N

N
N

HAL

open science

High Performance Hydraulic Simulations on the Grid
using Java and ProActive

Guilherme Peretti Pezzi, Denis Caromel, Evelyne Vaissié, Yann Viala, Bruno

Grawitz, Frédéric Bonnadier

» To cite this version:

Guilherme Peretti Pezzi, Denis Caromel, Evelyne Vaissié, Yann Viala, Bruno Grawitz, et al.. High
Performance Hydraulic Simulations on the Grid using Java and ProActive. [Research Report] RR-

7508, INRIA. 2011. inria-00555866

HAL Id: inria-00555866
https://inria.hal.science/inria-00555866

Submitted on 14 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00555866
https://hal.archives-ouvertes.fr

%I 1IN RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

High Performance Hydraulic Simulations on the
Grid using Java and ProActive

Guilherme P. Pezzi — Denis Caromel — Evelyne Vaissié — Yann Viala — Bruno

Grawitz — Frédéric Bonnadier

N° 7508

January 2011

__ Distributed Systems and Services

apport
de recherche

ISRN INRIA/RR--7508--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ‘ IE‘(I N RIA SOPHIA ANTIPOLIS - MEDITERRANEE

ET EN AUTOMATIQUE

High Performance Hydraulic Simulations on the
Grid using Java and ProActive

Guilherme P. Pezzi |f|, Denis Caromel T, Evelyne Vaissi¢ * , Yann
Viala* , Bruno Grawitz* , Frédéric Bonnadier*

Theme : Distributed Systems and Services
Networks, Systems and Services, Distributed Computing
Equipe-Projet Oasis

Rapport de recherche n° 7508 — January 2011 — [19| pages

Abstract: This document presents the work of redesigning a legacy hydraulic
simulation software developed by the Société du Canal de Provence in order to
solve its performances issues using Grid Computing and also to enable interac-
tions with newer systems used in the company.

Key-words: water distribution networks, hydraulic, hydrodynamics, simula-
tion models, java, HPC computing, grid computing

* Société du Canal de Provence et d’aménagement de la région provencale
T INRIA Sophia-Antipolis - Université de Nice Sophia Antipolis

Centre de recherche INRIA Sophia Antipolis — Méditerranée

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Simulations hydrauliques de haute performance
dans la Grille avec Java et ProActive

Résumé : Ce document présente le travail de rénovation d’un logiciel de
simulation hydraulique développé par la Société du Canal de Provence. Le but
est d’en augmenter les performances en termes de temps de calcul en utilisant des
grilles informatiques et de permettre son intégration dans les outils du systéme
d’information de la société.

Mots-clés : réséaux de distribution d’eau, hydraulique, hydrodynamique,
modéles de simulation, java, calcul de haute performance, grilles informatiques

High Performance Hydraulic Simulations using Java and ProActive 3
Contents
(1__Introduction| 4
2 Simulation modell 5
BT OVervIew] . . v v v oo e e e 5
2.2 Equipments| o oo 5
-3~ Flow conservation equations]o oL 6
2.4 Head loss equations|.o oo 0oL 6
2.5 Linearizing head loss values| 7
2.6 Sample network|. oo oo 7
[3 Choosing a linear system solver| 9
B.1 Javasolversl 9
8.2 Fortran solver| 9
B3 Performanceresults. 9
4_Simulation featuresl 11
4.1 _Demand scenariosl vt e e 11
4.2 Pump profiling] o 11
4.3 Pressure driven analysis| oo 12
|5 AGOS Project use case 13
5.1 eploying AS & SEIVICE|+« . . e e e e e e e 13
5.2 Sequential benchmarks|.o 00000000 13
0.3 Grid execution with ProActivel 13
6 Results 15
GBI _Valldationl - . v v v 15
6.2 Topology analysis|. oo o000 15
6.3 Convergence optimization| 16
[7_Final considerations and future workl 18

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 4

1 Introduction

The Société du Canal de Provence (SCP) is a company responsible for build-
ing and maintaining water distribution networks (WDN). For this purpose the
company uses extensively a simulation software called IRMA. IRMA started
being developed the SCP in 1977 and it implements a demand model (Débit de
Clément) [8] that was developed to estimate on-demand irrigation consumption
behavior.

