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ABSTRACT
In this paper we address the issue of making a program
reversible in terms of spatial complexity. Spatial complex-
ity is the amount of memory/register locations required for
performing the computation in both forward and backward
directions. Spatial complexity has important relationship
with the intrinsics power consumption required at run time;
this was our primary motivation. But it has also impor-
tant relationship with the trade off between storing or re-
computing reused intermediate values, also known as the
rematerialization problem in the context of compiler regis-
ter allocation, or the checkpointing issue in the general case.
We present a lower bound of the spatial complexity of a
DAG (directed acyclic graph) with reversible operations, as
well as a heuristic aimed at finding the minimum number of
registers required for a forward and backward execution of a
DAG . We define energetic garbage as the additional number
of registers needed for the reversible computation with re-
spect to the original computation. We have run experiments
that suggest that the garbage size is never more than 50%
of the DAG size for DAGs with unary/binary operations.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Compil-
ers; F.1.2 [Computation by abstract devices]: Modes
of computation—Parallelism and concurrency

General Terms
Design, Theory

Keywords
Reversible computing, Spatial complexity, garbage minimiza-
tion

1. INTRODUCTION
One of the most important barriers to the performances of
processors is power consumption and heat dissipation. Sev-
eral works consider how to make architectures and programs
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cheaper in terms of energy. Thermal models are designed
based on underlying electronics for architectures, or based
on some software rules for programs, for instance balancing
resources usage [23], or minimizing caches misses, or cutting
unused devices. There is also a radically different approach
that tackles energy issues under the point of view of intrin-
sics thermodynamics of computation and the basis argument
that likewise thermodynamics transformations, irreversible
programs have to dissipate heat. This originates from the
Landauer remark [17] that erasing or throwing away a bit in-
formation must dissipate at least kT ln2 of energy. Therefore
only reversible programs are likely to be thermodynamically
adiabatic. Reversibility means here that no information is
ever lost, it can always be retrieved from any point of the
program.

Reversibility of programs has then been studied by Ben-
nett [2]. A first easy way to make a program reversible
is to record the history of intermediate variables along the
execution, but then the issue of erasing - forgetting - that
information, called garbage, remains. That garbage can be
used as an estimation of the intrinsics energy consumption
of programs and minimizing it is the objective. Bennett[2]
proved that if the input can be computed from the output
then there is a reversible way of computing the output from
the input while eliminating the garbage. This may be at
the price of large space usage for storing all the intermedi-
ate states during the computation. The alternative is to use
checkpoints where the state of computation is stored and
therefore from which the computation can be restarted for
computing subsequent results. This is the very classical is-
sue of trade-off between date storage and data recomputing
in several domains of computer science.

It should be noted that evaluating energy with the size of
garbage is not natural as one would better tend to relate
energy with time complexity. Matherat et al. [20] elabo-
rate on this point. They suggest first that convergences in
state automata are the major sources of information loss
and therefore heat dissipation. Second in the same idea as
convergences they insist on the role of synchronisations in
heat dissipation.

Reversibility of computation has several applications, among
which we can mention bidirectional debuggers [8, 15], roll-
back mechanisms for speculative executions in parallel and
distributed systems, simulation and error detection tech-
niques [6]. There are also algorithms that require a pass
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where intermediate results have to be scanned in reverse or-
der. This happen for instance in reservoir simulation, or for
instance in automatic program differentiation [12]. More-
over reversible processor architectures have already been
designed [14, 10], as well as reversible programming lan-
gauges [10, 18].

In this paper we analyze the reversibility of computations
with two aims. First we want to characterize the intrinsic
reversibility of a program or piece of program based on its
data dependency graph and not on some linear sequence of
instructions. We hope this helps us understanding where
energy bottlenecks arise from in ordinary programs. Sec-
ond, because reversibility is very close to the trade-off be-
tween data storage and data recomputation, we want to ana-
lyze whether reversing operations or a set of operations may
make the compiler problem of data rematerialization easier.
An important hypothesis in this paper is that the opera-
tions that we consider can be reversed, this may concretely
cause several problems that we skim over. We consider only
DAGs (directed acyclic graphs), this means basic blocks in
DDG (data dependency graphs). Compared to other works
we consider possible rescheduling of instructions instead of
a fixed sequence of already scheduled instructions. And the
question that we address is: ”Given a DAG computation
graph with reversible operations, what is the minimum
amount of garbage necessary to make the whole DAG re-
versible?”

