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Abstract. In this paper we study the security of the SHA-3 candidate SIMD. We first show a new
free-start distinguisher based on symmetry relations. It allows to distinguish the compression function
of SIMD from a random function with a single evaluation. However, we also show that this property is
very hard to exploit to mount any attack on the hash function because of the mode of operation of the
compression function. Essentially, if one can build a pair of symmetric states, the symmetry property
can only be triggered once.
In the second part, we show that a class of free-start distinguishers is not a threat to the wide-pipe
hash functions. In particular, this means that our distinguisher has a minimal impact on the security of
the hash function, and we still have a security proof for the SIMD hash function. Intuitively, the reason
why this distinguisher does not weaken the function is that getting into a symmetric state is about as
hard as finding a preimage.
Finally, in the third part we study differential path in SIMD, and give an upper bound on the probability
of related key differential paths. Our bound is in the order of 2

−n/2 using very weak assumptions.
Resistance to related key attacks is often overlooked, but it is very important for hash function designs.
Key words: SIMD, SHA-3, hash function, distinguisher, security proof with distinguishers.

1 Introduction

SIMD is a SHA-3 candidate designed by Leurent, Fouque and Bouillaguet [12]. Its main feature is a strong
message expansion whose aim is to thwart differential attacks. This paper provides three important contribu-
tions to the security analysis of SIMD. In Section 2 we study its resistance against self-similarity attacks [4].
This class of attack is inspired by the complementation property of DES and includes symmetry based at-
tacks. In the case of SIMD, we show that it is possible to exploit the symmetry of the design using special
messages. This shows that the constants included in the message expansion of SIMD are not sufficient to
prevent symmetry relations, and non-symmetric constants should be added in the last steps of the message
expansion. The study of this symmetry property shows that it is much weaker than symmetry properties in
CubeHash [1,9] or Lesamnta [4]. More precisely, most symmetry properties can be used to generate many
symmetric states out of a single state, but this is not the case for SIMD.

In Section 3, we show a proof of security for the mode of operation used in SIMD, the truncated prefix-free
Merkle-Damgård, in the presence of some efficient distinguishers on the compression function. The class of
distinguisher we consider includes the symmetry based distinguisher, and also includes differential paths with
a non-zero chaining value difference. This shows that the properties of the compression function of SIMD

found so far do not affect the security of the iterated hash function. This part is also of independent interest
and applies to other wide-pipe hash functions.

In Section 4, we study differential attacks, and bound the probability of paths with a non-zero message
difference, i.e., related key attacks on the block cipher. We show an upper bound on such paths on the
order of 2−n/2, and we argue that the best paths are probably much worse than this bound. We note that
there are very few results known regarding resistance to related key attack for block ciphers. In particular,
the differential properties of the AES have been extensively studied [17] but related key differential attacks
have been shown recently [3]. In many hash function designs (in particular those based on the Davies-Meyer
construction), related key attacks are a real concern and should be studied accordingly.

By combining the results of Section 3 and 4, we show that SIMD is resistant to differential cryptanalysis:
a path with a non-zero difference in the chaining value input cannot be used to attack the hash function

∗The full version of this paper appears as IACR ePrint report 2010/323 [5].
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Fig. 2. SIMD compression rounds. There are 4 parallel Feistels in SIMD-256,
and 8 parallel Feistels in SIMD-512.

because it is wide-pipe, while a path a non-zero difference in the message can only have a low success
probability.

Finally, in Section 5 we express our views on the security of SIMD.

1.1 Brief Description of SIMD

SIMD is built using a modified Davies-Meyer mode with a strong message expansion, as shown in Figure 1.
The compression part is built from 4 parallel Feistel ladders (8 for SIMD-512) with 32-bit registers, and is
shown in Figure 2. We can describe the step update function as:

Dj ←
(

Dj ⊞ W
(i)
j ⊞ φ(i)(Aj , Bj , Cj)

)≪s(i)

⊞ Ap(i)(j)
≪r(i)

(Aj , Bj , Cj , Dj)← (Dj , A
≪r(i)

j , Bj , Cj)

where j denotes the Feistel number, and i denotes the round number. A, B, C, and D are the four registers
of the Feistel ladders, while φ(i) is the Boolean function used at round i (which can be either IF or MAJ) and
W is the expanded message. The parallel Feistels interact through the permutations p(i), which are built as
p(i)(j) = j ⊕ αi, for some αi. There are no explicit constants in the round function, but there are implicit
constants in the message expansion.

The Message Expansion. The message expansion of SIMD is defined with the following operations:

1. Use a NTT transform (which is the same as a FFT over F257) to double the size of the message. The
NTT is actually used as a Reed-Solomon code.

2. Make two copies of the NTT output.
3. The first copy is multiplied by 185, while the second copy is multiplied by 233. This step also doubles

the size of the message, as the output are 16-bit words.
4. Permute the 16-bit words and pack them into 32-bit words.

Constants are added in the NTT layer, and make it an affine code instead of a linear one. They avoid special
expanded messages such as the all-zero message. For more details, see the specification of SIMD [12].

1.2 Previous Cryptanalysis Results

As far as we know, the following results have been found on SIMD:

– In [10], Gauravaram and Bagheri showed that the modified Davies-Meyer construction used in SIMD

allows to find partial fixed-points (this is a weaker version of Davies-Meyer’s fixed-points). There is no
easy way to find full fixed-points as in the original Davies-Meyer construction, but those partial fixed-
points give an easy distinguisher of the compression function. Just like the fixed-points of Davies-Meyer,
this property does not affect the security of a wide-pipe hash function, and the mode can be proven
secure under the assumption that the block cipher is ideal [8].



– In [15], Mendel and Nad showed a differential path with probability 2−507 for the compression function
of the round-1 version of SIMD-512. They used it to make a distinguishing attack on the compression
function with complexity 2427, using IV/message modifications. In this path, no difference is introduced
in the message, but a specific difference ∆in in the chaining value can go to a difference ∆out. Because
of the need to control the chaining value difference, this path cannot be used to attack the iterated hash
function. In Section 3, we show that even if there of a path with probability one, we only loose a factor
2 in the indifferentiability proof.
However, this path was using some unwanted properties of the permutations used in the compression
function, and it was decided to remove those properties by tweaking the design for the second round of
the SHA-3 competition [13].