IRMA was written first in Fortran 77, it was later converted to Fortran 90
and nowadays it is very difficult to implement new features or interactions of
this legacy code with current technologies deployed at the SCP. IRMA had also
some performance limitations due to the growth of its networks and maintaining
this software became too expensive because of the lack of qualified Fortran
developers.

For these reasons the project of redesigning IRMA started, with the goal
of building a new simulation engine using up-to-date technologies, allowing to
overcome the performance issues and to deliver new features for the users.

This paper will present the development process of this new tool written in
Java, highlighting the challenges of migrating a scientific Fortran application
to a modern object oriented environment as well as the performance results
obtained on the Grid using the ProActive [6] Middleware.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 5

2 Simulation model

IRMA underlying engine computes pressures, flow and head losses in piped
water distribution networks. In top of that, there are other layers for modeling
equipments, demands, tank state over time. Most IRMA features are very
similar to EPANET [12], which is extensively used for WDN simulation, but
some features are specifically designed to fit SCP’s needs and methodologies.

2.1 Overview

The mathematical model used by IRMA is based on the Kirschoff’s laws (com-
monly applied to circuits). These laws are used to create a set of equations that
are divided in 3 groups:

e First group of equations represents the flow conservation at the nodes:
sum of the flows in each node must be zero.

e Second group represents the meshes’ head loss equations: sum of head
losses from the first to the last node in each loop must be zero.

e Third group represents the head losses in the paths between tanks: head
loss in each path between two tanks must be equal to head difference
between first and last tank.

The first group is filled with linear coefficients but second and third groups
contain non linear elements and must be linearized in order to be solved using
traditional equations solving algorithms (Sec. [2.4).

IRMA determines initial flow values for each pipe and then calculates the
head in each node. The resolution is then performed iteratively by applying the
Kirschoff’s laws to calculate the resulting flows and then updating the heads
based on these new flows. This process is repeated until the sum of all differences
between input and result flows are smaller than a determined convergence value
or until a maximum number of iterations is performed (without reaching a stable
state).

2.2 Equipments

Most, networks have equipments in order to give satisfactory performance, such
as pumps, pressure regulators and flow limiters. IRMA is able to represent these
equipments and also as a tool for studying the conception of new equipments in
an existing network. Here are some examples:

Pumps: are usually modeled by giving a negative head loss value to the
concerned pipe. Pumps can have fixed or variable speeds and can be described
for example by it’s equation (a + b.Q + ¢.Q?), imposed flow or head value.

Pressure regulators: are used to keep the pressure above/below a certain
value. They can be upstream or downstream and are modeled by adjusting the
head loss on the concerned pipe until the criteria is respected.

One-way valves: are modeled by closing the pipe whenever IRMA detects
a flow going into the wrong direction.

IRMA can also model other structures such as singular/differential head
losses, flow regulators and closed pipes. New equipments can be easily modeled

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 6

simply by implementing how to calculate its head loss coefficient or by extending
an existing equipment.

2.3 Flow conservation equations

Each node is represented in the linear system by one equation that defines its
connections with all other pipes: assigning 1’ to represent a connection and 0/
otherwise. These equations represent flow conservation at the nodes, therefore
the system’s second member will express the demand in each node.

Since each pipe is usually connected to a maximum of 3 other pipes and the
system is built using mostly flow conservation equations, the resulting matrix
will be sparse.

The remaining equations describes the head loss in meshes and path between
tanks, as explained in next section.

2.4 Head loss equations

The head loss (J) in each pipe is calculated in function of the flow (Q) and is
given by the formula:

J(Q) = —(a+b.Q+cQ?) +a.Qf+ D.Q?
where a, b, ¢ represent pump coefficients (if it exists), « represents linear head

loss coefficients and D represents singular head loss coefficient.

This head loss expression is continuous and derivable. Therefore we can
write, with @ = Qo + AQ and J'(Qp) = (%)QO:

J(Q) = J(Qo) + J'(Q0).-AQ = (J(Qo) — Qo-J'(Qo)) + J'(Qo).Q

Head loss in a mesh

The sum of all head losses in a mesh is null. In a mesh we have J(Q) = 0,
therefore:

> J'(Q0).Q = =3 (J(Qo) — Qo.J'(Qo))

First member . X = Second member

This formula will be used to write one equation for each mesh in the network.

