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Abstract

The Generalized Multifractional Brownian Motion (GMBM) is a continuous Gaussian process that
extends the classical Fractional Brownian Motion (FBM) and Multifractional Brownian Motion (MBM)
[30, 31, 10, 4, 5]. As is the case for the MBM, the Holder regularity of the GMBM varies from point to
point. However, and this is the main interest of the GMBM, contrarily to the MBM, these variations may
be very erratic: As shown in [1], the pointwise Holder exponent {ax ()}¢ of the GMBM may be any liminf
of continuous functions with values in a compact of (0,1). This feature makes the GMBM a good candidate
to model complex data such as textured images or multifractal processes. For the GMBM to be useful in
applications, it is necessary that its Holder exponents may be estimated from discrete data. This work deals
with the problem of identifying the pointwise Holder function H of the GMBM: While it does not seem
easy to do so when H is an arbitrary liminf of continuous functions, we obtain below the following a priori
unexpected result: as soon as the pointwise Hélder function of the GMBM belongs to the first class of Baire
(i.e when {ax (t)}¢ is a limit of continuous functions), it may be estimated almost surely at any point t. We
also derive a Central Limit Theorem for our estimator. Thus, even very irregular variations of the Holder
regularity of the GMBM may be detected and estimated in practice. This has important consequences in
applications of the GMBM to signal and image processing. It may also lead to new methods for the practical
computation of multifractal spectra. We illustrate our results on both simulated and real data.

AMS Mathematics Subjets Classifications (1991): 60G15, 60G17, 60G18.
Key words: Gaussian process, fractional Brownian motion, generalized multifractional Brownian motion,
pointwise Holder exponent, Identification.

1 Introduction and background

The celebrated Fractional Brownian motion (FBM) was first introduced by Kolmogorov in 1940, in a Hilber-
tian framework [24]. The seminal paper of Mandelbrot and Van Ness popularized the FBM by showing its
relevance for the modelling of natural phenomena such as hydrology or finance [30]. FBM is a continuous
and centered Gaussian process, denoted {Bn (t)}tGRd. It depends of one parameter (the Hurst parameter)
H € (0,1). In, e.g., the book of Samorodnitsky and Taqqu [33], it is shown that FBM can be represented,
for every t € R? as

(&€ 1) ~
Bu(t) = Re(/le NGLETrES W(ﬁ)), (1.1)
where Re(.) denotes the real part and where the complex isotropic random measure dW satisfies
AW = dW, + idWs, (1.2)
dW: and dW, being two independent real-valued Brownian measures (throughout the article, the symbol |.|

will either denotes the Euclidian norm on IR¢ or the absolute value on R). When H = 1/2, FBM reduces to
Brownian Motion. FBM is therefore an extension of the Wiener process and shares many of its properties.



A major difference, which is one of the main interests of FBM, is that, contrarily to Brownian Motion, its
increments are correlated. They even display long range dependence when H > 1/2 (see [33] for a definition).
FBM has been used in a number of areas, most recently in telecommunications (see for instance [35]). The
monograph of Doukhan, Oppenheim and Taqqu [14] offers a systematic treatment of FBM, as well as an
overview of different areas of applications. Another important property of FBM is that its pointwise Holder
exponent {ap, (t)}tele can be prescribed via its Hurst parameter. Indeed, one has (a.s.) for every t € R¢,

By (t) = H.
Recall that the pointwise Holder exponent of a stochastic process {X(t)}tERd whose trajectories are
continuous and nowhere differentiable is the stochastic process {ax (t)}te R defined for every t as

ax(t) = sup {a,lim sup M _ 0} '
h—0 |h|°‘

It allows to measure the local variations of regularity of {X(t)}tERd.

Remark

In general, ax (t) is a random quantity. However, when {X(t)}tERd is a continuous Gaussian process,
this quantity assumes, for each fixed ¢, an almost sure value. This fact is a simple consequence of the zero-one
law (see for instance [6]). All the stochastic processes that will be considered in this article are Gaussian.
Their Holder exponent at any fixed but arbitrary point will therefore be “deterministic”.

The fact that the pointwise Holder exponent of FBM remains the same all along its trajectory restricts its
applications in several situations. Let us give an example in the field of image synthesis: FBM has frequently
been used for generating artificial mountains [34]. Such a modelling assumes that the irregularity of the
mountain is everywhere the same. This is not realistic, since it does not take into account erosion or other
meteorological phenomena which smooth some parts of the mountains more than others. Multifractional
Brownian Motion (MBM) was introduced, independently in [31] and [10], to overcome these limitations.
Roughly speaking, it is obtained by replacing the Hurst parameter H of FBM, by a smooth function ¢ — H (t).
More precisely, MBM can be defined as follows.

Definition 1.1 (Harmonizable representation of MBM) Let H(.) : R% — [a,b] C (0,1) be a B-Hélder
function (i.e for all t1, ta, one has |H(t1) — H(t2)| < c|t1 — t2|?) satisfying the technical assumption

sup H(t) < 8.
t

The MBM with functional parameter H(.) is the continuous Gaussian process {Z(t)}teRd defined for every
te R? as,

GitE _ N
Z(t) = Re(/Rd |(§|H@le/)2 aw(e)), (1.3)

where dW is the complez-valued stochastic measure introduced in (1.2).

MBM is an extension of FBM at least for the following two reasons.
e When H(t) = H for all ¢, then MBM reduces to an FBM with parameter H.
e At any point ¢, MBM is Locally Asymptotically Self-Similar with index H(¢) [10], more precisely,

law {Z(t—f—pu) — Z(t)

i PEIO) }ueR“ = law {Bu(w)}, . g

p—0t
where {BH(t)(’U/)}MERd is an FBM with parameter H(t). In fact, this property means that at any
point ¢, there is an FBM with parameter H(t) tangent to the MBM. We refer to the recent works of
Falconer [15, 16] for an extensive study of the notion of tangent process.
Similarly to FBM the pointwise Hdlder regularity of MBM can be prescribed via its functional parameter.
Namely, for every t € R?, (a.s.)



A problem remains with MBM: because H(.) must be a Holder function, its Holder function (i.e. the
function ¢ +— «az(t)) cannot evolve irregularly in time. This is a strong limitation in applications such
as turbulence, finance, telecommunications and textured image modelling. Indeed, in such applications,
numerical evidences have shown that the pointwise Holder regularity changes widely from point to point.
Note that it is not possible to force discontinuities in the pointwise Holder exponent of MBM by simply
taking a discontinuous H(.): it has been proved by Ayache and Taqqu in [6] that when the function H(.)
is discontinuous, then the trajectories of MBM, are themselves, with probability 1, discontinuous. A more
refined approach is necessary to obtain a Gaussian process with controlled but very erratic Hélder function.

Daoudi, Jaffard, Lévy Véhel and Meyer have completely described the class of pointwise Holder functions
of continuous functions over an arbitrary compact cube [13, 27]. They have shown that this class is that of
all liminf of sequences of nonnegative continuous functions. Recently, the authors ([4, 5]) have introduced
a continuous Gaussian process whose pointwise Holder exponent can be of the most general form, i.e.
any liminf of a sequence of continuous and nonnegative functions. This process is called the Generalized
Multifractional Brownian Motion (GMBM), since it extends both FBM and MBM. Roughly speaking, it is
obtained by substituting to the Hurst parameter of FBM a sequence of Lipschitz functions. The Definition
of GMBM is more or less inspired from that of the Generalized Weierstrass function [13]. In order to be able
to give it, we need first to introduce some notations. We note in passing that another approach for obtaining
erratic Holder functions through a generalization of the mBm is described in [19, 20]. Also, a rather different
approach for constructing processes with both strongly varying local regularity and long range dependence,
based on the use of pseudo-differential operators, is developped in, e.g., [23, 25, 26].

Let f—1 € L*(IR) be a function such that its Fourier transform f_; is C? and ranges in [0, 1]. Assume in
addition that for every & = (¢1,...,&q4) € R¢

lifforallg, |&] <1

f-1(6) = (1.4)
0 if for some %, |§| > 5/4.