– More recently, in [20] Yu and Wang studied differential paths for the round-2 version of SIMD. They
describe near-collisions in reduced versions of the compression function (20 steps for SIMD-256 and 24
steps for SIMD-512) and build a differential path with probability 2−897 for the full compression function
of SIMD-512. This path can be used to build a distinguisher with complexity 2398, yielding pair of inputs
and outputs with a fixed difference. Like the previous result, this work uses a difference in the chaining
value and no difference in the message. For this reason it does not threaten the iterated hash function.
It should be noted that for this distinguisher, the attacker needs to choose both input chaining values,
and not only the difference between the chaining values (it is a free-start attack, while the attack on the
round-1 version could be mounted as a semi-free-start attack). That makes it even less threatening to
a wide-pipe design. Moreover we found several mistakes in the path described in the preprint of their
work, which cast a doubt on the validity of the path.

– In [16], Nikolić et al. applied rotational cryptanalysis to the compression function of SIMD-512. They
showed that 24 rounds can be distinguished from a random function with complexity 2497 if the constants
are removed from the design. In the real design, they can only distinguish 12 rounds (out of 36) because
of the non-linear message expansion. This is clearly not a threat for SIMD-512.

2 A Distinguisher for the Compression Function of SIMD

Our distinguisher is based on symmetries in the design, and follows the ideas of [4]. Symmetry based prop-
erties have already been found in several hash function designs, such as CubeHash [1,9] or Lesamnta [4]. We
describe the distinguisher in the case of SIMD-256, but it applies similarly to SIMD-512.

2.1 Building the Symmetric Messages

The basic idea is to build a message so that the expanded message is symmetric. Then, if the internal state
is also symmetric, the compression rounds preserve the symmetry. This can also be used with a pair of
symmetric messages, and a pair of symmetric states.

The NTT layer of the message expansion is an affine transformation, therefore it is easy to find inputs
that satisfy some affine conditions on the output. Since it only doubles the size of the input, we have enough
degrees of freedom to force equalities between pairs of output. The next expansion step is a multiplication
by a constant, and it will preserve equality relations.

Then if we look at the permutations used in the message expansion, they have the following prop-

erty1: the NTT words used to build the message words W
(i)
0 , W

(i)
1 , W

(i)
2 , W

(i)
3 are always of the form

(yk1
, yk2

), (yk1+2, yk2+2), (yk1+4, yk2+4), (yk1+6, yk2+6) for some k1 and k2 (with ki = 0 mod 8 or ki = 1 mod
8). The full permutations are given in [12, Table 1.1]. Because of this property, if we have yi = yi⊕2 after

the NTT, then we have W
(i)
0 = W

(i)
1 and W

(i)
2 = W

(i)
3 . This allows us to build a symmetric message. An

example of such a symmetric message is given in Appendix A.
More precisely, let us use the notation ←→• to denote this symmetry relation, and •←→ and ←→•←→ to denote

the other two possible symmetries:

←−−−−−→
(a, b, c, d) = (b, a, d, c) (a, b, c, d)

←−−−−−→
= (c, d, a, b)

←−−−−−→
(a, b, c, d)
←−−−−−→

= (d, c, b, a)

1This design choice was guided by implementation efficiency



We now consider two messages M and M ′. We use y to denote the NTT output for M , and y′ to denote
the NTT output for M ′. The equality constraints on the NTT output that are necessary to build a pair of
symmetric expanded messages are (we use E to denote the message expansion):

yi = y′
i⊕2 ⇒ E(M) =

←−−→
E(M ′) yi = y′

i⊕4 ⇒ E(M) = E(M ′)
←−−→

yi = y′
i⊕6 ⇒ E(M) =

←−−→
E(M ′)
←−−→

By solving the corresponding linear systems, we can compute the sets of symmetric messages (the sets are

described in the full version of this paper). We can count the symmetric messages M such that E(M) =
←−−→
E(M),

and the pairs of messages M, M ′ such that E(M) =
←−−→
E(M ′):

Symm. class (SIMD-256) # msg # pairs

←→• yi = y′
i⊕2 Wi = W ′

i⊕1 28 256 · 255

•←→ yi = y′
i⊕4 Wi = W ′

i⊕2 216 (256 · 255)2

←→•←→ yi = y′
i⊕6 Wi = W ′

i⊕3 28 256 · 255

Symm. class (SIMD-512) # msg # pairs

yi = y′
i⊕2 Wi = W ′

i⊕1 28 256 · 255

yi = y′
i⊕4 Wi = W ′

i⊕2 216 (256 · 255)2

yi = y′
i⊕6 Wi = W ′

i⊕3 28 256 · 255

yi = y′
i⊕8 Wi = W ′

i⊕4 232 (256 · 255)4

yi = y′
i⊕10 Wi = W ′

i⊕5 28 256 · 255

yi = y′
i⊕12 Wi = W ′

i⊕6 216 (256 · 255)2

yi = y′
i⊕14 Wi = W ′

i⊕7 28 256 · 255

An important property of these message classes is that they are all disjoint: it is not possible to use the
intersection of two symmetry classes.

2.2 Symmetry Property on the Compression Function

Let us consider a pair of symmetric messages for one of the symmetry relations (without loss of generality,

we assume it’s the ←→• symmetry): E(M ′) =
←−−→
E(M). We can take advantage of the symmetry of the Feistel

part using those messages. If we have a pair of states S(i),S ′(i) with S ′(i) =
←→
S(i) and we compute one Feistel

step with messages W and W ′ such that W ′ =
←→
W , we obtain a new pair of states with S ′(i+1) =

←−−→
S(i+1). The

xor-based symmetry classes commute with the xor-based permutations p(i) used to mix the Feistels (and
they are the only symmetry classes to do so).

Because the compression function is built using a modified Davies-Meyer mode (Figure 1), we need to

start with Hi−1 such that Hi−1⊕M is symmetric: H ′
i−1⊕M ′ =

←−−−−−→
Hi−1 ⊕M . Then, in the feed-forward, Hi−1

is used as the key to a few Feistel rounds, and since Hi−1 is not symmetric, those rounds will break the
symmetry. However, it turns out the symmetric messages are very sparse, so Hi will be almost symmetric,
and the feed-forward will mostly preserve the symmetry of the outputs.