Head loss in a path between tanks

In these path equations the sum of all head losses in each path is equal to the
head difference between the two tanks. In each path we have J(Q) = AH,
therefore:

> J(Q0)-Q == (J(Qo) — Qo-J'(Qu)) + AH

This formula will be used to write one equation for each 2 tanks in the
network. If a network contains ¢ tanks, there will be £t — 1 tank equations in the
system.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 7

2.5 Linearizing head loss values

The methods for expressing head losses usually contains non linear elements in
its formulas and thus they must be linearized in order to build the system of
linear equations. IRMA can use use different methods for calculating the head
loss: Williams/Hazen and Lechapt/Calmon and Colebrook.

For example, given the Colebrook equation:

1 /D 2.51
Jr = -2 (47 + 2%
where f is the Darcy friction factor, € is roughness height, D is the pipe diameter
and Re is the Reynolds number. Head loss values (J; and J3) are calculated

with this formula using two reference flow values. Then, a linear head loss
coefficient « is determined by the equation:

o= (27T = VT)2 (1 = YDy

After obtaining the linear coefficient «, the following equation is used for
calculating the head loss:

J(Q) = a.Q?

Finally, matrix’s head loss equations (meshes and path between tanks) will
be filled using this formula:

J'(Qo) = J(QoJrhIZ*J(QO)

where h is a constant small value.

2.6 Sample network

This section presents a sample network containing the basic elements modeled
by IRMA and its equation system.

1]

Figure 1: Sample network with 7 nodes, 8 pipes, 2 tanks and 2 meshes.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 8

Figure[[]shows a diagram of this network, nodes 0001 and 0006 are tanks and
there aren’t any equipments. The meshes are formed by the nodes {1 — 0004}
and {0002 — 0003 — 0004 — 0005}.

1 1 1 0 0 0 0 0 1|2 0]
0 0 0 1 -1 0 0 0 2, 0
0 —1 1 0 1 -1 0 0 o, 0
0 0 0 0 0 1 -1 0 g, _ 0
0 0 0 0 0 1 -1 —1 ol | o0
0 -5.82813 -5.82813 0] 0 0 0 o.| |-1-47132
0 0 0 612.153 -612.153 -58.2814 -58.2814 0 o.| |-53.3477
5.82813 5.82813 0 612.1526 6121526 0 0 -58.2814 & -50.3808
| o,]

Figure 2: Linear system that represents the sample network in a given iteration.

Figure [2] shows the equation system that represent network from Figure [i}
Lines 1 to 5 represent connections among ordinary nodes and since there’s no
consumption second member is always equals to 0. Lines 6 and 8 represent
meshes equation and line 8 represents the path equation between the 2 tanks.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 9

3 Choosing a linear system solver

Since IRMA’s resolution method relies on an iterative simulation its performance
will heavily depend on the linear system solving engine. This section presents
the linear solvers studied and their performance.

3.1 Java solvers

The former Fortran solver implements a direct method for solving the linear
system and for this new version we tried to use more recent iterative methods
that are known to be more efficient. Several solving and preconditioning meth-
ods were tried, using 3 different Java Numerical Libraries: Jama [4], Colt [3],
MTJ [5]. Unfortunately none of these methods was able to solve all of our use
cases, some methods partially succeeded but presented convergence problem in
some cases.

After obtaining these results we decided to continue using a direct method
for solving the system, more specifically the LU Decomposition. Besides the 3
libraries already mentioned, a test was performed with a Java library [2] that is
a translation of the Fortran BLAS implementation, which gave the best results
among the tested dense matrix solvers.

Even if these solvers give correct results, none of them implement sparse
matrix storage when using direct methods. This can be acceptable for solving
networks with up to 1.000 pipes but cannot scale much further. Since our
networks that can have up to 15.000 pipes none of these libraries could be
adopted.

3.2 Fortran solver

We finally decided to fall back to the original solution, by integrating the solver
used in the Fortran to the Java code. This Fortran library [9] was written at the
Yale University and it implements the LU Decomposition with sparse matrix
storage. This package also allows the reuse of pivots, what can dramatically
speed up our simulation because we need to solve several times our systems and
the pivots rarely change among the iterations.