For all n € IV, we denote by f, the function of L'(IR), defined by its Fourier transform as follows: For
all € € R,

Fu(€) = F1 27710 = fa(2770). (1.5)
Observe that for each n € IN and all £ € R
Fu(€) = fo(27"¢) (1.6)
and
S fua() =1 (L.7)
n=0

The functions fn are compactly supported. Moreover,
supp f_l Cc D, (1.8)
and for all n € IV,
Supp fn C Dy \ Dn, (1.9)
where for every n € IN, D,, denotes the compact cube
D, =[-2",2"]". (1.10)
Definition 1.2 Let [a,b] C (0,1) be an arbitrary but fived interval. An admissible sequence (Hn(.)), v 5
a sequence of Lipschitz functions defined on [0,1] and ranging in [a,b] with Lipschitz constants d, verifying,
for alln € N,
8o < 127, (1.11)

where ¢y > 0 and o € (0,a) are constants.



Remarks
e We recall that any liminf of a sequence of continuous functions ranging in [a, b] is also a liminf of an

admissible sequence [13].

e The problem of constructing an admissible sequence of Lipschitz functions (Hy(.)), converging to the
pointwise Holder function H(.) has been extensively discussed by the authors in [4]. A general method
for obtaining such sequences has been given in the proof of Proposition 1 of [4]. For the sake of
concreteness, let us consider here the special case where the pointwise Holder exponent H(.) takes a
finite number of values. Set for instance:

p
)= CiXigi.an(t) +a,
i=1

where a and the ¢; are positive reals. Then for any n big enough one may simply take for every t,

cita, foralli=1,...,nand t € [di_1,d;i — =]
H,(t)=1¢ a, forallt € (—oo,do — +]U [dp, +00)
an affine function otherwise.

We are now in a position to recall the definition of GMBM. For the sake of simplicity, the processes we will
consider in the remainder of this article will be defined on [0, 1]%.

Definition 1.3 Let (Hn(.)),c v be an admissible sequence. The Generalized Multifractional Field (GMF)
with parameter the sequence (Hn(.)),c v 18 the continuous Gaussian field {Y (2,Y)} ) ec(0,114x 0,14 defined
for all (z,y) as

vy =re ([, [Z |§|;ﬁy)+1,2fn 1(0] (). (1.12)

where dW is the stochastic measure introduced in (1.2). The Generalized Multifractional Brownian Motion
(GMBM) with parameter the sequence (Hn(.)), c v 18 the continuous Gaussian process {X (t)},ep0,1¢ defined

as the restriction of {Y (,y)} (s, y)ep0,11¢x[0,1¢ t0 the diagonal: for all t € [0, 114,
X(t) =Y(t,t). (1.13)

GMBM is an extension of FBM and MBM at least for the following two reasons.

e When all the Lipschitz functions H, (.) are equal to the same function H(.) (resp. to the same real H),
then Relation (1.7) implies that GMBM reduces to MBM with parameter H(.) (resp. to FBM with
parameter H).

e According to Proposition 3 in [4], under some technical conditions on (Hy(.)), v, at any point ¢, the
GMBM is Locally Asymptotically Self-Similar with index H(t) = liminf H,, ().
n—oo

One of the main interests of GMBM is that similarly to FBM and MBM its pointwise Holder exponent
can be prescribed via its parameter (Hy(.)), o pv- Namely, for every t € R?, (a.s.)

ax (t) = H(t) = lim inf H,(¢). (1.14)

Let us now explain the main objective of our work. The rationale behind the definition of the GMBM is
that the variations of the pointwise regularity of many natural processes display the two following features:

e They hold some important information, useful for the processing of the data. Typical examples include
financial data analysis and medical image modelling. In the former case, points with smaller Holder
exponent correspond to time instants where the risk is larger (see section 4.3 for a regularity analysis
of a financial log). In the latter case, smaller exponents are the signature of highly textured regions,
or of edge points.

e They are very erratic in time/space. This happens for instance in the case of medical images, such as
MR images of the brain or mammographies, where microcalcifications induce strong localized irregu-
larities.



The GMBM is capable to finely model such processes, because one can prescribe its pointwise Holder
function, and this function may be arbitrarily erratic. In order for the GMBM to be useful in the above con-
texts, however, one needs to be able to estimate H(¢). Another application of the GMBM is in multifractal
analysis. The so-called multifractal formalism has been introduced because physicists are convinced that
one cannot estimate a very erratic pointwise Holder exponent. Being able to identify H(t) might lead to
alternative methods for computing multifractal spectra. These and other applications show that estimating
the pointwise Holder exponent of the GMBM is important both from the theoretical and an applied points
of view. Using the method of Generalized Quadratic Variations, we obtain below the following a priori
unexpected result: as soon as the pointwise Hélder exponent of GMBM belongs to the first class of Baire (i.e
when H(.) is a limit of continuous functions) one may estimate it at any point t almost surely. Furthermore,
under some conditions, a Central Limit Theorem holds for the estimator.

Remarks

o As the pointwise Holder function of a typical natural signal is erratic, its structure is generally unknown.
One therefore needs to employ a nonparametric procedure for estimating it.

o Generally speaking, the long range dependence structure of a stochastic process is governed by the
“low frequencies” part of its Fourier spectrum, while its Holder regularity is governed by the “high
frequencies” part of this spectrum. In this respect, one of the advantages of GMBM is that, contrarily to
FBM, different (functional) parameters, namely the first terms and the tail of the sequence (Hy(.)),, . v
rule the two ends of its Fourier spectrum. Thus, with GMBM, it is possible to have at the same time a
very irregular local behavior (i.e. a small value for H) and long range dependence. This is not possible
with FBM, which displays long range dependence only for H > 1/2. GMBM seems therefore adapted
to model processes which display both those features, such as Internet traffic or certain highly textured
images with strong global organization, as are e.g. MR images of the brain. Since different parameters
rule the low and high frequencies of GMBM, its pointwise Holder function cannot be identified by
the methods of Heyde and Gay [21] or that of Robinson [32]. Indeed, all these methods rely on some
properties of the “low frequencies” part of the Fourier spectrum. In view of the remark above, these
methods could rather be adapted to compute the long range dependence exponent of GMBM.

A method commonly used in the literature for estimating a Holder exponent is that of Quadratic Varia-
tions [18, 22, 9, 8, 7, 12]. Recall that, if for some integer N > 1, {X(%); p€ {0,...,N— 1}4} is a discretized
trajectory of a process {X(¢)},¢[0,1j¢, then the corresponding quadratic variations are defined as

W= (X e (B (1.15

p€{0,...,N—-1}4 e€{0,1}9

where p = (p1,...,pd), € = (€1,...,€4) and pT"'E = (%, R %). Observe that the random variables
Y ecqoapa (1) FeAX (B are rectangular increments of order 1 of the process {X(t)}efo,1ja- Guyon
and Léon have noticed that the Quadratic Variations of an FBM with parameter H, satisfy a standard
Central Limit Theorem when H € (0,3/4) while they fail to satisfy such a Theorem when H € (3/4,1) [18].
This is why Istas and Lang have proposed to replace them by the Generalized Quadratic Variations (GQVs)

[22]. For the sake of simplicity, we will always suppose that they are of the form

We Y (Sex(h), a0

pe{0,...,N—2}d kEF

where F = {0,1,2}% and for all k = (k1,...,kq) € F,

d
d =[] ex, (1.17)
=1

with eg = 1, e = —2 and ex = 1. Observe that the random variables ZkEF de(%) are rectangular
increments of order 2 of the process {X(t)};c(p,1j2- Next, let us fix t = (t1,...,ta) € [0, 1)¢, the GQVs of
{X(t)}1eq0,17¢ localized around t are defined as

wio- S (max(h), a9

pEvn(t) kEF



where
vn(t) = vy (t) X vi(ta) X ... x v (tq) (1.19)
and foralli=1,...,d

Di

V]iv(ti)z{piEIN; 0<p;<N-2and ti—N

< N’”}, (1.20)

~ € (0,1) being fixed. Heuristically speaking vx (t) can be seen as a neighborhood of the point ¢. Under the
assumption that H(.) is a C* function, using the localized GQVs, Benassi Cohen and Istas have identified,
when d = 1, the Holder exponent of MBM at any point ¢ [8]. We will also use the localized GQVs for
identifying the Holder exponent of the GMBM. However, there is some difference between our method and
that of [8]: we show that, up to a negligible part, the GQVs of GMBM are equal to that of the process
with stationary increments {Y(s,)},¢[0,1j¢, Where t is fixed (recall that Y is the GMF, see (1.12)). The
stationarity of the increments makes these last GQVs easier to study.