Our ambition is therefore modest compared to this major
and important issue of understanding precisely the relation-
ship between physics, information, measurement, observers
in one hand and information theory, computing in the other
hand [11]. We believe however that this work may help op-
timizing scheduling and data storage in applications men-
tioned just before.

The remaining part of the paper is organized as follows. In
Section 2 we explain more precisely our basic hypothesis and
how we relate the problem of garbage minimization to the
problem of register allocation, namely the number of regis-
ters required for reversibly executing the computation DAG.
We give a heuristic algorithm for finding the number of addi-
tional registers (“garbage”) required. In section 3 and 4, we
propose a lower bound based on the decomposition of DAG
into elementary paths and we compare the values lifetime
between reversible and irreversible computing. Systematic
experiments (section 5) with our heuristic algorithm sug-
gests that garbage is never more than n/2 where n is the
operation count in the DAG. We conclude (section 6) by a
discussion on related works as well as our future work on
storage and data recomputing for the minimization of mem-
ory access.

2. COST OF REVERSIBILITY
AND ALGORITHM

In this section, we present our approach and algorithm for
computing the spatial complexity of reversing a DAG. We
consider a DAG of operations, typically the Data Depen-
dency Graph of instructions within a basic block, see the
part (a) of figure 1. Nodes of the graph are instructions de-
noted by the name of the variable carrying the result. This
makes sense as two different nodes need to be treated as

two different variables. We consider only unary and binary
operations and we make the important hypothesis that they
can be made reversible.

2.1 Reversible Operations
A boolean function f(x1, x2, ..., xn) with n input boolean
variables and k output boolean variables is called reversible
if it is bijective. This means that the number of outputs is
equal to the number of inputs and each input pattern maps
to a unique output pattern. Based on that we make the
very rough abstract approximation that the operations in
the DAG are reversible in the following sense: for unary op-
erations, they are bijective so that the operand is uniquely
determined by the result. For example, consider the incre-
ment function, defined from the set of integers Z to Z, that
to each integer x associates the integer y := x + 1. The
inverse function is x := y − 1, easly determined from the
result uniquely. For binary operations, this means that only
one additional value beside the result is needed for recover-
ing both operands from this result and this additional value.
This is typically the case of the basic arithmetic operations,
like addition c := a + b, where (a, b) can be retrieved from
(a, c) or (b, c) by a simple subtraction. Hence the ’+’ oper-
ation is considered as having two operands and two results.

This is only an abstraction and we are aware of a number of
flaws underlying the concretization of this assumption. For
instance the multiply ′∗′ operation needs at least one addi-
tional resulting bit for determining which of both operands
was 0 if the result is 0. There are also data precision is-
sues especially with floating point operations and round-off
problems but we neglect them and count only the number
of data as a measure of memory/register space. We could
also consider the semantics of operations and transform the
operations in order to minimize the space for storing inter-
mediate results. This is for instance done by Burckel et al.
in [7] where they show that the computation transforming n
inputs into n outputs can be (reversibly) performed by us-
ing a storage space not greater than n. Therefore in our ab-
stracted model, when executing a binary operation we have
the choice of memorizing the first or the second operand or
both, provided that the reverse operation is possible based
on the result and memorized operands.

What we want to evaluate is the maximum size of storage
needed to execute the operations of the DAG reversibly in a
forward and backward execution, or in other words we want
to minimize the history required for performing the DAG
reversibly. The additional storage space required compared
to a simple forward execution is our criterion of “energetic
garbage”. With this criterion we want to characterize the
intrinsic energetic cost of the DAG. Compared to the Ben-
nett strategy for minimizing the storage space with check-
points we have the degree of freedom to choose the sched-
ule of operations. Finally our problem is finding a sched-
ule that minimizes the register requirement in a forward and
backward execution. The difference between the bidirectional
execution and the forward execution is called the energetic
garbage.