In order to use this Fortran library from Java we used native calls using JNI
(Java Native Interface). Since JNI does not allow direct access to Fortran code
from Java, a C++ interface was written to wrap the Fortran library. The main
drawbacks of this approach are reducing the portability of the Java code and
complicating the compilation process, but the code was successfully deployed in
Windows, HP-UX Unix and Linux.

This library takes as arguments the list of system’s pivots and the matrix
stored using the Yale sparse matrix format. Therefore the last requirements for
using this library are to search the pivots before first iteration (also after a few
particular cases, e.g. when a pipe is closed between two iterations) and write
the matrix respecting Yale’s compressed matrix storage format.

3.3 Performance results

This section presents the performance results of the previously mentioned solvers
when simulating the network with 1.763 pipes called "TAMAGNON LA MARO-

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 10

NNE LES PLAINES". These tests were performed in a Desktop PC running
Linux except for the Fortran version that was executed in the production HP-UX
Unix server.

9
8
7
W JAMA
c 6 [Colt
E 5 [Colt optimized
g [BLAS Java
= 4 M Fortran Yale (Unix)
3 O Java Yale
2

Figure 3: Execution time of a network simulation using different solvers in a
Linux machine and the former IRMA Fortran version executed in a HP-UX
machine.

Figure [3] shows the execution times: Jama, Colt and Blas are pure Java
solutions, Fortran Yale is pure Fortran and Java Yale is a mixed Fortran/Java
solution (as explained in Sec. [3.2).

In Colt optimized the results come from a modified library version where we
adapted the LU Decomposition in order to save the pivots found on the first
iteration and reuse them in the following iterations.

At this point, BLAS Java presents acceptable performance for being a 100%
Java solution but lacking sparse matrix storage it does not scale for simulating
networks containing more than 3.000 pipes.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 11

4 Simulation features

This section presents some of the most important simulation features offered
by IRMA. These features can be used to calculate peak demand, maximum
pressures, the impact of adding new clients to existing networks, extended period
simulation (tank design), to design new pumps and also other equipments.

4.1 Demand scenarios

IRMA can perform different kinds of simulation according to the user’s needs
and adopt different consumption scenarios if necessary. In order to calculate
the maximum pressure that can be obtained in each node, a scenario without
consumption will be simulated.

If we want to calculate the pressure obtained in each node where all the
demands are known, a scenario with only continuous flows will be adopted.

SCP’s customers can be domestic, rural and industrial, and their demands
are not known beforehand. For these networks another type of scenario will be
calculated using a probabilistic approach. A method was developed for calculat-
ing the flow taking into account SCP’s customers demand and is called Débit
de Clément , more detail about this model can be found in [8] and [II].

Basically, this method divides all the offtakes in groups of the same class and
simulates iteratively these groups using for each individual offtake considering
its probability of use. This probability can be assigned directly to one customers
or can be taken from its probability zone (for example rural regions with the
same type of crop).

4.2 Pump profiling

TRMA can also be used to project new pumps in a network. Pump profiling
is performed first by defining a fixed amount of flow (demand) objective val-
ues, varying from the minimum demand that can be observed (only continuous
flows) up to a demand that is equivalent to 25% more than the estimated peak
consumption.

Second step is to generate the possible offtake scenarios that will reach each
objective flow value. These scenarios could be generated exhaustively in net-
works containing only a few offtakes, however in most networks this is not
possible and for that reason they will be randomly generated. The number of
scenarios will be calculated in function of the number of offtakes, with a mini-
mum of 250 scenarios in order to guarantee a minimum sample size in case of
networks with a small number of offtakes.

Finally, all these scenarios will be simulated and the resulting value for each
scenario will be the required head in the node where the pump will be placed
in order to provide the guaranteed pressure to all clients. All this data will
then gathered to plot one graph where each line represents the required head to
satisfy a % of scenarios.

Figure [displays a sample result of this simulation in an existing network,
objective flows are represented in the z axis, required head in the y axis and
each line represent a % of scenarios that are satisfied.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 12

460

450
= 440
E
=
& 430 — 80%
= — 8505
E 420 90%
El — 9505
o] — 990,
@ 410

400

390

218 1995 3293 4882 6426 8036 956 111.13

Flow (Vs)

Figure 4: Pump profiling in the "Boutre" network.