Remark

In the special case of FBM, the estimation of the Hurst parameter H, only requires a parametric proce-
dure. The Whittle estimator is therefore the most efficient one. However, an equally efficient estimator may
be obtained by the method of the Generalized Quadratic Variations, even if the number of observations is
small (this happens when one localizes the Generalized Quadratic Variations), as shown by Coeurjolly in
Chapter 2 of his Phd Thesis [12].

At last, let us mention that some results on the identification of a multifractional process with a discon-
tinuous pointwise Holder exponent have been obtained in [7] and [2]. Both these papers use the method of
the Generalized Quadratic Variations. The estimation of the piecewise constant Hoélder exponent of the Step
Fractional Brownian Motion has been performed in [7]. A model called Generalized Multifractional Gaussian
Process, which is similar to GMBM and can be studied with the same methods, has been introduced in [2].
Under some restrictive assuptions, a kind of average of the values of the pointwise Holder exponent of this
model has been identified in [2].

The remainder of our article is organized as follows. In section 2, we will construct two strongly consistent
estimators of the pointwise Holder exponent of GMBM. In section 3, we will show that the Generalized
Quadratic Variations of some classes of GMBMs satisty a Central Limit Theorem. Such a result is important
from a statistical point of view since it allows to construct tests. At last, in section 4, we give a method for
simulating a GMBM, and we apply our estimation procedure to sampled, synthetic and real, data.

2 Two estimators of pointwise Holder exponents of GMBMs

First a word about notations. From now on ¢t = (¢1,...,t4) € [0, 1]¢ will be fixed and for every integer N > 2
Va (t) will the GQVs of the GMBM localized around ¢. Observe that

b= 5 (Sar (), o

where {Y' (%, 4)} (2 y)e[0,114x[0,17¢ is the GMF that we have introduced in Relation (1.12). The quantity Vi (¢)
seems to be difficult to handle since the GMBM is with non stationary increments. However, thanks to
Lemma 2.3 below, we will show that up to a negligible part, it is equal to T (t), where T'n () denotes the
GQYV localized around ¢ of the process with stationary increments {Y'(s,t)},¢0,1j¢. Observe that

vy = Y (deY(z%k,t)> . (2.2)

pEvn (t) \kEF
At last it is convenient to introduce
k op+k k ’
_ ptk ptRY_y(PtE
W= Y (zdk(y( thpEky (2t ,t))) . 239
pEvn(t) \kEF

Let us now state the main results of this section.



Theorem 2.1 Let {X(t)},c0,17¢ be a GMBM with parameter an admissible sequence (Hyn(.)), o v ranging
in [a,b] C (0,1—55). Fizy € (b,1— ) and assume that the sequence of real numbers (Hy, ) e IV cOnverges
to the real number H(t). Then, almost surely,

_ log Vi (t)

1
lim — 1-—
D2 (d( ”) log N

N —=o0

) = H(t). (2.4)

Theorem 2.2 Let {X(t)},c0,17¢ be a GMBM with parameter an admissible sequence (Hyn(.)), o v ranging
in [a,b] C (0,1). Choose &, v such that § —~ > 1/2d and v > 0b. Set,

=Y (S ax(BEY), (2.5)

pEDN(t) kEF

where

N (t) =N (t1) X ... X U (tq) (2.6)
and where for alli=1,...,d,

Di

ti = s

Pi(t) = {pi € M50 <pi <N =2 and

< N’”}. (2.7)

Assume that the sequence of real numbers (Hn(t)),c v converges to the real number H(t). Then, almost
surely,

. 1 log Vi (1) _
We will only give the proof of Theorem 2.1 since that of Theorem 2.2 is similar. This proof mainly
relies on the following four Lemmas. From now on, we set, for all integers n € IN, h, = H,(t) and

h=H(t) = lim H,(t).
n—r o0

Lemma 2.3 There ezists a random variable C1 > 0 with the following properties:
o all the moments of Cy are finite,

e almost surely, for all t € [0,1]% and for all integer N > 2,
Wy (t) < Gy N4 =1=27, (2.9)

Lemma 2.4 For all €1 > 0, there ezist two constants 0 < c2 < c3 (depending only on t and €1) such that,
for all integer N large enough,

C2Nd(1—'y)—2h—2q < E(Tn(t) < C3Nd(1*7)*2h+261' (2.10)

Lemma 2.5 For all e > 0, there exists a constant ca > 0 (depending only on t and €2) such that, for all
integer N > 2,

Var(Tn (t)) < cg N7 4htdez (2.11)
Lemma 2.6 For all t € [0,1]%, almost surely,

: In() _

To simplify the notations, we set Tnv = I'n(t), Vv = Vn(t), Wy = W (t) and vy = vn (t).
Lemmas 2.3, 2.4, 2.5 and 2.6 will be proved below.

Proof of Theorem 2.1



2
_ p+k p+k
o= (deY(T’T>>
PEVN \kEF

2
- 2 (el () - () e ()
pPEVN keF keF
(2.2), (2.3) and the triangular inequality in R”N (equipped with the Euclidean norm) then entail that
|T]b/2 1/2| < V1/2

T + Wi/ (2.13)
Let us now show that, almost surely,
. WNn
(From (2.3), (2.9) and (2.10), we know that, almost surely,
Wn élNd(l_’Y)_Q’y A n—2(y—h+ter)
0= E(Tn) — coNd(1-7)—2h—2e S OGN ' (2.15)
Now, since v > b > h, we find that, almost surely, when €; > 0 is small enough
. Wn
1 — = 2.1
NI BT (2.16)
Writing VIY—IZ\"’ = %}\1’") X EI?;‘I;’V) and using (2.16) and Lemma 2.6, we get (2.14). Besides, it results from
(2.13) that
1/2 1/2 1/2 1/2
logTy' = +log |1 — Tl—% <logVy' =~ <logT, ~ +log
N

w
1 N
+ 4

(2.17)
N
Note that, for all integer N > 2, one has almost surely T > 0: indeed, the random variable } 7, - . di Y (

is almost surely non-zero, since it is Gaussian and non-degenerated. Remark also that, from (2.14), the ran-
1/2
dom variable log |1 Wa |

1/2

Y(£,t)
is, for all sufficiently large N, almost surely well-defined
Using (2.14) and (2. 17), we get that, almost surely,

lim inf log Ty < liminf log Viv < lim sup log Viv < lim sup log Ty
N—oo log N N—oo log N Nooo logN NHOO log N *
Furthermore, from (2.10), one has, for all e; > 0

(2.18)
log E(Tn) _ . log E(T'~)
1—v)—2h—2¢6 <l f <l —_— 1—7v)—2 2€7.
d(1 =) = 2k = 2e < liminf =270 <limsup =20 < d(1—9) —2h + 26
As a consequence
. logE(Ty) _
ngnoo ogN d(1 —~) — 2h. (2.19)
Finally, for all integer N > 2
logTy  log(Tn/E(Tn)) | log E(Tn)
logN log N logN ’
(2.12) and (2.19) then entail that, almost surely,

log T'n
=d(l—7v)—-2
N log N dl =) —2h
and (2.18) ensures that almost surely,

log Vv
= ]_ - - 2 .
N5 log N dl =) -2k




The proof of Lemma 2.3 relies on Lemma 2.7 and on Remark 2.8. Observe that Lemma 2.7 is the natural
multidimensional extension of Proposition 1 in [1], this is why we have omited its proof. We have also omited
the proof of Remark 2.8, since it is obvious.