This gives a distinguisher on the compression function: an almost symmetric chaining value is transformed
into a somewhat symmetric chaining value. See Appendix A for a concrete example.

The distinguisher can be used either with a pair of messages and chaining values with E(M ′) =
←−−→
E(M) and

H ′
i−1 ⊕M ′ =

←−−−−−→
Hi−1 ⊕M , or with a single chaining value and message, with E(M) =

←−−→
E(M) and Hi−1 ⊕M =

←−−−−−→
Hi−1 ⊕M .

2.3 Non-Ideality of the Compression Function

Here we define the bias of the compression function with the notations that will be used in Section 3. For
each symmetric message M under a symmetry relation (denoted by ←→• without loss of generality), we have
a first order relation between the inputs and output of the compression function:

RM
1 (h, m, h′) :=

(

m = M ∧ h⊕m =
←−−→
h⊕m

)

⇒ P−1(h′, h) =
←−−−−−→
P−1(h′, h)

We use the feed-forward permutation P to define the relation, because it is tricky to describe exactly the
somewhat symmetry of h′ after the feed-forward. We have about 216 such relations for SIMD-256 and about



232 relations for SIMD-512. Similarly, for each symmetric message pair M, M ′, this gives a second order
relation (there are about 232 such relations for SIMD-256 and 264 for SIMD-512):

RM,M ′

2 (h1, m1, h2, m2, h
′
1, h

′
2) :=
(

m1 = M ∧m2 = M ′ ∧ h1 ⊕m1 =
←−−−−→
h2 ⊕m2

)

⇒ P−1(h′
1, h1) =

←−−−−−−−→
P−1(h′

2, h2)

The corresponding weak states are:

WM
1 := {x⊕M | x =←→x } WM,M ′

2 :=
{

(h,
←→
h ⊕M ′ ⊕

←→
M )

}

The study of the symmetry classes of SIMD shows that:

|W1| = 2256 · 2562 + 2 · 256 ≈ 2256 · 216 for SIMD-256

|W1| = 2512 · 2564 + 2 · 2562 + 4 · 256 ≈ 2512 · 232 for SIMD-512

|W2| = 2512 · ((256 · 255)2 + 2 · 256 · 255) < 2512 · 232 for SIMD-256

|W2| = 21024 · ((256 · 255)4 + 2 · (256 · 255)2 + 4 · 256 · 255) < 21024 · 264 for SIMD-512

Each chaining value can be used with less than 232 related chaining values (less than 264 for SIMD-512) and
each such pair can be used with a single message.

2.4 Impact of the Symmetry-based Distinguisher

There are two main classes of attacks based on symmetric properties of the compression function. To attack
the compression function, one can use the symmetry property to force the output of the compression function
into a small subspace. This allows to find collisions in the compression function more efficiently than brute
force, with the efficiency of this attack depending on the size of the symmetry classes. On the other hand,
to attack the hash function, one can first try to reach a symmetric state using random messages, and then
use symmetric messages to build a large set of symmetric states. To expand the set, the attacker will build
a tree, starting with the symmetric state that was reached randomly. The degree and the depth of the tree
can be limited depending on the symmetry property. In the case of SIMD, none of these attacks are effective
for the following reasons:

– First, the modified Davies-Meyer mode of operation means that the compression function does not
transform a symmetric state into a symmetric state, but it transforms an almost symmetric state into a
somewhat symmetric state. We show in the full version of the paper that a “somewhat symmetric” output
pair can only be used as an “almost symmetric” input pair with a very small probability. This prevents
attacks based on building long chains of symmetric messages, like the attacks on CubeHash [1,9].

– Second, if a pair of almost symmetric states is reached, there is only a single message pair that can be
used to reach a symmetric state in the Feistel rounds. This prevents attacks like the herding attack on
Lesamnta [4], where one reaches a symmetric state and then uses a lot of different messages in order to
explore the subset of symmetric outputs.

– Third, the final transformation of SIMD uses the message length as input. Therefore, the symmetry
property can only be seen in the output of the hash function with messages of unrealistic length (almost
2512 bits for SIMD-256 and almost 21024 bits for SIMD-512). Note that computing the hash of such a
message is vastly more expensive than finding a preimage.

– Moreover the symmetry classes do not intersect. It is not possible to build a smaller symmetry classes in
order to show collisions in the compression function, as was done for CubeHash [1,9]. Finding collisions
in the compression function using the symmetry property costs 2n/2. It is more efficient than generic
attacks on the compression function, but cannot be used to find collisions in the hash function faster
than the birthday attack. We also note that the initial state of the SIMD hash function is not symmetric.

To summarize, reaching a symmetric state in SIMD is far less interesting than reaching a symmetric
state in CubeHash or in Lesamnta. Table 1 gives a comparison of the symmetry properties found in these
functions.



Table 1. Comparison of symmetry properties in several hash functions.

Reach Max. Max. Free-start
Function symm. state length degree Collisions

Lesamnta-512 2
256 1 2

256
2
128 (semi-free-start)

CubeHash (symm C1..C7) 2
384 ∞ 2

128
2
32 (semi-free-start)

CubeHash (symm C8..C15) 2
256 ∞ 1 2

64 (semi-free-start)
SIMD-512 2

480 1 1 2
256

Another very important factor is that SIMD is a wide-pipe design. Therefore reaching a symmetric state
is about as hard a finding a preimage for the hash function. In the next section, we provide a formal proof
that this distinguisher has only a small effect on the security of SIMD. We can prove that the hash function
behaves as a random oracle under the assumption that the compression function is a weak perfect function
having this symmetry property.

3 Free-start Distinguishers, Non-Ideal Compression Functions and Wide-Pipe

Designs

In this section, we discuss the security of the prefix-free iteration of non-ideal compression functions. While
our primary objective is to show that the distinguisher for the compression function of SIMD presented in
Section 2 does not void the security proof of SIMD, the reasoning and the proof presented here are pretty
general and could very well be adapted to other functions.

Let H = {0, 1}p denote the set of chaining values, M = {0, 1}m denote the set of message blocks, and
F be the set of all functions H ×M → H. Let F ∈ F be a compression function taking as input an p-bit
chaining value and an m-bit message block. A mode of operation for a hash function H · combined with a
compression function F yields a full hash function HF .