4.3 Pressure driven analysis

The demand is usually fully satisfied under normal pressure conditions, but
in scenarios with low pressures modeling the demand independently from the
pressure is not realistic and may often lead to negative pressures in the results.

The alternative for demand driven analysis is to take into account the pres-
sure obtained in each point in order to estimate the actual demand. There are
several approaches for performing this analysis, for example [10] and [7] where
it is presented an extension to EPANET to perform pressure driven analysis.

In IRMA the user can associate to each node a nominal flow value Q,, and a
couple of bounding pressure values Py and P;. The estimated flow @ is obtained
as follows:

e If pressure P is between the bounding pressure values [Py, P;], flow @ is

taken as a fraction of @, equals to [g __I;%]%

o If P is lower than Py, Q) is taken as 0

o If P is higher than P;, flow @ is taken as:

Q,, if there’s a flow limiter

[11;111;;1]]%.@" if there’s no flow limiter

These coefficients will be iteratively calculated in function of the obtained
pressures, until convergence is reached.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 13

5 AGOS Project use case

Rewriting IRMA was done as part of the AGOS Project (Architecture Grille
Orientée Services) EI, a project that provides a Service Oriented Architecture
(SOA) Framework for deploying and running applications on the Grid. One
of the main reason for choosing Java as new programming language for IRMA
is to be able to easily integrate with the AGOS infrastructure. This section
presents the work done with IRMA as use case for validating AGOS framework
and performance results obtained in the Grid using the AGOS IRMA prototype.

5.1 Deploying IRMA as a service

IRMA is a standalone Java application that processes an input file, simulates
the network and generates an output file to write the results.

First step for integrating IRMA in the AGOS infrastructure is to wrap the
Java application as a service that processes the input file and gives as result the
simulation’s results. This service will then be made available to the users by
deploying it on the Grid as a web service using Apache TomCat [I].

This way users are already capable of launching simulation one by one, but
we also want to provide a way to launch a batch of simulations at once. For doing
that we adapted one template service provided by the AGOS infrastructure
for performing parameter sweeping. This new service will basically take as
input a folder containing several IRMA input files and will automatically launch
separately each file and then will retrieve all result files back to the user.

The other key elements behind this infrastructure are the ProActive Re-
source Manager, used to build and manage the Grid, and the ProActive Sched-
uler that is used to process and dispatch the tasks among the available resources.

5.2 Sequential benchmarks

Before benchmarking IRMA using the Grid, it’s necessary benchmark sequen-
tially both Fortran and Grid enabled Java versions in order to measure IRMA’s
performance evolution since the project started.

Figure [5| presents the execution times using original solution on the Unix
server and the new solution on a Linux desktop machine. This set of networks is
very representative regarding the network size, they contain the largest networks
simulated in the SCP (with 1.845 up to 10.395 nodes).

Due to an inefficiency problem in the Fortran version, in these tests the
Fortran version does not perform a full analysis of the network topologies, it
uses cached results instead. In the new version this problem has been solved,
more details in Sec. [6.21

The purpose of this test is to guarantee there are no performance regressions
when using standard user desktop machines with the new version, regarding the
Fortran version that currently runs only in the dedicated HP-UX Unix server.

5.3 Grid execution with ProActive

This section presents IRMA’s performance in a Grid infrastructure using the
ProActive Middleware [6]. ProActive enables us to easily build a Desktop Grid

Thttp://h30423. www3.hp.com/?r_story=c4ec832e00c43f2791a9e4f15189d1cd5a91f819

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 14

16
14
12

10
W Fortran Unix
l M Java Linux
0 I_ . ‘ B =

RODB+ RO093 R155 RO095 R106 R136 R001 RO75
MNetwork

Time (min)
%] F=y (o] o

Figure 5: Execution time of networks selected for the AGOS Use Case.

using the machines available in the local network. We can then use these re-
sources to run instances of application in any machine transparently to the user.
This means ProActive will automatically transfer user files before execution and
retrieve results back to the user machine after executing.

25

20

0
1 2 3 4

Number of machines

[y
o

Time (min)
=
o

Figure 6: Execution time of 119 networks on the Grid using up to 4 machines.