Lemma 2.7 [1] There ezists a random variable Cs > 0 with the following property: almost surely, for all
’ d
v,y €[0,1]%,

sup |V (2,y) =Y (z,y)| < Csly — /|- (2.20)

z€[o,1]d
Furthermore, all the moments of Cs are finite.
Remark 2.8 There exists two constants 0 < cg < c¢7 such that, for all N > 2,
e N < card(vy) < er N7, (2.21)

Proof of Lemma 2.3
(From (2.3) and (2.20)

2
o< 3 (Sl (SR ) v (B3R
pevn \keF
2
k
< \di| s ‘(,IH—)—Y tD
pGZVN (kEZF kzel[lop v N (:v )
2
< & ¥ (SmE-)
pEvN \kEF
< ééZ( > il 2 |+ 3 |d|"“'>
PEVN keF keF

Thus, using (1.19), (1.20) and (2.21),

2
Wy < CINT" (3\/3 > |dk|) er N
kEF
< élNd(1*7)*2’Y'
|
Lemma 2.6 will result from Lemmas 2.4 and 2.5. The following Remark will be useful in the sequel.
Remark 2.9 Set, for all N > 2 and all p,p’ € {0,...,N —2}¢,
+k '+ K
In(p,p)=E Z ded Y (p , ) Y (p N ,t> ) (2.22)
k,k'€F
Then
) =16 [ S e, (2.23)
where
0if&E=0,
d 2
g (€) Hsm4(§l/2N (Z |§|h 1—+—d/2> otherwise. ( )
=1



Proof of Remark 2.9
For all p,p’ € {0,..., N —2}¢

9(5) = Z dpdpr (ei(pltk)"s _ ]_) (6*1’(#).5 _ 1)'

k,k'eF

Observe that since ), .. dr = 0 one has that

_ (Z dkei(”#)-s) ( > dk,e—z‘("';zv’“').e).

kEF k'eF

Then using (1.17) one gets

/N 1)t = 160 RO L sin (61/2N). (2.25)

o(¢) = ' T

At last (2.22) and (2.25) entail that
In(p,p) = / (Z |£|nh 1_,_1/2> d¢
i PNP fn 1 :
- 16d/dee( /2N) (Z i +d/2> d€.

) 2
ker dke’k'é/N‘ = "W

|
Proof of Lemma 2.4
(From (2.2), (2.21) and (2.22), one gets that, for all integer N > 2,
ce N Ix5(0,0) < E(Ty) < erN“*"715(0,0). (2.26)
Since h = lim h,,, for all € > 0, there exists na such that, for all integer n > na + 1,
n—oo
h—e<h,<h-—e (2.27)
The triangular inequality in L?(R?) yields
‘ = fa© e\ )
.4 n—1 n—1
(/]Rd [ [sin®(&/2N) ( > mhwm) ) (/ Hsm (&/2N) (Z A +d/2> d§>
=1 n=ngs+1
1/2
< IV0,0
= d
g S SCARPAR f AR
-4 n—1 n—1
< (/sz ll—[lsm (&/2N) ( Z+1 |§|hn+d/2) d§) + (/ Hsm (&/2N) (Z |§|hn+d/2) d§)
= n=ng

Using (2.27) and the inclusions (1.8) and (1.9), we get

[[;=, sin”(&/2N - i _N_Zd f- i 3d
B £ o (1 () v

n=ng+1

1/2
< Iy (0,0) (2.28)

< Bl
5 (e (mehn) 0 )

1/2 1/2

1/2 1/2

in” (& /2N > ’
(fp T2 (5 o) ac)

n=ngs+1

Thus it results from (1.7) and (2.28) that

1(0,0) ( " [I1_, sin' (6 /2) dg) R

44 |¢[2h+d—2¢
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Then setting for [ =1,...,d, w; = §/N, in the last integral, we obtain that

1/°(0,0)

1d < CgNi(hie) =+ CgN72d < CloNi(hie).

(2.29)

Using (2.26), we thus obtain the last inequality in (2.10). Let us now prove the first inequality in (2.10).
From (1.7) and the triangular inequality in L*(IR?), we have, for all sufficiently large integer N

L N 5 1/2
(e Mgt (3 o) )

n=ng-+1

d . 4 1/2 4 .4 s 5 1/2
_, sin”(§&/2N) _,sin®(&§/2N) R
> ( R Hl|1€|szh—+d+lz/€d§> - ( e Hl|1€|52h—+d+12/ (Z fn1(§)> dg)

n=0

- 1/2 N_2d ) ) na R 2
> N-(h+o) (/Rd E;T;h(% d§> -~ (/ g (Z fn_1(§)) d§)
n=0

Z 011N7(h+6).

1/2

This last inequality and (2.28) entail that, for all sufficiently large integer N

1;/%(0,0) (e
NT > N~ (2.30)
Finally, the first inequality of (2.10) results from (2.30) and (2.26). [ ]

To prove Lemma 2.5 we need some preliminary results.

Lemma 2.10 Let hy, .

.. hn, be O functions defined over an open set U C R®. For every £ = (£1,...,64) €
U, we set

o(©) = [[ (e (231)
=1

Then for all 1 <u < d and £ € U, we have

O1...0u9(8) = > > > [Tor .. o5 0u ), (2.32)

€1,1F...+e1 n=lea1+...+ea n=1 €y,1F - -teu, n=11=1
where for all i and 1, €;; € {0,1} and with the convention that:
e forany 1 <m <d, 0} = Om is the partial derivative with respect of &, and 00, is the identity map.

e foranyl <i < u and any sequence {a(€i1,...€in); (€11, €in) €{0,1}"}, 30 o L _jalei,.. €in)

denotes the sum of all terms a(€;,1, ... €in) such that €1 + ...+ €;.n =1 (observe that only one € is
equal to 1 and the others are equal to zero). For example, if n =3,

Z a(ei,l, €i,2, Ei73) = a(l, 0, 0) + a(O, 1, 0) + a(O, 0, 1).
€;,1+¢€;,2+€; 3=1
Proof of Lemma 2.10

We will prove this Lemma by induction on u. Let us first suppose that v = 1. It is clear that

ag©)= . J]om©).

€1, 1+...+e1 p=11=1

Next let us suppose that for some integer u > 2, one has

Or...0u_19(&) = > > [Joi" ... 0w~ h(€).

€1,1F-..+e1,n=1 €y—1,1F-t+eu—1,,=11=1

Since

au(f[a;“ L) O =Y To5 . a0 ot (o)
=1

Culd Feu,n=11=1
we obtain (2.32).
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Remark 2.11 For every £ € R® and for every integers N > 2 and n > 0, let us set

d
kn(€) = [ [ sin®(&/2N). (2.33)
1=1
and
0ifE=0
An€) = (2.34)
|§|*h"*d/2 =+ + 53)*’“/27‘1/4 otherwise.
Then, the function gn, which has been introduced in (2.24), can be written for every £ € R? as,
g (©) = k(O Fu1©M(0)) (2:39)
n=0

Moreover, for every non vanishing € € R® and for all1 < u < d, |01 ... 0ugn(€)| is bounded by a sum of
terms of the form

05 o k(@] % (D100 famn (U050 A ()]
n=0

x (D100t fu (@115 0 A (€)]), (2.36)

n!/=0

where for all1 <i<wand1<1<5, ¢, €{0,1} and

u

> eu=1 (2.37)

i=1

Proof of Remark 2.11
It follows from (2.35) that for every & € R?,

gn(€) = D kN (E)Fa-1(©M (&) fur1()Anr (§).
n,n' € N
Then Lemma 2.10 entails Remark 2.11. |
Let us now compute the partial derivatives of the functions kn, A, and fn

Remark 2.12 For all £ € R?, for j =2 or j =4 and for alin € IN

i iein v u d
ot 0y kN (E) = (3) [ sin*~2(&/2N) x [Jcos* (¢&i/2N) x ] sin*(&/2N), (2.38)
i=1 i=1

N l=ut1
forj=2o0rj=4
BT L0 fu(e) = 2 B gt L 95 fo(27¢) (2.39)
and for all non vanishing € € R<,

hn—d/2 -2 Zl_i 6¢,j+1)51’j+1§;l’j+1

=

|£|hn+d/2+22§‘:1 €i,5+1 !