Following [14,8], we rely on the notion of indifferentiability of systems to reduce the security of SIMD to
that of its compression function. The usual way of establishing the soundness of a mode of operation H · is
to show that it is indifferentiable from a random oracle. This is done by constructing a simulator S such
that any distinguisher D cannot tell apart (HF , F ) and (RO,S) without a considerable effort, where RO
is a variable-input-length random oracle (VIL-RO, for short). When this is established, it is shown in [14]
that any cryptosystem making use of a VIL-RO is not less secure when the random oracle is replaced by
the hash function HF , where F is an ideal compression function (i.e., a fixed-input-length random oracle,
FIL-RO for short). Informally, if F is ideal (i.e., has no special property that a random function would
not have), then HF is secure up to the level offered by the indifferentiability proof. More precisely, if H · is
(tD, tS , qS , q0, ε)-indifferentiable from a VIL-RO when the compression function is assumed to be a FIL-RO,
then this means that there exists a simulator running in time tS , such that any distinguisher running in time
tD and issuing at most qS (resp. q0) queries to the FIL-RO (resp. VIL-RO) has success probability at most ε.

A property of this methodology is that as soon as the compression function used in a hash function turns
out to be non-ideal, then the security argument offered by the indifferentiability proof becomes vacuous.
For instance, distinguishers exhibiting a “non-random” behavior of the compression function are usually
advertised by their authors to nullify the security proof of the full hash function.

This problematic situation was first tackled by the designers of Shabal, who provided a security proof
taking into account the existence of an efficient distinguisher on the internal permutation of their proposal [6].
We will follow their track and demonstrate that the security of SIMD can be proved despite the existence of
an efficient distinguisher on its compression function.

The mode of operation of SIMD can be “concisely” described as being the wide-pipe prefix-free2 iteration of
the compression function. Let HF therefore denote the prefix-free Merkle-Damgård iteration of F . Formally,
g : {0, 1}∗ →M∗ is a prefix-free encoding if for all x, x′, g(x) is not a prefix of g(x′). The mode of operation
H · simply applies the Merkle-Damgård iteration of F to the prefix-free encoding of the message.

2this is not explicitly stated in the submission document, but SIMD has a different finalization function that
effectively acts as a prefix-free encoding.



The original security argument was that if the internal state and the hash are both p-bit wide, then
prefix-free Merkle-Damgård is indifferentiable from a random oracle up to about 2p/2 queries [8]. Theorem 1
below gives a formal statement of this result.

Theorem 1. Prefix-Free Merkle-Damgård is (tD, tS , qS , qO, ε)-indifferentiable from a VIL-RO when the com-

pression function is modeled by a FIL-RO, for any running time tD of the distinguisher, and tS = O
(

(qO + κ · qS)
2
)

where κ is an upper-bound on the size of the queries sent to the VIL-RO. If q = qS + κ · qO + 1, then the

success probability of the distinguisher is upper-bounded by:

ε = 8 ·
q2

2p

In SIMD where the internal state is 2n bits, this ensures the indifferentiability of the whole function up
to roughly 2n queries (if H is indifferentiable up to q queries, then the composition of a truncation that
truncates half of the output and of H is also secure up to q queries).

To restore the security argument damaged by the distinguisher, we will show that the prefix-free iteration
of a non-ideal compression function is to some extent still indifferentiable from a VIL-RO.

3.1 Deterministic Distinguishers for the Compression Function

Let us consider a non-ideal compression function F .

– For instance, it may have weak states, that are such that querying F thereon with a well-chosen message
block produces a “special” output allowing to distinguish F from random in one query. Known examples
include for instance the symmetry on the compression function of Lesamnta [4], CubeHash [1,9], and
SIMD (described in Section 2).

– But F can also have bad second-order properties, meaning that the output of F on correlated input
states (with well-chosen message blocks) produces correlated outputs, allowing to distinguish F from
random in two queries. A notable example of this property include the existence of differential paths
with probability one in the compression function of Shabal [2]. Symmetry properties also give second
order relations, which means that Lesamnta, CubeHash and SIMD have bad second-order properties as
well.

Following the methodology introduced in [6], we model this situation by saying that there are two relations
R1 and R2 such that:

∀(h, m) ∈ H ×M : R1(h, m,F (h, m)) = 1

∀(h1, h2, m1, m2) ∈ H
2 ×M2 : R2(h1, m1, h2, m2, F (h1, m1), F (h2, m2)) = 1

We denote by R the relation formed by the union of R1 and R2, and we will denote by F [R] the subset
of F such that the above two equations hold. We require the relations to be efficiently checkable, i.e., that
given h, m and h′, it is efficient to check whether R1(h, m, h′) = 1. The relation can thus be used as an
efficient distinguishing algorithm that tells F [R] apart from F .

A weak state is a state on which it is possible to falsify the relation R1. We formally define the set of
weak states for R1 in the following way:

W = {h ∈ H | ∃m, h′ ∈M×H such that R1(h, m, h′) = 0}

W should be a relatively small subset of H because the loss of security will be related to the size of W.
Moreover, we require that the IV is not in W.

In the same vein, a weak pair is a pair of states on which it is possible to falsify the relation R2. We
therefore define the set of weak pairs for R2 by an undirected graph GR2 = (H,WP), where WP is defined
by:

WP =
{

h1 ↔ h2 | ∃m1, m2, h
′
1, h

′
2 ∈M

2 ×H2 such that R2(h1, m1, h2, m2, h
′
1, h

′
2) = 0

}



Similarly, WP should be a relatively small subset of H2 because the security loss will be related to the
size of WP. For the sake of expressing things conveniently, we define a variant of the same graph, G′

R2
=

(H×M,WP ′), where WP ′ is defined by:

WP ′ =
{

(h1, m1)↔ (h2, m2) | ∃h
′
1, h

′
2 ∈ H

2 such that R2(h1, m1, h2, m2, h
′
1, h

′
2) = 0

}

To simplify the proof we also require that the connected component of G′
R2

have size at most two. This
rules out some second-order relations, but it includes for instance the existence of a differential path with
probability one with a non-zero difference in the input chaining value, as well as the symmetry in the
compression function of SIMD or Lesamnta. We expect a similar result with larger connected components,
but there will be a loss of security related to their size.