As an illustration, consider the code segment shown in fig-
ure 1(a) with its corresponding pseudo-assembly code and
dependence graph in which each node corresponds to a state-
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(a) Original (b) Reversible (garbage generation) (c) Reverse

Figure 1: Illustrative example of reversible code and garbage generation.

ment in the code segment. This pseudo code requires only
two registers. Figure 1(b) shows a reversible code that re-
turns the same result as the code in the figure 1(a) and saves
also two intermediate values. This code requires three reg-
isters for the three outputs g, f and c. Figure 1(c) shows
the reverse code and its corresponding reverse graph derived
from the reversible code in figure 1(b). It shows how a re-
verse computation could be perfomed to generate all pre-
vious values. Thus, 2 registers are required in the forward
computation, 3 in the forward and backward computation.
The energetic garbage is 1.

2.2 Algorithm
Like all optimization problems in register allocation it is
likely that garbage minimization is a NP-complete problem.
But we have not proven it. Here we describe a heuristic
that schedules a DAG in the direct order while keeping some
variables alive in order to make the backward computation
feasible. We call garbage the difference between number of
registers in the direct computation and number of registers
in the schedule found in this algorithm.

Starting from the input data, the DAG is scheduled first in
the direct direction and then in the reverse direction and we
are looking for a schedule that uses the minimum number
of registers. Since we consider a DAG, the number of regis-
ters required by a schedule is also the maximum number of
simultaneously alive values during direct and reverse com-
putation. One of the main issues of this work comes from
the need to deal at the same time with the constraint of
the minimum number of registers and with the constraint of
saving values for enabling backward scheduling (reversibil-
ity constraint). Our algorithm decides two kind of informa-
tions: first which intermediate values will be saved in order
to make the reverse computing feasible and second which
successor node will kill the value - and hence will reuse the

same register in the actual register assignment of the direct
computation.

The algorithm scans the DAG G = (V,E) and schedules
instructions in some topological order only in the direct di-
rection. V is the set of nodes and E the set of edges. At
each step the instruction with highest priority is selected.
Algorithm is presented on the following chart.
Input: DAG computation graph.
Output: number of registers required for reversible com-
puting

Figure 2: Scheduling algorithm diagram.

a. Priority
1. The order in which ready instructions are selected affects
the number of registers required and the garbage size.
2. We use a heuristic.
3. Our scheduling is based on minimizing the number of
resources (registers) without time constraint.
4. We favor instructions that have more predecessors with
a minimum of successors in the DAG (this allows to use less
registers)
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5. We favor instructions on the critical path. This will in-
crease the number of calls to the scheduler.
We reuse only registers of the direct predecessors (to pre-
serve information).

b. Labeling
Each node can take one of the following labels:
Active: if the value of a node is already computed and avail-
able in one of the registers.
Passive: any already calculated node that will not be used
in a future computing.
Ready : if the value of a variable is ready to be calculated
and all its predecessors are actives.
Idle: a node that is waiting because one of its predecessors
is still waiting (waiting for all its predecessors to become ac-
tive). Initially all source nodes (nodes without predecessors)
are set to Active, the others are set to Idle.

Labeling rules
Let us consider the functions λ and Ω that define the state
of a node u from the set of global nodes V
λ : V −→ {Active, Passive,Ready, Idle}

u −→ λ(u)
Ω : V −→ {Selected,Not selected}

u −→ Ω(u)
These rules are applied at each stage of calculation.
Γ+G(u) (resp. Γ−G(u)) is the set of successor (resp. pre-
decessor) nodes of node u.
∀u ∈ V ∧ |Γ−G(u)| = 0⇒ λ(u) = active
∀v ∈ Γ−G(u) ∧ λ(v) = active⇒ λ(u) = ready
∃u λ(u) = ready ∧ Ω(u) = selected⇒ λ(u) = active

Stop condition
∀u ∈ V : λ(u) = active ∨ λ(u) = passive
The final number of active nodes is the number of registers
required.
The active nodes represent also the footprint needed for re-
versing the DAG computation.