I L9 A (E) = I, (= (2.40)

with the convention ;! € j+1 = 0.

Proof of Remark 2.12
Relations (2.38) and (2.39) are obvious. We just have to use Relation (1.6) for obtaining Relation (2.39).
Let us prove Relation (2.40) by induction on w. It is clear that for all non vanishing ¢ € R? and all n € IV,

(ha = d/2) 217154

€1,5+1 —
81 7 An(g)_ |§|hn+d/2+251)]‘+1

12



Let us now suppose that for an arbitrary u > 2,

-1 1—1 X i
€1,5+1 fu—1,j+1 _ 7:1 (=hn —d/2-23 02, 6i,j+1)€l"+1§l€l "
OO, () = = :

|£|hn+d/2+22i:1 €i,j+1

5~ u—1
Then since the partial derivative with respect of £, of the function £ — |§|_h"_d/2_22i:1 €i+1 ig equal to

> = h:_ji//zzég 1 at ]“J)i“ we obtain Relation (2.40). [ ]
g 1:1 €i,j+1

JFrom now on, if A is an arbitrary subset of IR, then y 4 will denote its indicator, namely the function
such x4(€) =1if £ € A and xa(£) = 0 else. Recall that for every n € IV, D,, = [-2",2"]".

Remark 2.13 Using the same notations as in Remark 2.11, there is a constant ¢ > 0, such that for all
1 <u<d, all non vanishing € € R% and for j =2 orj =4

DO 0 fua ()10 LT AL (8)]
n=0

X0 (§ ci 27" =1y b, (6) (2.41)
|§|h0+d/2+21 Lcig |£|m1n(hn hp41)+d/2+35F €41 .

For any integer p > 1,

o . . X, 2 "Eimciiyg ©)
€1, €u, €1,54+1 REREDY n+1\Dn
Z |al b0 fn71(§)||al ’ T ? | <c Z |§|min(hn7hn+1)+d/2+2i"=1 i1’ (242)

(301050 0 Fua @110 - 0 () (30 105 -0 Furs (©110 .02 Ao (0
n=0 n!=0

XD (€) > 2*nEi:1(6i,2+6i,4)XDn+1\Dn ©)

|£|2h0+d+21" 1 (€i,3+€i5) + CZ |§|2mln(hn,hn+1)+d+21 L(ei3+eis)”

(2.43)

For any integer p > 1,

(101 - 0 @0 00 @) (30 100400 fu @O 80 A 0]

n'=p

(2.44)

< 2—”21 1 (€4,2+Fe€;, 4)XDn+1\Dn(€)
¢ Z |§|2m1n(hn, nt1)Hd+2Y (€5 3+€i5) "

Proof of Remark 2.13
Let us first prove Relation (2.41). Observe that as the sequence (hn), . gy is bounded, there is a constant
c1 >0, such that for all n € IV, 1 <u < d and ¢ € {0,1}

[ -1 X
TL( =t —d2-23 i) <en (2.45)
=1 i=1

In addition one has that for all non vanishing ¢ € R¢,

VS AR § 00 S st

|£|hn+d/2+22y:1 €,j+1 - |£|hn+d/2+2§j}:1 €5,j+1

< g, (2.46)

Using Relations (2.40), (2.45) and (2.46), one obtains that for every n € IV, 1 < u < d and non vanishing
¢€ R,

0519 0TI ()] < cafg] TP R = s (2.47)

13



Next, since forall 1 < u < d, 8;*7 ... 957 f_1 and 8,7 ... 93 f, are continuous functions, with support,
respectively, in the domains D; and Ds \ Do, there is a constant c2 > 0 such that for all £ € le,

0529 .06 4(©)] < caxmn (©). -
and for every n € IN,
9 Tio1 g |9 95 fo(277€)
< o2 PO XD\ Dy (€)- (2.49)

Next it follows from Relations (2.47), (2.48) and (2.49) that there is a constant ¢4 > 0, such that for all
€ R and for j =2or j =4,

R AR 3]

IN

D10 0 fusa (O)NIO LT A (€]

< o XDy (€) e iz "I XD, a\D, (€)
= |€]ho+d/2 AT, €t ¢4 ||t F /2T <
< Ca XDO(g) XDl\DO(g)

|€|h0+d/2+2,-"_1 €541 ¢4 |€|ho+d/2+2,-"=1 €541
> 2T Eimi iy \p, () ‘e i 27

i=1 €5
XDy y2\Dry1 3
tca Z |£|hn+1+d/2+zl 1 €i,54+1

|§|hn+1+d/2+22‘:1 €i,j+1

n=0
XDgo (5) c XD1\Dg (f)
|§|h0+d/2+21 TR [P0t a2 AT i

oo 2—(n71) Do €ig XDn+1\Dn (ﬁ)
|€|hn+d/2+2}=l €5, 4+1

> 2 " Ximihiyp \p,(£)

+ca |§|hn+1+d/2+2?=1 €i,j4+1

n=0

+cq

n=1

. X0, (§) Ci P TV (3
= |£|ho+d/2+Z§‘:1 €i,j+1 |§|min(hn,hn+1)+d/2+EL1 € j+1

n=0
Similarly, one can show that Relation (2.42) holds. At last, Relations (2.43) and (2.44) are straightforward
consequences of Relations (2.41) and (2.42) since all the sets Dy and Dy41 \ Dy, n € IN are disjoint. ]

Lemma 2.14 For all integer N > 2 and for any p = (p1,...,pa) € {0,...,N =2} and p' = (p},...,p}) €
{0,...,N — Z}d, with p # p', by reordering the p; and the p;, one may suppose that there exists 1 < m < d,
such that for alli = 1,...,m, p; # p; and for alli = m+1,...,d, p; = p;. Then, one has that for all
1<u<m,

) 16¢N¢ y
[In(p,p)| = m‘/ L€ (p=p")- SINg LD, gn () dE|. (2.50)
=1 l

Proof of Lemma 2.14
We will prove this Lemma by induction on u. It follows (2.23) and Fubini Theorem that

I / i d _
P - [ T Y g6 e e

= [ TN ([ e g 6o, der) des g 251)

Then by integrating by parts and using Remarks 2.11 and 2.13 one obtains that for almost all (£2,...£4) €
R,

. o N i )
/ewm POSIN g (61, 6y s Ea) dEy = — /e(m PN g (€182, Ea) dEr. (2:52)
R il —p1) JR

Relations (2.51) and (2.52) imply that Lemma 2.14 holds when u = 1. Next suppose that this Lemma
holds for some u < m — 1. Then one may show that it also holds for u + 1, by replacing in Relations (2.51)
and (2.52) gy by 01 ...0,gn and 01 by Oy41- [ |
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Lemma 2.15 For any arbitrarily small € > 0, there is a constant ¢ > 0 such that for all integers N > 2
and 1 <m <d,

/ 00 Omgn (€)|dg < eNTTTET, (2.53)

Proof of Lemma 2.15
First, let us notice that as lim,, o hn, = h, there is ny € IN, such that for all n > na + 1,
h—e<h,<h+e. (2.54)

Now let us introduce some notations. For j = 2 or j = 4 and for K = ny or K = oo and for all non
vanishing € € R?, let us set

K
L (&) =Y 100 .0 fumr()10H L 0im T X ()] (2.55)
n=0
and
Li©)= > 1007 .. 00 famr (OO0 00T AR (6)]. (2.56)
n=ngs+1