We also require the existence of sampling algorithms for R, namely of two efficient algorithms Sampler1

and Sampler2 such that:

Sampler1(h, m) : h′ $
←− {f(h, m) | f ∈ F [R]} ; return h′

Sampler2(h1, m1, h2, m2, h
′
1) : h′

2
$
←− {f(h2, m2) | f ∈ F [R] and F (h1, m1) = h′

1} ; return h′
2

Informally, the sampling algorithms should produce an output that looks as if it were produced by a
random function constrained to conform to R.

3.2 Adapting the Indifferentiability Proof to Non-Ideal Compression Functions

We now assume that the compression function is a public function chosen uniformly at random in F [R], and
for the sake of convenience we will call it a “biased FIL-RO”. We show that the prefix-free iteration of biased
FIL-RO is indifferentiable from a VIL-RO. In fact, we extend Theorem 1 to the case where the compression
function is biased.

Theorem 2. Prefix-Free Merkle-Damgård is (tD, tS , qS , qO, ε)-indifferentiable from a VIL-RO, when the

compression function is modeled by a biased FIL-RO conforming to the relation R, for any running time tD

of the distinguisher, and tS = O
(

(qO + κ · qS)
2
)

where κ is an upper-bound on the size of the queries sent

to the VIL-RO. If q = qS + κ · qo + 1, then the probability of success of the distinguisher is upper-bounded by:

ε = 16 ·
q2

2p
+ 4 · |W| ·

q

2p
+ 4 · |WP| ·

q2

(2p − q)
2

The first term of the expression of ε is similar to the result given in Theorem 1, when the compression
function is ideal (up to a factor two that could be avoided by making the argument slightly more involved).
The two other terms reflect the fact that the compression function is biased. The relation induces a security
loss if |W| is at least of order 2p/2, or if |WP| is at least of order 2p. Informally, it seems possible to iterate
compression functions having a relatively high bias in a secure way.

Application to Free-start Differential Attacks. Let us assume that the compression function is weak
because of the existence of a good differential path with a non-zero difference in the input chaining value.
Even if the probability of the differential path is 1, this has a very limited effect on the security of the hash
function: this leads to W = ∅ and |WP| = 2p−1. The advantage of the distinguisher is at most twice as high,
compared to the iteration of an ideal FIL-RO.

Application to SIMD. In SIMD-256 (resp. SIMD-512), the internal state has p = 512 bits (resp. p = 1024
bits), and the distinguisher of Section 2 yields |W| = 2p/2+16, |WP| = 2p+32 (resp. |W| = 2p/2+32, |WP| =
2p+64). Therefore the advantage of any distinguisher in telling apart SIMD-256 from a VIL-RO with q queries
is upper-bounded by:

ε = 16 ·
q2

2p
+ 4 ·

2p/2+16 · q

2p
+ 4 · 2p+32 ·

q2

(2p − q)
2

SIMD-256 is then secure up to roughly 2256−16 queries (SIMD-512 is secure up to 2512−32 queries).



Application to Lesamnta. Lesamnta follows the prefix-free Merkle-Damgård mode of operation due to its
special finalization function. An efficient distinguisher based on symmetries was shown in [4], with |W| = 2p/2

and |WP| = 2p−1. According to Theorem 2, the advantage of any distinguisher in telling apart Lesamnta-256
from a random oracle with q queries is upper-bounded by:

ε = 16 ·
q2

2p
+ 4 ·

2p/2 · q

2p
+ 4 · 2p−1 ·

q2

(2p − q)
2 ≈ 22 ·

q

2p/2

Note that since Lesamnta is a narrow-pipe design, we have p = n. Our result shows that Lesamnta remains
secure against generic attacks up to the birthday bound. This is the best achievable proof for Lesamnta,
since it does not behave as a good narrow-pipe hash function beyond that bound: a dedicated herding attack
based on the symmetry property is shown in [4], with complexity 2n/2.

The proof is heavily based on the proof in the extended version of [8]. Due to space constraints, the proof
is not included in this paper, but can be found in the full version.

4 On Differential Attacks against SIMD

In this section we will present our results concerning differential paths in SIMD. Using Integer Linear Pro-
gramming, we show that if there is a difference in the message, then the probability of the path will be at
most of the order of 2−n/2. We stress that this result is not tight, but the computational power needed to
improve the bound using this technique grows exponentially.

Related Work. The first attempt to avoid differential attack in a SHA/MD-like hash function was proposed
in [11], where Jutla and Patthak described a linear code similar to the message expansion of SHA-1, and
proved that it has a much better minimal distance than the original SHA-1 message expansion. They proposed
to use SHA-1 with this new message expansion and called the new design SHA-1-IME.

Our Results. The design of SIMD follows the same idea, using a strong message expansion with a high
minimal distance. In this paper we show that we can prove the security of SIMD more rigorously than the
security of SHA-1-IME. While the security of SHA-1-IME is based on the heuristic assumption that the
path is built out of local collisions, our proof gives an upper bound on the probability of any differential
characteristic with a non-zero difference in the message.

Our results prove the following: for any message pair with a non-zero difference, the probability of going
from an input difference ∆in to an output difference ∆out is bounded by 2−132 for SIMD-256, and 2−253 for
SIMD-512.

4.1 Modeling Differential Paths

To study differential attacks against SIMD, we assume that the attacker builds a differential path. The
differential path specifies the message difference and the state difference at each step. For each step i, we
study the probability p(i) that the new step difference conforms to the differential path, assuming that the
previous state difference and the message difference conforms to the path, but that the values themselves are
random. Since SIMD heavily uses modular additions, our analysis is based on a signed differential, as used
by Wang et al. [19]. A signed difference gives better differential paths than an XOR difference if two active
bits cancel each other out: with an XOR difference this gives a probability 1/2, but with a signed difference
we have a probability 1 if the signs are opposed.

To study differential paths, we will consider the inner state of SIMD, and the Boolean functions φ(i).

A state bit A
(i)
j is called active if it takes two different values for a message pair following the differential

path. Similarly, a Boolean function is called active if at least one of its inputs is active. A differential path
consists of a set of active message bits, active state bits, active Boolean function, and the sign of each active
element. We assume that the adversary first builds such a differential path, and then looks for a conforming
pair of messages and chaining values. If we disregard the first and last rounds, each Boolean function has
three inputs, and each state bit enters three Boolean functions. We use this simplification in Section 4.4.



