European
Workshop on Planning, 1995.

[35] Peter Jonsson and Christer Bäckström. State-variable planning under
structural restrictions: Algorithms and complexity. Arti�cial Intelligence,
100(1-2):125�176, 1998.

[36] Erez Karpas and Carmel Domshlak. Cost-optimal planning with land-
marks. In C. Boutilier, editor, Proceedings of the 21st International
Joint Conference on Arti�cial Intelligence (IJCAI-09), pages 1728�1733,
Pasadena, CA, USA, July 2009. Morgan Kaufmann.

[37] Michael Katz and Carmel Domshlak. New islands of tractability of cost-
optimal planning. Journal of Arti�cial Intelligence Research, 32:203�288,
2008.

RR n° 7505

Where Ignoring Delete Lists Works, Part II: Causal Graphs 72

[38] Michael Katz and Carmel Domshlak. Structural patterns heuristics via fork
decomposition. In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck,
and Eric A. Hansen, editors, Proceedings of the 18th International Confer-
ence on Automated Planning and Scheduling (ICAPS-10), pages 182�189,
Sydnay, Australia, Sep 2008. AAAI.

[39] Craig Knoblock. Automatically generating abstractions for planning. Ar-
ti�cial Intelligence, 68(2):243�302, 1994.

[40] Sven Koenig, Shlomo Zilberstein, and Jana Koehler, editors. Proceedings of
the 14th International Conference on Automated Planning and Scheduling
(ICAPS-04), Whistler, Canada, 2004. AAAI.

[41] Derek Long and Maria Fox. Automatic synthesis and use of generic types in
planning. In S. Chien, R. Kambhampati, and C. Knoblock, editors, Proceed-
ings of the 5th International Conference on Arti�cial Intelligence Planning
Systems (AIPS-00), pages 196�205, Breckenridge, CO, 2000. AAAI Press,
Menlo Park.

[42] Drew V. McDermott. Using regression-match graphs to control search in
planning. Arti�cial Intelligence, 109(1-2):111�159, 1999.

[43] Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant
facts and operators in plan generation. In S. Steel and R. Alami, editors,
Recent Advances in AI Planning. 4th European Conference on Planning
(ECP'97), volume 1348 of Lecture Notes in Arti�cial Intelligence, pages
338�350, Toulouse, France, September 1997. Springer-Verlag.

[44] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks re-
visited. In Dieter Fox and Carla Gomes, editors, Proceedings of the 23rd
National Conference of the American Association for Arti�cial Intelligence
(AAAI-08), pages 975�982, Chicago, Illinois, USA, July 2008. MIT Press.

[45] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-
based anytime planning with landmarks. Journal of Arti�cial Intelligence
Research, 39:127�177, 2010.

[46] Jussi Rintanen. An iterative algorithm for synthesizing invariants. In
Henry A. Kautz and Bruce Porter, editors, Proceedings of the 17th Na-
tional Conference of the American Association for Arti�cial Intelligence
(AAAI-00), pages 806�811, Austin, TX, USA, July 2000. MIT Press.

[47] Mark Roberts and Adele Howe. Learning from planner performance. Arti-
�cial Intelligence, 173:636�561, 2009.

[48] Vincent Vidal. A lookahead strategy for heuristic search planning. In
Koenig et al. [40], pages 150�160.

[49] Brian C. Williams and P. P. Nayak. A reactive planner for a model-based
executive. In M. Pollack, editor, Proceedings of the 15th International Joint
Conference on Arti�cial Intelligence (IJCAI-97), pages 1178�1185, Nagoya,
Japan, August 1997. Morgan Kaufmann.

RR n° 7505

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Background
	An Illustrative Example
	Synopsis of Technical Results
	Analyzing Optimal Relaxed Plans
	Conservative Approximations
	Benchmark Performance Guarantees
	Experiments
	TorchLight
	Experiments Set-Up
	Runtime
	Analyzing Domains
	Predicting Planner Performance
	Diagnosis

	Related Work
	Conclusion
	Technical Details and Proofs
	Computational Complexity
	Analyzing Optimal Relaxed Plans
	Conservative Approximations
	Example Constructions
	Benchmark Performance Guarantees