Observe that one has

I SOEIE
< O O @ O €+ [ 107 O (O (s ()

4 /Rd 05 05 e (€)1 T, (€) T (6) dE + /Rd 05 O e (©)| L () La(€) d€. (2.57)

(From now on our aim will be to bound each of these integrals. To simplify our notations, let us set for
alll=1,...,5

h=3 e (25%)
=1
Observe that since for 1 <i < m,

5
d =1, (2.59)

=1

Clearly one has that
5
Bi+Bs+p:<Y Bi=m<d (2.60)
=1

Next Relations (2.48), (2.49), (2.40) and (2.41) imply that there is a constant ¢ > 0, such that for all
1 < u < d and all non vanishing £ € R?, one has

Tjny (€) < el€]™ 7554 max([€] ™, €] ") XDpp (€) and Lo < cfé]™ /> %+t max(¢] ", €] ") (2.61)
Thus, when K3 = ny or K4 = ns, using Relations (2.38), (2.60) and (2.61) one obtains that

S 00 0 e (Ol (€ (€)

m d
21\ 8 . A . .
<a(2)" [ TDisw=erzmix T] sinf(6/20) x J6l= 7% x max(e =™, J¢] ) d¢
Dng41 j=1 i=m+1

<N~ |g]>* 1= Fs=F5 max(jg] 7>, €] 7%") dé

Dpyt1
<esN~M 61> max (€] >, €] 7*") d¢

Dyt
< ceaNT (2.62)
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where the constant c4 > 0 is finite. Next, let us give an upper bound of p = fRd |07 . O ke (€)| Lo (€) La(€) dE.
Using Relation (2.44) with p = n» + 1 and u = m, one obtains that for all non vanishing ¢ € R¢,

o 2*TL(B2+54)XDH+1\D” (é)

|2 min(hn ,hp41)+d+B3+85

L2(§)La(§) < cs
n=ns+1 |§

Then Relations (2.38) and (2.54) imply that

= T sint e (€ /2N) | TT o sint (6/21)
—B1 —n(B2+Ba) Hl:l | sin (&/ i=m+1 ‘
p < cwN le /D - Eph-acr a5, 55 dg. (2.63)
Next let no > 1, be the integer such that
27l 1/ N <27, (2.64)
let
& st (62N T4 sin® (63/2)
— —n(B2+PB4) i=1 |SlIl (&1/ i=m+1 1
pL= 212 /D DL |€[2h—2e+d+B5+Bs dé (2.65)
e 2 \Dp
and let
oo m d—e;q ) d ind (e
_ —n(Ba+B4) Hi:l | sin 1 (&i/2N)] Hi:m+1 sin” (& /2N)
p2= ZH 2 /D Dy |€[2h—2e+d+B3 +Bs de. (2.66)
n=ng n n—
First we will give an upper bound of p». Relation (2.64) implies that
m o d—ei X d Yo
—B2—Ba [IZ, |sin™ 02 (& /2N)| i, ., sin™ (& /2N)
p2 <N R |€[2h—2e+d+B3+55 d€. (2.67)
Next setting in this last integral, for all ¢ =1,...,d, v; = &/N, one obtains that
< N72(h76)7215=2 81 I, | sin® i1 (vi/2)] H;’i:m+1 Sin4(vi/2) d
P2 = R [o]2h—2c+d+Bs+Bs v
Next, using the inequality |sin(v;/2)| < |v| and Relation (2.60) one gets that
P2 S N—Q(h—e)—2?=2 By (/ |,U|2d—2h+25 dv +/ |U|—2h+25—d—ﬂ3—ﬂ5 d’l)) . (268)
[v]<1 [v]>1

Next let us give an upper bound of p;. Using the inequality |sin(&;/2N)| < N7'|¢| and Relations (2.58),
(2.60) and (2.64), one obtains the following inequalities, where Aq(D; \ D,,—1) denotes the Lebesgue measure
of the set Dy \ Dp_1.

IN

no
o’ NS g n(Baths) / |g[PAm2(h=)~B1 =835 g

n=1 Dp\Dp_1
no

N~ AdtB Z 2n(3d—2h+2e—z;”:1 B’))\(Dn \ D,_1)

n=1

IN

o

CIN—4d+L?1 Z 2n(4d—2h+26—m) S CIIN—4d+ﬂ1 gm0 (4d—2h+2e—m) S CIIN—m+L?1 —Z(h—e). (269)

IN

n=1

Next Relations (2.63), (2.65), (2.66), (2.68) and (2.69) entail that
p<eN~mTHRTO (2.70)

At last, it follows from Relations (2.57), (2.62) and (2.70) that there is a constant ¢ > 0 such that for all
1<m<dand N > 2,

/ 00 0mgn (€)]dg < eN TR,
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Lemma 2.16 For any arbitrarily small € > 0, there is a constant ¢ > 0 such that for all integer N > 2, all
p=(p1,...,pa) €{0,...,N—2} and p' = (p},...,p}) €{0,...,N —2}%, one has

d
[In (0, )] < NI + = piD] 7 (2.71)

=1

Proof of Lemma 2.16
Using Relation (2.29) one can easily show that Lemma 2.16 holds when p = p’. Next, observe that there is
a constant ¢’ > 0 such that for all p; € Z and p; € Z satisfying p; # p;, one has

1 —pil <L+ |pr—pi) 7 (2.72)
At last, Relation (2.72) and Lemmas 2.14 and 2.15 imply that Lemma 2.16 holds when p # p'. |

We are now in a position to prove Lemma 2.5.

Proof of Lemma 2.5
Since the process {Y(s,t)};¢[0,1j¢ is Gaussian and centered, one has for all integer N > 2,

Var(Ty) =2 Z (In (p,p")’.

p,p' EVN

Then using Lemma 2.16, it follows that for any arbitrarily small € > 0, there is a constant ¢ > 0 such that

d
Var(Ty) < ¢ N~ Z Z H(l + |pr — pi) 7% < ' card(vn )N~ (2.73)
PEVN p’EZd =1
RN
where ¢’ = c’(EqEZ(l + |q|)_2) . At last Relation (2.73) and Remark 2.8 entail Lemma 2.5. ]

To prove Lemma 2.6, we shall use the following remark.
Remark 2.17 There ezists a constant ¢ > 0 such that for all integer N > 2,
E[(Tn — E(Tn))"] < ¢Var®(Tn). (2.74)

This property results from the Gaussianity of the process {Y(s,t)}s¢[0,1- For a proof, see for instance
[9] pages 42 and 43.

Proof of Lemma 2.6
We shall apply the Borel-Cantelli Lemma. One has, for all > 0 and all integer N > 2

P(‘E?ﬂ”‘”) P(‘E(T;N)_l 42774)

= P(Tnx - E(Tx)|" > n"E*(Tw)).
Markov inequality and Remark 2.17 entail that, for all integer N > 2
E(|Ty — E(Tn)|*)

r (‘ET}VN) B 1‘ = 77) = n*E4(Tn)
CV(M"Z(TN).
S CEE(Tw)

Applying Lemmas 2.4 and 2.5 with €; = e2 = ¢, where € > 0 is arbitrarily small, one gets

P ( EZ;IZN)

Since v € (0,1 — 55), one has, for € > 0 sufficiently small, 2d(1 — ) — 16¢ > 1. Thus

iP(‘ Ty —1‘27])<oo.

&, \Ea)

N2d(1—7)—8h+8e

l _ Iar—(2d(1—~)—16€)
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3 A Central Limit Theorem for the Generalized Quadratic
Variations of some class of GMBMs

Central Limit Theorems are quite useful since they allow to construct tests. In this section, our goal will
be to prove the following Central Limit Theorem for the GQVs of GMBMs. For the sake of simplicity, we
have restricted to GMBMs defined over [0, 1], but our results can be extended to GMBMs defined over an
arbitrary compact cube of R9.