Selection Algorithm
As an entry, the list of values ready to be calculated
Rule 1: u is the unique successor of v that remains to be
scheduled: u will reuse the register used by v.
if ∃u ∈ V λ(u) = ready {

if ∃v ∈ Γ−G(u)/|Γ+G(v)| = 1 {
Ω(u) = selected;
λ(v) = passive;

} else
if ∃v ∈ Γ−G(u)/∀w ∈ Γ+G(v) ∧ w 6= u ∧ λ(w) =

active {
Ω(u) = selected;
λ(v) = passive;

}}
Rule 2: Among ready nodes, one node with most successors
is selected. For each pair of ready nodes u,v ∈ V
∃u ∀v (u, v) ∈ V λ(u) = λ(v) = ready

if |Γ+G(u)| ≥ |Γ+G(v)|
Ω(u) = selected;

The second rule is applied if the first rule fails to select an
instruction (node). Once we find the selected instruction,
we go the labeling rules.

c. Guarantees
This algorithm ensures that all nodes will be covered, in

Nodes A B C D E F G H I J K L M N O P

Initialization A I I I I I I I I I I I I I I I
Labeling A R R I I I I I I I I I I I I I
Selection - - S - - - - - - - - - - - - -

.......
Labeling P P P P A P A P P P A P A A A R
Selection - - - - - - - - - - - - - - - S
Labeling P P P P A P A P P P A P A P A A

A: Active P: Passive R: Ready I: Idle S: Selected

Table 1: An execution of the algorithm described by
relabeling and selecting rules (corresponding to the
code of example 2 figure 3)

other words, all values will be calculated. At the end active
nodes contain active registers that will be used in the back-
ward generation of all values.

d. Analysis
We can show that the following algorithm allows selecting a
high priority instruction, which consumes less resources, at
least at each computation step, this is a local optimization.
At each computation step only one instruction is selected.
The first rule allows the node who has a predecessor with
one successor or predecessor of degree 1, to run first, this
will not influence any other possible decision, and this node
will reuse the register of this predecessor. The second rule is
applied if the first rule fails to select an instruction. It con-
sists of choosing the variable at the greatest distance from
the result and which has more successors, the idea behind
this is to increase the number of candidates from which the
selected will be chosen. Therefore if we consider the num-
ber of candidates for the selection at step i is NCi = k then
we want that at step i+1 NCi+1 ≥ k. Labeling each cal-
culated node as active will reduce the degree of successor
nodes and increase the priority of neighboring nodes. An
execution of this algorithm on the DAG of the figure 3(b) is
shown in table 1. We will show that for every DAG G, the
final configuration of registers allows the computation of all
intermediate results back to input nodes.

e. Proof
We prove that from the nodes with active state we can find
back all previous values.
At the end of the direct computation, we have only active
or passive nodes, knowing that an active node changes its
state to passive only during the call of the selection proce-
dure and in the back track, an idle node becomes active iff:
∃v ∈ Γ+G(u) λ(v) = active ∧ ∀w ∈ Γ−G(v) v 6= u λ(w) =
active

Proof by contradiction:
Assuming that there always exists a node with idle state
∀ instant t ∃u ∈ V λ(u) = idle =⇒ ∀v ∈ Γ+G(u) λ(v) =
idle ∨ ∃v ∈ Γ+G(u) λ(v) = active ∧ ∃w ∈ Γ−G(v) v 6=
u λ(w) = idle
1. if ∀v ∈ Γ+G(u) λ(v) = idle by recursion we find that
∃u ∈ V/|Γ+G(u)| = 0 λ(u) = idle it’s contradiction, be-
cause we know that : ∀u ∈ V/|Γ+G(u)| = 0 =⇒ λ(u) =
Active (stop condition of the algorithm)
2. if one of its successors in active state which has an-
other predecessor in the idle state: ∃v ∈ Γ+G(u) λ(v) =
active ∧ ∃w ∈ Γ−G(v) v 6= u λ(w) = idle this means
there are two neighbor nodes in the idle state and each one
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(a) 3 address code (b) data dependence DAG (c) register reuse DAG (d) reverse DAG

Figure 3: Example code and corresponding register reuse and reverse DAG

of them waits the other to become active, in other words
both of them were passives at the end of the direct compu-
tation. A node becomes passive only during the call of the
selection procedure; in this case we have either:
|Γ+G(u)| = 1 ∧ |Γ+G(w)| = 1 ∧ Γ+G(u) = Γ+G(w) =
{v} ∧ λ(u) = λ(w) = passive. Which is impossible because
v could not make two active nodes passive.
Let: |Γ+G(u)| = 1 ∧ |Γ+G(w)| > 1 This means that the
state of w was modified from active to passive by another
successor and not v, but as w is always waiting λ(w) = idle,
it implies there is another idle neighbor that it can’t modify
its state and that there is another successor thanks to it, it
took passive state previously.
Let take ui the neighbor of u such that |Γ+G(ui)| > 1 ∧
λ(ui) = passive =⇒ ∃ui+1 neighbor of ui and |Γ+G(ui+1)| >
1∧λ(ui+1) = passive =⇒ ∃ui+2|Γ+G(ui+2)| > 1∧λ(ui+2) =
passive =⇒ .... That leads us to the infinity, knowing that
our graph is bounded (number of nodes is limited), which is
a contradictory.