4.2 The Message Expansion

The minimal distance of the message expansion of SIMD is at least 520. This distance counts the number of
active bits, but we can also show that even if consecutive bits can collapse to give a single signed difference, we
still have a minimal distance of 455 (respectively 903 for SIMD-512). The only case where adjacent differences
can collapse to give a smaller signed difference is when the bits 15 and 16 are active in the two 16-bit words
that are packed into a 32-bit word. In Section 4.4, we disregard this property and we just consider that
the message introduces 520 differences through the message expansion, but the model used in Section 4.5
accounts precisely for that.

4.3 Structure of a Differential Path

The basic idea of our analysis is to use the lower bound on the number of active message bits to derive a lower
bound on the number of active state bits. Each message difference must either introduce a new difference in
the state, or cancel the propagation of a previous state difference. A single difference propagates to between
2 and 5 differences, depending on whether the Boolean functions absorb it or let it go through. This means
that a collision corresponds to between 3 and 6 message differences.

For instance, if a difference is introduced in the state A
(5)
1 by W

(5)
1 , it will appear in A

(5)
1 , B

(6)
1 , C

(7)
1 , D

(8)
1 .

Each of the Boolean function φ
(6)
1 , φ

(7)
1 , φ

(8)
1 can either absorb it or pass it. This difference will propagate to

A
(6)
0 , and to A

(9)
1 . Moreover, it can propagate to A

(6)
1 , A

(7)
1 and A

(8)
1 if the Boolean functions do not absorb

it. Up to five active message bits can be used to cancel this propagation: W
(4)
1 , W

(8)
1 , W

(5)
0 , and possibly

W
(5)
1 , W

(6)
1 , W

(7)
1 if the corresponding Boolean functions are not absorbing.

We consider two parts of the compression function: the computation of φ, and the modular sum. In order
to study the probabilities associated with these computations, we will count the conditions needed for a
message pair to follow the characteristic.

φ-conditions. The Boolean functions MAJ and IF used in SIMD can either absorb or pass differences.
When there is a single active input, the probability to absorb and to pass is 1/2. Each time a state difference
enters a Boolean function, the differential characteristic specifies whether the difference should be passed
or absorbed, and this gives one condition if the Boolean functions have a single active input. Thus, each
isolated difference in the state will account for 3 φ-conditions: one for each Boolean function they enter.

⊞-conditions. When a difference is introduced in the state, it has to come from one of the inputs of the
round function:

A
(i)
j =

(

D
(i−1)
j ⊞ W

(i)
j ⊞ φ(i)(A

(i−1)
j , B

(i−1)
j , C

(i−1)
j )

)≪s(i)

⊞

(

A
(i−1)

p(i)(j)

)≪r(i)

The round function is essentially a sum of 4 terms, and the differential characteristic will specify which
input bits and which output bits are active. Thus, the differential characteristic specifies how the carry should
propagate, and this gives at least one condition per state difference.

In the end, a state difference accounts for 4 conditions.

4.4 Heuristics

We first give some results based on heuristics. We assume that the adversary can find message pairs that
give a minimal distance in the expanded message, and we allow him to add some more constraints to the
expanded message. Note that finding a message pair with a low difference in the expanded message is already
quite difficult with the message expansion of SIMD.

Heuristic I assumes that the adversary can find message pairs with minimal distance, but no other useful
property. The adversary gets a message pair with minimal distance, and connects the dots to build a
differential characteristic.

Heuristic II assumes that the adversary can find message pairs with minimal distance and controls the
relative positions of the message difference. He will use that ability to create local collisions.

Heuristic III assumes that the adversary can find a message pair with any message difference, limited only
by the minimal weight of the code. He will cluster local collisions to avoid many conditions.



Heuristic I. In this section, we assume that the adversary can find a message pair such that the expanded
messages reach the minimal distance of the code, but we assume that the message pair has no further useful
properties.

In this case, this adversary gets a message pair with a small difference and he has to connect the dots to
build a differential path. This is somewhat similar to the attacks on MD4 [18]: the messages are chosen so
as to make a local collision in the last round, and the attacker has to connect all the remaining differences
into a path with a good probability.

It seems safe to assume that such a differential path will at least have as many active state bits as active
message bits. Since an isolated difference in the state costs 4 conditions, we expect at least 2080 conditions
(resp. 4128 for SIMD-512), which is very high.

Heuristic II. We now assume that the adversary can force some structure in the expanded message dif-
ference. Namely, he can choose the relative location of the differences in the expanded message. Since the
probability of the path is essentially given by the number of active bits in the state, the path should minimize
this. This is achieved with local collisions, and each local collision will use as many message differences as
possible. Due to the structure of the round function of SIMD, a local collision can use between 3 and 6
message differences, depending on whether the Boolean functions absorb or pass the differences. In order to
minimize the number of state differences, the path will make all the Boolean functions pass the differences,
yielding six message differences per state difference. This is somewhat counter-intuitive because most attacks
try to minimize the propagation of differences by absorbing them. However, in our case it is more efficient
to let the differences go through the Boolean functions, and to use more message differences to cancel them,
because we have a lower bound on the number of message differences.

Since the adversary only controls the relative position of the message differences, we assume that most
local collisions will be isolated, so that each local collision gives 4 conditions. Thus, a differential is expected
to have at least 520 × 4/6 ≈ 347 conditions (688 for SIMD-512). This leaves a significant security margin,
and even if the adversary can use message modifications in the first 16 rounds, it can only avoid half of those
conditions.

This can be compared to the attacks on SHA-1 [7,19]. These attacks are based on local collisions, but
we do not know how to find a message pair which would have both minimal distance and yield a series of
local collisions in SHA-1. Instead, attacks on SHA-1 use the fact that the message expansion is linear and
circulant : given a codeword, if we shift it by a few rounds we get another valid codeword and similarly if
we rotate each word we get another valid codeword. Then we can combine a few rotated and/or shifted
codewords so as to build local collisions. The attacks on SHA-1 start with a codeword of minimal distance,
and combines 6 rotated versions. Thus the weight of the actual expanded message difference used in the
attack is six times the minimal weight of the code.

Note that message expansion of SIMD is more complex than the one from SHA-1, and it seems very hard
to find this kind of message pairs in SIMD. Moreover, the trick used in SHA-1 cannot be used here because
the message expansion is neither linear nor circulant.