Figure [6] shows the execution time when simulating a batch of 119 networks
using 1 machine up to 4 machines. Total sequential execution time is around 22
minutes and with 4 machines we reach 11 minutes, which is already close to the
longest sequential execution time since the largest network runs in 7 minutes.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 15

6 Results

This sections explains how the development of IRMA was validated and then
presents some of the improvements obtained regarding the original Fortran ver-
sion.

6.1 Validation

The first phase when validating the Java version consisted in comparing new
version’s results with the Fortran version. This validation is performed au-
tomatically by a module that can (optionally) run the former IRMA version,
read the Fortran results and compare with the new version the following val-
ues: heads, flows, maximum pressures and head losses. This module reports if
there’s any difference superior to 1% in any of these values. We have simulated
all networks from the 'Maintainance’ department and currently this test passes
for 108 networks out of 115.

IRMA’s results have also been compared with results obtained with EPANET
by using a module that read EPANET’s .inp files. This module is able to read
network topology, but currently it does not treat other sections (like equip-
ments).

Table 1: Flow differences between EPANET and IRMA in a sample network.

Pipe Flow (1/s) Difference
Node 1 [Node 2 | EPANET | IRMA | 1/s[%

-683.87 | 683.06 | 0.81 | 0.12
341.93 | 341.53 | 0.40 | 0.12
-341.93 | -341.53 | 0.40 | 0.12
-95.10 94.99 | 0.11 | 0.12

95.10 94.99 | 0.11 | 0.12
-588.77 | -588.07 | 0.70 | 0.12
-588.77 | -588.07 | 0.70 | 0.12
-683.87 | -683.06 | 0.81 | 0.12

— RN W R O H O
N W ot

In order to compare both simulators, a sample network was designed using
EPANET, exported through .inp file and read by IRMA. In this test there are
some differences in flow results, but head and head loss values obtained are
exactly the same in both simulators. Table [I] shows the differences between
EPANET and IRMA flow results, they vary in 1/s but the difference in % is
constant.

6.2 Topology analysis

Redesigning completely IRMA brought the possibility to improve it in many
ways. The improvement that most impacted the users is the topology analysis
phase. Execution time has been significantly reduced by simplifying Fortran
data structures and by optimizing the algorithm that performs the topology
analysis.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 16

70

60

50

40

30

Time (min)

20

i - -
0

Network A Network B Network C

Figure 7: Time required to perform topology analysis using the IRMA Fortran.

Figure [7] represents the time required to analyze the topology of 3 networks,
from 10 minutes up to 1 hour. Some cases, heavily meshed, can even require days
to be analyzed. As a workaround, the analysis is cached after first execution so
that the user does not need to wait for this analysis in every execution, as long
as the topology is not modified.

In the new version, topology analysis has been optimized and simplified using
modern Java data structures to represent the graph in a way that topology
analysis now takes less than 1 minute for any SCP network. We no longer need
to cache topology results and the user can always modify the network structure
with no impact in execution time.

6.3 Convergence optimization

Most networks reach stability after a few iterations when simulated with TRMA.
However, it may also happen that several iterations are required and in some
cases we never reach a stable state. This can be caused by several reasons, in
most cases the equipments are responsible. The way equipments are modeled or
the interaction of two or more equipments may cause new adjusts in coefficients
in every iteration indefinitely.

Figure [8| shows the number of iterations performed before reaching a stable
state in all networks from the ’Maintainance’ department, excluding pathological
cases that do not converge at all. The main consequences of not converging are
the loss of precision in the results and the increase of execution time because
IRMA performs a maximum amount of iterations.

The former IRMA version has set as 500 the maximum number of iter-
ations. In some simulations with convergence problems this limit is reached
several times, because the simulation is performed for each class of offtake when
calculating the peak consumption. In these cases where stability is not reached,
simulation time is much longer and accurate precision is not guaranteed even
after 500 iterations.

In order to decrease execution time in these cases we have decided to change
the maximum number of iterations, like in EPANET for example, where this
limit can be set by the user. Figure 0] compares the execution time of 3 different
networks with convergence problems when reducing this limit from 500 to 50

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 17

100

% Covered networlks
=

85 R P E D H D E R PG R P

Number of tterations

Figure 8: Number of iterations required for converging SCP’s networks.