We have shown that our algorithm at the end of a direct
computation allows to re-browse all of the graph in the re-
verse direction, that means recomputing all intermediate
values. The table 1 shows the execution of the algorithm
on the graph of figure 3.

3. REVERSIBLE DAG AND REGISTER
REUSE DAG - LOWER BOUND

In this section we are seeking for a lower bound on the num-
ber of registers required for a DAG reversible computation.
For that purpose we investigate the degree of register reuse
in the reversible computation and we study its limitations
in relation to the degree of dependency among variables.

Since the aim of reversible computing is the regeneration of
data, some variables - contrary to the conventional comput-
ing - have to be saved even if they are not useful for the
final result of (direct) computation. Therefore reuse is lim-
ited either between (a) independent values or (b) indirectly
dependent values.

Register reuse between independent values. In-
dependent variables correspond to variables for which no
dependency path between both exist. They correspond to
independent information. In contrast reuse chains [5] cor-
respond to sequences of variables that can share the same
register in some computation. Since we want to be able to

recover all intermediate values, this implies that for each
reuse chain we need at least one live variable at each step
of the computation. This means that the number of chains
in a minimal decomposition is a lower bound for register re-
quirement in reversible computing. This is actually also a
consequence of the Dilworth theorem.

Theorem 1. The maximum number of independent ele-
ments in a partial order is equal to the number of chains in
a minimal decomposition [9].

For the graph of figure 3(b) this number is 4.

Register reuse between dependent values. For de-
pendent values the main difference in reversible computation
compared to direct ordinary computation is that we can not
simply reuse the register of a killed value because of conver-
gences in the graph. A convergence is a binary operation
which has two operands and one result. This corresponds to
loss of information that has to be stored for backward com-
putation. This means for instance that stronger constraints
for reuse have to be met for reuse chains than just ordinary
chains. At least there must be an dependency edge between
both operations in order that the second one can reuse the
register of the first one. Therefore we need to consider de-
composition of the graph into paths instead of chains. We
prevent that a path contains a sub-path for the same reason
(presence of a convergence).

The measurement of register requirement uses a Reuse DAG,
which indicates which instructions can reuse a register used
by a previous instruction. We use the same algorithm of the
construction of the Reuse DAG for registers, proposed in [4],
but the relation R that allows a value to reuse the register
of a killed value requires that the defining instruction of the
new value be the killing instruction of the previous one, in
other words, it should be the last instruction that uses it.
Therefore all allocation chains of the reuse DAG are paths
in the original DAG.

In figure 3(a) we show the 3 address code for a basic block,
the data dependence DAG using statement labels for the
code in figure 3(b), and the register reuse DAG in figure 3(c),
and reversible computing DAG in figure 3(d). In this exam-
ple, at most four instructions can be executed in parallel
because the number of chains in the minimal decomposition
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(a) data dependence DAG (b) values lifetime (c) number of live values at each iteration

Figure 4: Example comparing number of live values and their lifetime between reversible and irreversible
execution

is four. The values computed by independent statements
D, E, F and G can all be alive at the same time and thus
cannot share registers. Likewise, the values computed by J,
K, L and M couldn’t share registers since they are in sep-
arate chains, so there is no register reuse between K and
M or K and G -contrary to the direct computation, nev-
ertheless they are independent and they haven’t the same
live range. G and M are indirectly dependent, at the point
of use of M, G is already dead and could normally share
the same register. But we prevent this, because we need G
and I for recomputing F. In this example there are five con-
vergences in the graph, which means a loss in information
at five points during computing, so we have to save addi-
tional information which is one of the inputs at each con-
vergence, we can determine a lower bound of the size of this
information by finding the minimal number of paths in the
minimal decomposition of the reuse DAG. The sets of nodes
{A,B,D.H, J,N, P}, {C,F, I, L,O}, {E}, {K}, {G} and {M}
are all paths in the graph, and each end of each path can
define an information that should be saved for the backward
computation. The set of these paths is called register-reuse
DAG because all nodes of a path are assigned to the same
register. The reuse DAG chains those values that are not
simultaneously live and can thus share a register, without
any violation of information. Different paths are assigned
to different registers, and therefore the number of paths is
the number of registers. Thus, the register reuse DAG in
figure 3(c) requires at least six registers. Therefore, by The-
orem 2 a minimum decomposition of a DAG into elementary
paths that don’t contain any sub-path gives a lower bound
to the register requirement for a reversible execution.