Heuristic III. We now remove all heuristic assumptions and we try to give a bound on any differential
trail. However, to keep this analysis simple, we still disregard the specificities of the first round, and the fact
that one can combine some of the message differences.

The adversary will still use local collisions to minimize the number of differences in the state, but he will
also try to reduce the number of conditions for each local collision by clustering them. We have seen that an
isolated state difference costs 4 conditions, but if two state differences are next to each other, the cost can
be reduced when using a signed difference. For instance, if two inputs of the MAJ function are active, the
adversary does not have to pay any probability: if both active inputs have the same sign, then the output
is active with the same sign, but if the inputs have opposite signs then the output will be inactive. In this
section we consider that a Boolean function with more than one active input does not cost any probability.

Thus, the best strategy for the adversary is to place the state differences so that each active Boolean
function has two active inputs, in order to avoid any φ-conditions. Each state difference costs only one
⊞-condition, and gets 4.5 message differences (these message differences corresponding to the Boolean func-
tions are shared between two Boolean functions). This gives a lower bound of 116 conditions.



Program 1 Linear Program

Minimize S + α − β with the constraints:

3S = α + β + γ (1)

520 ≤ 3S + α (2)

γ ≤ β ≤ α (3)

α ≥ 0 is the number of Boolean functions with at least one active input
β ≥ 0 is the number of Boolean functions with at least two active inputs
γ ≥ 0 is the number of Boolean functions with at least three active inputs
S ≥ 0 is the number of active state bits

More rigorously, this can be described by a linear program, as shown in Linear Program 1. Equation (1)
comes from counting the number of active inputs to the Boolean functions in two different ways, while
Equation (2) counts the number of message differences that can be used. The objective value S + α − β
counts the conditions: one for each state difference, plus one for each Boolean function with exactly one
active input. The optimal solution to this program is 520/4.5 ≈ 115.55.

In the next section we will see how to improve this bound and get a bound on the probability of any
differential path.

Comparison with SHA-1-IME. The security of SHA-1-IME is based on a heuristic that is quite similar
to our Heuristic I. Jutla and Patthak assume that the adversary will use the same technique as the attacks
on SHA-1, i.e. create local collisions using the fact that the code is linear and circulant. They deduce that the
probability of a differential characteristic will be about 275×2.5. They implicitly assume that the adversary
cannot find minimal codewords that would already give local collisions. Our Heuristic II assumes that the
attacker can find such codewords, and if we apply it to SHA-1-IME, it would only guarantee that we have
at least 13 local collisions (each local collision accounts for 6 message differences). Since a local collision in
SHA-1 has an average probability of 2−2.5, this would only prove that an attack has at least a complexity
213×2.5 = 232.5.

This shows that our Heuristic II and III are much weaker than the heuristic used in SHA-1-IME.

4.5 Upper Bounding the Probability of a Differential Path

The bound given by Heuristic III is slightly lower than n/2 so we would like to improve it. To find a better
bound, we will follow the approach of Linear Program 1. Note that in the optimal solution, all the Boolean
functions have either zero or two active inputs, but it is unlikely that such a path actually exists because of
the way the Boolean functions share inputs. In order to remove some impossible solutions, we use a more
detailed modeling of differential paths where each individual state bit is treated separately. This also allows
us to express some extra constraints that will help to improve the lower bound.

Constraints related to the message expansion. We know that the message expansion gives at least 520
differences in the expanded message, but there are some constraints on the positions of these differences.
Namely, we have at least 65 active words in each copy of the message, and each active word has at least 4
active bits. For instance, a difference pattern with 3 active bits in each word would have 768 bit differences,
but it is not a valid pattern. Moreover, the active words in both copies have to be the same up to the
permutation P . To include these constraints in our model, we add a set of binary variables Yi which encode
whether word i is active in the output of the NTT. This is modeled by Equations (4) and (5). Note that this
still allows many difference patterns that cannot be the output of a real message pair.

Better cost estimation. In Program 1, we only count a condition for the Boolean functions with a single
active input. In fact, if we look at the truth table of the Boolean functions we see that the IF function still
needs a condition when inputs 1 and 2, or 1 and 3 are active. Since we are using distinct variables for each
of these inputs, we can include this in our description.



Program 2 Integer Linear Program (simplified)

Minimize
P

S
(j)[k]
i +

P

α
(j)[k]
i −

P

β
(j)[k]
i with the constraints:

S
(j−1)[k]
i + S

(j−2)[k]
i + S

(j−3)[k]
i = α

(j)[k]
i + β

(j)[k]
i + γ

(j)[k]
i (1’)

W
(j)[k]
i ≤ S

(j)[k+sj ]

i + S
(j−4)[k−rj ]

i + S
(j−1)[k−rj+sj ]

pj(i) + α
(j)[k]
i (2’)

γ
(j)[k]
i ≤ β

(j)[k]
i ≤ α

(j)[k]
i (3’)

15
X

k=0

W
(j)[k]
i ≥ 4YP1(i,j)

31
X

k=16

W
(j)[k]
i ≥ 4YP0(i,j) (4)

X

Yi ≥ 65 (5)

α
(j)[k]
i ∈ B is true iff φ

(j)[k]
i has at least one active input

β
(j)[k]
i ∈ B is true iff φ

(j)[k]
i has at least two active input

γ
(j)[k]
i ∈ B is true iff φ

(j)[k]
i has at least three active input

S
(j)[k]
i ∈ B is true iff the state bit A

(j)[k]
i is active

W
(j)[k]
i ∈ B is true iff the expended message bit W

(j)[k]
i is active

Yi ∈ B is true iff the word i is active in the output of the NTT

We can write all these constraints as a huge optimisation problem with approximately 30,000 variables
and 80,000 equations, but we need some tool to find the optimal solution of the system, or at least find a
lower bound. We decided to write our problem as an Integer Linear Program.

Integer Linear Programming. Integer Linear Programming (ILP) is a generalisation of Linear Program-
ming (LP) where some variables are restricted to integer values. While LP is solvable in polynomial time,
ILP is NP-complete. ILP solvers usually use some variants of the branch-and-bound algorithm. In the case
of minimization problem, the branch-and-bound algorithm computes a lower bound to the optimal solution
and incrementally raises this lower bound. Meanwhile, non-optimal solutions give an upper bound, and when
the two bounds meet, the search is over.