Theorem 3.1 Let {X(s)}sco,1) be ¢ GMBM with parameter the admissible sequence (Hn(.)),cpy- Let
t € [0,1] be a point satisfying the following property:

(P) there is n1 = ni(t) € IN such that for all n > n1, Hy(t) = H(t), with H(t) € (0,1/8).

As usual, we denote Vn(t) with N > 2 the GQVs of {X(s)}sepo,1] localized around t. We assume that

v € (w, 1) and we set

pn(t) = E(Va(t)) and Sx(t) = /Var(Va(t)). (3.1)
Then, one has that
V() = pn () + Sn (D)en (t),
where the random variable en(t) converges in distribution to a N'(0,1) Gaussian variable as N — co.
Let us first introduce some notations:
e As previously, we set h = H(t) and for all n € IN, h, = Hy(t).
o {Bu(s)}sefo,1] denotes an FBM with Hurst parameter h.

e For every integer N > 2 and for every p € {0,...,N — 2}, AnX(p), A¢,nY (p) and AxBy(p) are
respectively the increments of order 2 of the processes {X(s)}scqo,1], {Y (5,t)}sefo,1] and {Br(s)}seo,1]

defined as
2 p+k 2. (p+k p+k
Anx) = X (F7) = v (B ), (32)
k=0 k=0
2
AenY(p) = deY(I%k,t), (3.3)
k=0
and
2
AnBu(p) = deBh (p]—f\—[k) (3.4)
k=0

Recall that do =1, d; = —2 and d> = 1.

o (NP ))ppevnty UNDD))ppevn ), (Kn(D,P))ppevn(t) are respectively the covariance matrices
of the centered Gaussian vectors (AnX(p))pevn ), (At nY (D)) pern(e) and (AnBr(p))pevy ). Thus
one has for every p,p’ € vn(t),

In(p,p) = B(AnX(p)AnX (), (3.5)
In(p,p') = E(AenY (p) A NY (D)), (3.6)

and
Kn(p,p') = E(ANBi(p)AnBr(p')). (3.7)

To prove Theorem 3.1 we need some preliminary results. The following Remark is a direct consequence
of some results in [22]. This is why we omit its proof.
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Remark 3.2 Theorem 3.1 is implied by the following property:

()
Mmoo

=0, (3.8)

where An (t) is the spectrum of the covariance matriz (Jn(D,P'))pprevn(t) i-€ AN (t) is the mazimum of the
eigenvalues of this matriz. One generally bound An(t) by the quantity

Bu(t)= max > |In(p,p)l, (3.9)

PENE) o)

which is less difficult to handle. Relation (3.8) therefore results from,
Bn(t) _

o @10
The following two Lemmas will allow us to bound Sy (¢).
Lemma 3.3 There is a contant ca > 0 such that the inequality
|7x (p,p") = In(p,p))| < 2N77, (3.11)
holds for all integer N > 2 and for every p,p' € vn(t).
Proof of Lemma 3.3
One has
6 = [Inmp) - InG,p) = BN XA X)) - B(AunY p)AanY ()]
< E(AvX@IANXE) = AnY @))) + E(|AenY @)IANX (p) = ArnY (p)))-
Then using Cauchy-Schwarz inequality and Relations (3.2) and (3.3), one obtains that,
2 ’ / / 2
)< (Sl (ER ) - (ER ) (S
& p+k p+k p+k 2 p +k
(Sl (B4 228 - (R ) (Sl (B )l) o

Next, observe that the functions z — || X (z)||2 and ¢ — ||Y (z,t)||2 being continuous on [0, 1], they are
bounded on this interval. At last, Lemma 3.3 follows from Lemma 2.7 and Relation (1.20). [ ]

Lemma 3.4 There is a constant cs > 0 (depending on t) such that the inequality
|Kn (p,p") — In(p,p')| < caNTH, (3.13)

holds for all integer N > 2 and for every p,p’ € vn(t).

Proof of Lemma 3.4
First, observe that it follows from Relations (1.7) and (1.9) that for all non vanishing ¢ € R,

2 faci(©V (R fas faor(6)
(X)) = (S hg2+  Fgldy
fu fas1(O)\? | 2fun( fooi
(Z |g|hn) (n;ﬁ |§|h ) |§|hn1+1(n7;+2 |§|h )
and
1 (= fa1(9))2
lepr @0 |£|1h )
ni+1 2 9 » -
- (,;fn|£|l ) (R;anw ) + 2f|s|h (n%zf i )
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Thus, since hy,+1 = h, one obtains that for every non vanishing £ € IR,

\(wa ) - |s|2h‘—(zf|f|h )+ (anmh )

Next, using Remark 2.9 and the inequality |sin(¢/2N)] < N7'[€|, one gets that for all integer N > 2
and every p,p’' € {0,...,N — 2},

n1+1 ni+1

fn-1(8) fa1(8)
K o) = I ) < 5 [ 168 > Wﬂ It (O, (Z W In {0 g
and this last integral is clearly finite. |
We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1
Thanks to Remark 3.2 it is sufficient to prove that
Bn (t)
=0. 3.14
N S () (3.14)

Using Remarks 2.8, Lemmas 3.3 and 3.4, one obtains that there is a constant ¢; > 0, such that for all
integer N > 2,

By (t)<c1(N1 "+ max |KN(pp)|) (3.15)

pPEV

Next, let us give a lower bound of Sy. It follows from the Gaussianity of the process {X(s)}sc0,1), from
Relation (3.10) and from the stationarity of the increments of the process {Y (s,t)}seo,1], that

1/2
2
Sn(t) > Z (JN(p,p))
pEVN(t)
1/2 1/2
2 2
= 2 (IN(p’p)> - X (IN(p,p)—JN(p,p)) (3.16)
pEvN(t) pEvn (t)
> N1/2—w/2IN(0,0)_C2N1/273y/2' (3'17)

Next Relations (2.30), (3.16) and the assumption v > £ > 21 imply that there is a constant cs > 0,
such that for all integer N > 2,

Sn(t) > caN'/2m0/272h=2e (3.18)

Next, similarly to Relation (2.23) one can show that for any integer N > 2 and all p,p’ € vy (t), one has
o sin*(£/2N)

Kn(p,p) =16 /]R o—p)e/N 7|€|2h/+1 dg. (3.19)

Then by setting v = £/N in this last integral and by integrating twice by part, it follows that there is
constant cg > 0, which is independent on N, p and p’, such that,

[Kn (0, p) < coN (14 o= p/1) (3.20)
Next Relations (3.18), (3.20) and the assumption v < 1/2 entail that

MAXpery (t) 2yt ey (1) 1N (P, D)

i, 50 - @)

Next Relations (3.15) and (3.18) imply that
o< By er (N maxper () Xprevy o KN (2,7)]
= Sn(t) Sn(t)
_ MaXpeyy () Xprewy (1) N ;1)

< 1/2+42h+2e—37/2 PEVN ( P’ Evn (t) ) ]

< e (N + e ) (3.22)
At last Relation (3.14) follows from (3.21), (3.22) and the assumption > £, ]
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4 Numerical Experiments

We elaborate briefly in this section on the applied aspects of our work. In order to test our estimator, we
first need to generate sample paths of GMBMs. While synthesis methods exist for the mBm ([31]), the
question of simulating GMBMSs has been left unaddressed so far. We propose in subsection 4.1 a procedure
based on discretizing the integrals defining the GMBM. Next, in subsection 4.2, we display results on the
identification of H(t) using the estimator proposed above, in simple cases where the Holder function is
discontinuous. Finally, subsection 4.3 deals with an application to financial data analysis.