Theorem 2. The minimum number of registers required
for a reversible execution of a program is bigger or equal than
the number of elementary paths in a minimal decomposition
of the corresponding DAG.

4. REVERSIBILITY AND VALUES
LIFETIME

There are cases when conventional and reversible computa-
tions consume the same number of registers, but values life-
time are not the same. As an example, consider the DAG
in figure 4(a). Both of the executions -reversible and non-
reversible, require 4 registers for the computation. A regis-

ter is used to hold a value from the time that the defining
instruction executes until the value is killed by the last in-
struction that uses it. Figure 4(b) shows how a value that
should be killed and frees a register, stays for the whole
computation.

We try to compute the number of live values at every com-
putation step. Since we allow only one instruction to be
executed at each computation step, the curve is either con-
stant or increasing in the reversible computing, figures 4(c)
and 5; because we shouldn’t get rid of a value if it’s not
directly replaced by another otherwise we will lose unrecov-
erable information.

Figure 5: Example comparing the number of live
values at each iteration step for the same code in
reversible and irreversible execution (corresponding
to the code of example 2 figure 3)

This can define another problem in the reversible computing:
How to keep the minimum garbage with a shortest lifetime
possible? We can deduce the minimum number of registers
required for a reversible execution of a program from a direct
execution by computing the number of live values at each
step. The idea is to add the positive difference of the num-
ber of live values between two successive iterations in each
computing step. If we take Ψi the number of live values at
the iteration i with i ∈ [1, N - Ψ0] and N is the graph size
or the number of nodes and Ψ0 is the number of sources in
the graph, q is an integer. This simple code can deduct the
number of registers required for the reversible execution.
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q = Ψ0;
if(Ψi+1 −Ψi > 0)

q+ = Ψi+1 −Ψi;

In the reversible computing, we should not kill a datum if
we have no other way to recompute it unlike in conventional
computing. However, each increase of the number of live reg-
isters means that new values are generated and no one was
killed. The possibility to clean garbage data (garbage-free)
to free registers, can be done by a backtrack to recompute
intermediate values or the input data.

5. EXPERIMENTAL RESULTS AND UPPER
BOUND FOR THE GARBAGE SIZE

We come back to our algorithm defined in section 2. In order
to understand more about what this criterion of garbage is,
we made two kind of experiments. First we generated all
graphs of some (small) fixed given size and second we used
a randomly generated set of larger graphs. For exhaustive
or random generation of DAGs we represent DAGs by their
adjacency matrix, namely a boolean matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position
(vi, vj) according to whether vi and vj is an edge in the DAG
or not. In both cases we computed the garbage as explained
in previous sections.

From our experiments of small graphs we exhibited critical
graphs for which garbage is maximal. These are the graphs
of figure 6(b), where indeed according section 3 garbage is at
least n/2 because a partition into elementary paths results
in at least n/2 paths if the DAG has n nodes.

(a) garbage size in function of graph size (b) critical graph

Figure 6: upper-bound to the garbage size

In [20] where reversibility of automata instead of DAG is
considered, they argue that energetic garbage is related to
convergences in automata - that result in loss of information.
In this case our critical graphs do not have the maximal
number of convergences. Maximal number of convergences
correspond to DAG with only binary operations. In our case
if we want to maximize the garbage size we have to maximize
the number of convergences without increasing the number
of register requirement in the direct computation. At least
two registers are needed to create a convergence in a graph,
so we fix the register requirement to two, and we try to cre-
ate a maximum of convergences. We can observe that each
increase of the number of convergence of one corresponds
to an increase of the graph size of two, which explains the
upper-bound of the garbage size (50% of the graph size).