Results. A simplified version of the ILP is given by Program 2. The first equations and the objective value
mirrors Program 1, but use many variables to allow for more precise extra constraints. The full program has
28,576 variables and 80,162 equations for SIMD-256. We used the solver SYMPHONY, an open-source solver
for mixed-integer linear programs, available at http://www.coin-or.org/SYMPHONY/. The solver could not
find an optimal solution to the program, but it reached an interesting lower bound after some time: a
differential path for SIMD-256 has at least 132 conditions, while a differential path for SIMD-512 has at least
253. The computation for SIMD-512 took one month on a bi-quadcore machine.

Summary. The optimal strategy of the attacker is to use local collisions (avoiding any difference propaga-
tion) and to cluster the local collisions so as to avoid most conditions. Our modeling allows the adversary
to do this because he can choose the message difference and the expanded message difference independently,
and he can position the differences arbitrarily in the inner code. However, this is not possible in practice,
and most solutions of the Integer Linear Program will require an expanded message difference that is not
actually feasible.

Therefore, we expect that the best differential path in SIMD is much worse that the optimal solution of
our Integer Linear Program. Moreover, the program is too large to be solved to optimality, and we only have
a lower bound on the number of conditions (this lower bound keep improving if we let the solver run).

http://www.coin-or.org/SYMPHONY/


5 Security Status of SIMD

5.1 On the Symmetry-based Distinguisher

The distinguisher of Section 2 shows that the compression function of SIMD is not ideal. It does not affect
the security of the hash function, but it is nonetheless an unwanted property. Since this distinguisher is based
on symmetry properties, it is easy to avoid this property by slightly changing the design. Therefore, we plan
to tweak the SIMD design by adding non-symmetric constants, if given such an opportunity. We also note
that other SHA-3 candidates are in a similar situation:

– CubeHash has strong symmetry properties in its round transformation [1,9]. It is thought that since the
initial state in not symmetric, it is not possible to reach a symmetric state.

– Shabal has strong distinguishers on its compression function: there are differential paths with probability
1 [2], and the inverse permutation does not have full diffusion (some input bits do not depend on all
output bits). The Shabal team has shown that these distinguishers do not affect the security [6].

Countermeasures. An interesting way to avoid the symmetry properties would be to add a counter to
the expanded message after the multiplication by a constant (step 3 of the message expansion). This would
ensure that each expanded message word has a different value modulo 185 (respectively modulo 223), and it
prevents equality constraints between the expanded message words.

5.2 On Differential Attacks

Concerning differential attacks, our results are two-fold:

1. A differential path with a non-zero difference in the input chaining value does not affect the security of
the hash function because it is wide-pipe

2. A differential path with a non-zero difference in the message cannot have a high success probability,
because of the strong message expansion.

This shows that successful attacks on the hash function based on differential properties are very unlikely.
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A Example of Weak Message

Here is an example of a weak message, and the output of the compression function when used with the same
value for the message and chaining value (this ensures that the XOR is symmetric). Notice that the output
is mostly symmetric.

Message = Chaining Value
A0..3 00000000 00000000 00000000 00000000

B0..3 00000000 00000000 00000000 a2000000

C0..3 00000000 00000000 00000000 00000000

D0..3 00000000 00000000 00000000 f1000000

Output
A0..3 0e0618e6 0ee618e6 ec5a3cee fbdc48ae

B0..3 17bde794 17bddbd4 5a0a59f2 5a2a59f2

C0..3 12a9c015 12a9c015 be7d3df1 be775df1

D0..3 15f9cb8d 15f9cb8d 2efef45c 2efef45c

Expanded Message

W
(0)
0..3 0a1ee3d1 0a1ee3d1 bc12531b bc12531b W

(1)
0..3 a5abca86 a5abca86 4be14335 4be14335

W
(2)
0..3 e827b082 e827b082 1b761da1 1b761da1 W

(3)
0..3 287848fd 287848fd aa01d8fa aa01d8fa

W
(4)
0..3 2fb2e543 2fb2e543 c914c4be c914c4be W

(5)
0..3 050f4ec5 050f4ec5 de09ccb1 de09ccb1

W
(6)
0..3 143cc7a2 143cc7a2 31ddec7d 31ddec7d W

(7)
0..3 50f0d841 50f0d841 0dbbb1f4 0dbbb1f4

W
(8)
0..3 d04e1abd d04e1abd 36ec3b42 36ec3b42 W

(9)
0..3 ebc4385e ebc4385e ce231383 ce231383

W
(10)
0..3 f5e21c2f f5e21c2f 43eeace5 43eeace5 W

(11)
0..3 17d94f7e 17d94f7e e48ae25f e48ae25f

W
(12)
0..3 af1027bf af1027bf f2454e0c f2454e0c W

(13)
0..3 faf1b13b faf1b13b 21f7334f 21f7334f

W
(14)
0..3 d788b703 d788b703 55ff2706 55ff2706 W

(15)
0..3 5a55357a 5a55357a b41fbccb b41fbccb

W
(16)
0..3 320fcdf1 320fcdf1 624c9db4 624c9db4 W

(17)
0..3 a4135bed a4135bed 3126ceda 3126ceda

W
(18)
0..3 21adde53 21adde53 4aa2b55e 4aa2b55e W

(19)
0..3 237fdc81 237fdc81 975568ab 975568ab

W
(20)
0..3 435abca6 435abca6 ab5b54a5 ab5b54a5 W

(21)
0..3 9ccb6335 9ccb6335 409fbf61 409fbf61

W
(22)
0..3 641e9be2 641e9be2 daaf2551 daaf2551 W

(23)
0..3 46feb902 46feb902 1893e76d 1893e76d

W
(24)
0..3 71c58e3b 71c58e3b a06f5f91 a06f5f91 W

(25)
0..3 1e09e1f7 1e09e1f7 dd6a2296 dd6a2296

W
(26)
0..3 9a1065f0 9a1065f0 eeb5114b eeb5114b W

(27)
0..3 c3ee3c12 c3ee3c12 452cbad4 452cbad4

W
(28)
0..3 e684197c e684197c c1333ecd c1333ecd W

(29)
0..3 f9a1065f f9a1065f 2ac7d539 2ac7d539

W
(30)
0..3 f3420cbe f3420cbe 558eaa72 558eaa72 W

(31)
0..3 cd0832f8 cd0832f8 6c4f93b1 6c4f93b1
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