4.1 Numerical Simulation of GMBM

For the sake of simplicity, throughout this section we restrict to GMBMSs defined on the interval [0, 1] and
we suppose that f_; is the C' function defined for every ¢ € R as

Lif [§] <1,
; _ ) 0if gl =5/4,
PO =9 cos2(2n(c — 1)) if € € [1,5/4], (4.1)
cos? (2w (€ + 1)) if &€ € [-5/4, —1].
Since f,1 is an even function the corresponding GMBMs can be represented as
X(t) = —4X:1(t) — 2X2(¢), (4.2)
where
= [ [Z L) Fr)] ame) (43)
and
Xi(t) = / by 7 Fier (O] (), (4.4)

dW; and dW> being two independent real valued Brownian measures. For simulating the GMBM, we shall
use a discretization of the stochastic integrals (4.3) and (4.4). Set

§=27", (4.5)

where p > 0 is a fixed integer. One has
o 2™ —
m=0 ¢g=0 [

2™ -1 oo

~ YTy ((;fi q)((?;,j(;{lfil Famt (@™ + QO)WA(2™ + g+ 1)8) - Wi((2" + )8)).

@™ HatD)d r 20 gin? sin”(t/2)

o [Z €] ©+1/2 fr- 1(5)] dW1(€)

2M +4q)8

Using (1.4) and (4.1), it follows that the stochastic integral (4.3) can be approximated by the random
series

1
/2 sin?(27P7Mt) L, _
27 Z (2-71) Ho(t)+1/2f 12 FDe
o 2ntP_q

n—1 p—1
/2 sin?((2 +q27P7 ) e
+27F Z Z 2n 1 +q2 p— l)Hn(t)+1/2 f0(1+q2 p)ﬁn,q

% 2"+P 1

sin?((2" + g2 771 1
+27 p/2z Z 2n+q2 - 1)Hn(t)J)rl)/2fo(1+q2 P enttgs

where the ¢, and the €, are independent N(0,1) Gaussian variables. Similarly one can show that the
stochastic integral (4.4) can be approximated by the random series
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p—2

—p/2 sin(27Plt) ;.-

2% Grapmmral 1@ T
0

—p/2 sin((2"™ + q27P)t) ; e
+27P2% % T +q27p71)Hn(t>+1/2f0(1 +427 " P

+
/e sin((2" 4+ ¢q27P)) C—1—
27y Y (2" Jf(qupfl)Hn(t)Q/zfo(l+q2 ") 1,

where the n; and the 7, , are independent A (0, 1) Gaussian variables.

4.2 Holder Exponent Estimation of Simulated GMBM

We show three examples of simulated GMBMs along with the estimation of their Holder function. These
examples correspond to situations of practical interest, where one needs to detect a) a sudden jump in Hélder
regularity, b) an irregular point on a regular background, and ¢) a regular point on an irregular background.

The sample path displayed on figure 1 is obtained with a sequence of functions H,, converging to a step
function having a discontinuity at 0.6: H(t) = 0.3 for ¢ < 0.6, H(t) = 0.7 for ¢ > 0.6. The sequence H,
is shown on figure 1 along with the GMBM. Figure 2 displays the estimated H(t). As can be seen, the
discontinuity is clearly detected.

The second example deals with an irregular point on a regular background, i.e. a sequence of H,
converging to the function H(t) = 0.7 for ¢t # 0.6, H(0.6) = 0.25. Again, figure 3 shows the sample path of
the GMBM along with the sequence H,,. The estimated Hoélder function is displayed on figure 4.

Finally, we consider the more difficult case of a regular point on an irregular background. The sequence
H,, converges to H(t) = 0.2 for t # 0.6, H(0.6) = 0.8. The sample path of the GMBM and the sequence H,
are on figure 5. Figure 6 displays the estimated Holder function.

In both cases, the estimator is able to detect the point of interest with good accuracy.

0.7

0.6

0.5

0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Simulated GMBM and associated sequence H,, converging to a step function.
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Figure 2: Estimated Holder function of the GMBM in figure 1.
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Figure 3: Simulated GMBM and associated sequence H,, converging to H(t) = 0.7 for ¢t # 0.6, H(0.6) = 0.25.
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Figure 4: Estimated Holder function of the GMBM in figure 3.
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Figure 5: Simulated GMBM and associated sequence H,, converging to H(t) = 0.2 for ¢t # 0.6, H(0.6) = 0.8.
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Figure 6: Estimated Holder function of the GMBM in figure 5.

4.3 Analysis of Financial Data

We end this section with the analysis of a financial record. It is well-known that stock market logs are
very irregular. Moreover, this irregularity is a function of time, and we expect that, for instance, at ”quiet”
periods, the market should evolve smoothly, resulting in a large value of H(t), while krachs translate into
sudden changes corresponding to small exponents.

We analyze in this section a log of the Nikkei225 index during the period 01/01/1980 to 05/11/2000. The
log consists in 5313 daily values corresponding to that period. As financial analysts do not work directly on
the prices, but on their logarithms, we shall deal with the logarithm of the Nikkei225 index record, which is
displayed on figure 7. The signal is clearly quite erratic. Note in particular the large variations around the
points 1780, 2040, 2650, 2760 or 3200. Although we are not able to verify whether these data may actually
be well modelled with a GMBM, simple tests show that they are approximatively Gaussian. As we now
show, a local regularity analysis based on the estimator proposed above allows to highlight significant events
in the log. The estimated Holder function is displayed on figure 8. As can be seen on the figure, most values
of the Holder exponents are between 0.2 and 0.8, with a few peaks up to 1. Recall that lower exponents
correspond to more irregular parts of the signal. Looking at the original data, it appears obvious that the
log is nowhere smooth, which is consistent with the values of the exponents. What is more interesting is that
important events in the log have a specific signature in the Holder function : Periods where “things happen”
are characterized by a sudden increase in regularity, which reaches 1, followed by very small values, e.g.
below 0.2, which correspond to low regularity. Let us take some examples. The most prominent feature of
the Holder function is the peak at abscissa 2018 with amplitude 1. Note also that the points with the lowest
values in regularity of the whole log are located just after this peak: The Holder exponent is around 0.2 at
abscissa roughly between 2020 and 2050, and around 0.05 at abscissa between 2075 and 2100. Both values
are well below the mean of the Holder function, which is 0.4 (its variance of is 0.036). As a matter of fact,
only 10 percent of the points of the signal have an exponent smaller than 0.2. Now the famous October 19
1987 krach corresponds to abscissa 2036, right in the middle on the first low regularity period after the peak.
The days with smallest regularity in the whole log are thus, as expected, located in the weeks following the
krach, and one can assess precisely which days were more erratic. However, if one looks at figure 7, these
features do no show as clearly: Although the krach is easily seen as a strong downward variation at abscissa
2036, the area around this point does not appear to be more “special” than, for instance, the last part of
the log.
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Consider now another region which contains many points with small Hélder exponents along with a few
isolated regular points (i.e. with exponent close to 1). Look at the area between abscissa 4450 and 4800:
This roughly corresponds to the ” Asian crisis” period, which approximately took place between January
1997 and June 1998 (there are no precisely defined dates for the beginning and end of the crisis. Some
authors place the beginning of the crisis mid-1997, and the end by late 1999, or even later). On the graph
of the original log of the Nikkei225, one can see that this period is quite erratic, with some rapid variations
and pseudo-cycles (this behaviour arguably seems to extend between points 3500 and maybe the end of the
trace). Looking now at the Holder function, one notices that there are two peaks with exponents around
one in the considered period (there is an additional such point around abscissa 4300, which, however, is not
followed by points with low values of regularity -e.g. smaller than 0.15-, but is preceded by such points,
between abscissa 4255 and 4285). The first peak is around 4455, and is followed by irregular points between
4465 and 4475. The second is around 4730. This region, between abscissa 4450 and 4800, has a large
proportion of irregular points: 12 percent of its points have an exponent smaller than 0.15. This is three
times the proportion observed in the whole log. In addition, this area is the one with highest density of
points with exponent smaller than 0.15 (we exclude in these calculations the first and last points of the log,
because of border effects).

Although the analysis above is very crude, it shows that estimating the Holder regularity based on a
modelling with a GMBM yields interesting insights on the data.
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Figure 7: Logarithm of the Nikkei225 index during the period 01/01/1980 to 05/11/2000
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