5
1
M 500 max iter
[l 50 max iter
0 L

Network 008 Network 155 Network 136

Time (min)
w

N

=

Figure 9: Execution time with 2 different iteration limits for 3 networks with
convergence problems.

iterations. The given results with this change are slightly different but the
difference is always lower than 1%.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 18

7 Final considerations and future work

The new IRMA version is now able to replace the legacy Fortran code for simu-
lating most networks, with better performance and portability. There are only
a few special cases yet to treat before delivering this new tool to production.

This work explores the Java language for scientific high performance sim-
ulations, facing the challenges of not using the standard languages for solving
numerical problems and how to overcome these difficulties. The final solution
exploits the advantages of standard numerical tools, by using a scalable high
performance Fortran library with minimal memory footprint, and the advan-
tages of developing the new model using a modern object oriented language.

The new high level simulation model is modularized and it can be understood
more easily. Equipment specification has become much simpler and indepen-
dent from the linear system construction. Code reading has been enormously
simplified by eliminating global variables, goto calls and other programming
practices that were used when IRMA was coded using punch cards.

Many possibilities for improving user experience are now open, text input
file editing can now be replaced by geographically-aware graphical editors and
simulation data can be integrated with other tools available at the company.

There are still improvements and tests that can be done in the simulation
core, such as implementing another method for solving flow continuity and head
loss equations. For example, the use of the gradient method proposed by Todini
[13] could allow us to replace the Fortran solver with one of the Java iterative
linear solver implementation and therefore we could eliminate the C++-/Fortran
JNI bridge and have a pure Java solution.

RR n°® 7508

High Performance Hydraulic Simulations using Java and ProActive 19

References

(1]
2]
(3]
[4]
[5]

[6]
[7]

18]

[9]

[10]

[11]

[12]

[13]

Apache tomcat website, 2010. <http://tomcat.apache.org/>.

Blas java translation, 2010. <http://www1.fpl.fs.fed.us/linear _algebra.html>.
Colt project website, 2010. <http://acs.Ibl.gov/software/colt/>.

Java matrix (jama) website, 2010. <http://math.nist.gov/javanumerics/jama/>.
Matrix toolkits java (mtj) website, 2010. <http://code.google.com/p/matrix-
toolkits-java/>.

Proactive website, 2010. <hhttp://proactive.inria.fr/>.

P. B. Cheung, J. E. Van Zyl, and L. F. R. Reis. Extension epanet for pressure
driven demand modeling in water distribution system. In Computing and Control
for the Water Industry, volume 1, pages 311-316. Center for Water Systems,
University of Exeter, 2005.

R. Clément. Calcul des débits dans les réseaux d’irrigation fonctionnant & la de-
mande. In La Houille Blanche, volume 5, pages 553-576. Société Hydrotechnique
de France, 1966.

S. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse
matrix package, ii. the nonsymmetric codes. Technical report, Department of
Computer Science, Yale University, 1977.

O. Giustolisi, D. Savic, and Z. Kapelan. Pressure-driven demand and leakage
simulation for water distribution networks. Journal of Hydraulic Engineering,
134(5):626-635, 2008.

N. Lamaddalena and J. Sagardoy. Performance Analysis of On-demand Pressur-
ized Irrigation Systems. Food and agriculture organization of the United Nations,
2000.

L. A. Rossman. EPANET User’s manual. U.S. Environmental Protection Agency,
Risk Reduction Engineering Laboratory, Cincinnati, OH, 2000.

E. Todini and S. Pilati. A gradient algorithm for the analysis of pipe networks,
pages 1-20. Research Studies Press Ltd., Taunton, UK, 1988.

RR n°® 7508

/<

Centre de recherche INRIA Sophia Antipolis — Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhone-Alpes : 655, avenue de 1’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy — Grand Est : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-1eés-Nancy Cedex
Centre de recherche INRIA Paris — Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — fle-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Simulation model
	Overview
	Equipments
	Flow conservation equations
	Head loss equations
	Linearizing head loss values
	Sample network

	Choosing a linear system solver
	Java solvers
	Fortran solver
	Performance results

	Simulation features
	Demand scenarios
	Pump profiling
	Pressure driven analysis

	AGOS Project use case
	Deploying IRMA as a service
	Sequential benchmarks
	Grid execution with ProActive

	Results
	Validation
	Topology analysis
	Convergence optimization

	Final considerations and future work