This n/2 upper-bound is actually corroborated by experi-
ments on randomly generated larger graphs. Figure 6(a)
reports the maximum garbage obtained in percentage of the
number of nodes. One can see that this number is never
more than 50%.

Figure 7 reports also an histogram of garbage size for differ-
ent size of graphs.

Figure 7: Number of graphs randomly generated
according to the garbage size

6. RELATED WORKS AND CONCLUSION
Several works have addressed reversibility at the software
level. There are basically two main approaches. Since writ-
ing reversible programs by hand is not quite natural, some
works are devoted to the design of reversible programming
languages [1], [18] Frank’s R [10]. The alternative approach
is to convert existing programs written in an irreversible
programming language into equivalent reversible programs.
An irreversible-to-reversible compiler receives an irreversible
program as input and reversibly compiles it to a reversible
program.

When one converts irreversible programs into reversible ones
one has to face the issue of trading time complexity with
data storage complexity. One elegant method was proposed
by Bennett [3] where he models the former problem with a
pebble game. Pebbles represent available data at some point
of the program. One can add pebbles on some node when
there is a way to compute that node with data identified
by a pebble in a previous node. One can remove pebbles if
there is an alternative way to recompute data required in this
node. This is therefore an abstraction of reversible compu-
tations that allows analysis of the space and time complexity
for various classes of problems, but this simulation operates
only on sequential list of nodes. This sequence is broken hi-
erarchically into sequences ending with checkpoints storing
complete instantaneous descriptions of the simulated ma-
chine. After a later checkpoint is reached and saved, the
simulating machine reversibly undoes its intermediate com-
putation, reversibly erasing the intermediate history and re-
versibly canceling the previously saved checkpoint. Bennett
chose the number of pebbles large enough (n = O(logT )) so
that m the number of steps become small. Other works such
as [16] have also considered the reversible pebble game.

In [22], Vitanyi gives a time-space tradeoff for an irreversible
computation using time T and space S to be simulated re-
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versibly in time T ′ = 3k2O(T/2k)S and space S′ = S(1 +
O(k)), where k is a parameter that can be chosen freely
0 ≤ k ≤ log(T ) in order to obtain the required tradeoff
between reversible time T ′ and space S′. Naumann [21]
considers the problem of restoring the intermediate values
computed by such a program (the vertices in the DAG) in re-
verse order for a given upper bound on the available memory,
while keeping the computational complexity to a minimum.
He shows that the optimal data-flow reversal problem is NP-
complete [21] but he doesn’t consider reversible operations
and seeks only reversible behavior for recovering intermedi-
ate values in reverse order. Griewank also in [12] presents an
optimal time-space tradeoff algorithm in the context of au-
tomatic differentiation. In [19] it has been showed that the
minimum number of garbage bits required to make a boolean
function reversible is dlog(M)e, where M is the maximum of
number of times an output pattern is repeated in the truth
table. However, traditional techniques for bi-directional ex-
ecution are not scalable to all classes of problems.

Conclusion
We have presented an analysis of the number of registers
required to make a DAG computing graph reversible. We
define the energetic garbage as the additionnal number of
registers required for computing a forward and backward
execution of the graph with respect to the simple forward
execution. We gave a lower bound as the size of the decom-
position of the graphs into elementary paths and through
our experiments, we found that the garbage size does not
exceed 50% of the program size - for DAG of unary/binary
operations. However, values lifetime is shorter in a direct
computation. A natural followup of this work would be to
integrate this register allocation algorithm in a reversible
compiler like the RCC -Georgia Tech’s reversible C code
compiler [13] in order to compare the size of generated codes
with existing reversible programs and memory usage. But
we also want to analyse more deeply in computation graphs
the data rematerialization for recomputing data instead of
reloading from memory - possibly after having spilled them
in memory, in the presence and exploitation of reversible
operations.

It is amazing to observe that in code optimization on current
processors, minimizing power consumption amounts most
of the time to minimizing the number of memory accesses,
cache misses, etc. Therefore it was quite expectable that this
thermodynamics view of computation leads to trade off be-
tween storage and recomputing. Understanding more thor-
oughly the relationship between variables of a computation
graph in terms of mutual information between variables is
our next step.
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