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tThe Generalized Multifra
tional Brownian Motion (GMBM) is a 
ontinuous Gaussian pro
ess thatextends the 
lassi
al Fra
tional Brownian Motion (FBM) and Multifra
tional Brownian Motion (MBM)[30, 31, 10, 4, 5℄. As is the 
ase for the MBM, the H�older regularity of the GMBM varies from point topoint. However, and this is the main interest of the GMBM, 
ontrarily to the MBM, these variations maybe very errati
: As shown in [1℄, the pointwise H�older exponent f�X (t)gt of the GMBM may be any liminfof 
ontinuous fun
tions with values in a 
ompa
t of (0; 1). This feature makes the GMBM a good 
andidateto model 
omplex data su
h as textured images or multifra
tal pro
esses. For the GMBM to be useful inappli
ations, it is ne
essary that its H�older exponents may be estimated from dis
rete data. This work dealswith the problem of identifying the pointwise H�older fun
tion H of the GMBM: While it does not seemeasy to do so when H is an arbitrary liminf of 
ontinuous fun
tions, we obtain below the following a prioriunexpe
ted result: as soon as the pointwise H�older fun
tion of the GMBM belongs to the �rst 
lass of Baire(i.e when f�X (t)gt is a limit of 
ontinuous fun
tions), it may be estimated almost surely at any point t. Wealso derive a Central Limit Theorem for our estimator. Thus, even very irregular variations of the H�olderregularity of the GMBM may be dete
ted and estimated in pra
ti
e. This has important 
onsequen
es inappli
ations of the GMBM to signal and image pro
essing. It may also lead to new methods for the pra
ti
al
omputation of multifra
tal spe
tra. We illustrate our results on both simulated and real data.AMS Mathemati
s Subjets Classi�
ations (1991): 60G15, 60G17, 60G18.Key words: Gaussian pro
ess, fra
tional Brownian motion, generalized multifra
tional Brownian motion,pointwise H�older exponent, Identi�
ation.1 Introdu
tion and ba
kgroundThe 
elebrated Fra
tional Brownian motion (FBM) was �rst introdu
ed by Kolmogorov in 1940, in a Hilber-tian framework [24℄. The seminal paper of Mandelbrot and Van Ness popularized the FBM by showing itsrelevan
e for the modelling of natural phenomena su
h as hydrology or �nan
e [30℄. FBM is a 
ontinuousand 
entered Gaussian pro
ess, denoted fBH(t)gt2IRd . It depends of one parameter (the Hurst parameter)H 2 (0; 1). In, e.g., the book of Samorodnitsky and Taqqu [33℄, it is shown that FBM 
an be represented,for every t 2 IR d as BH(t) = Re�ZIR d (eit:� � 1)j�jH+d=2 fW (�)�; (1.1)where Re(.) denotes the real part and where the 
omplex isotropi
 random measure dfW satis�esdfW = dW1 + idW2; (1.2)dW1 and dW2 being two independent real-valued Brownian measures (throughout the arti
le, the symbol j:jwill either denotes the Eu
lidian norm on IR d or the absolute value on IR). When H = 1=2, FBM redu
es toBrownian Motion. FBM is therefore an extension of the Wiener pro
ess and shares many of its properties.1



A major di�eren
e, whi
h is one of the main interests of FBM, is that, 
ontrarily to Brownian Motion, itsin
rements are 
orrelated. They even display long range dependen
e when H > 1=2 (see [33℄ for a de�nition).FBM has been used in a number of areas, most re
ently in tele
ommuni
ations (see for instan
e [35℄). Themonograph of Doukhan, Oppenheim and Taqqu [14℄ o�ers a systemati
 treatment of FBM, as well as anoverview of di�erent areas of appli
ations. Another important property of FBM is that its pointwise H�olderexponent f�BH (t)gt2IRd 
an be pres
ribed via its Hurst parameter. Indeed, one has (a.s.) for every t 2 IR d,�BH (t) = H:Re
all that the pointwise H�older exponent of a sto
hasti
 pro
ess fX(t)gt2IR d whose traje
tories are
ontinuous and nowhere di�erentiable is the sto
hasti
 pro
ess f�X(t)gt2IRd de�ned for every t as�X(t) = sup��; lim suph!0 jX(t+ h)�X(t)jjhj� = 0� :It allows to measure the lo
al variations of regularity of fX(t)gt2IR d .RemarkIn general, �X(t) is a random quantity. However, when fX(t)gt2IR d is a 
ontinuous Gaussian pro
ess,this quantity assumes, for ea
h �xed t, an almost sure value. This fa
t is a simple 
onsequen
e of the zero-onelaw (see for instan
e [6℄). All the sto
hasti
 pro
esses that will be 
onsidered in this arti
le are Gaussian.Their H�older exponent at any �xed but arbitrary point will therefore be \deterministi
".The fa
t that the pointwise H�older exponent of FBM remains the same all along its traje
tory restri
ts itsappli
ations in several situations. Let us give an example in the �eld of image synthesis: FBM has frequentlybeen used for generating arti�
ial mountains [34℄. Su
h a modelling assumes that the irregularity of themountain is everywhere the same. This is not realisti
, sin
e it does not take into a

ount erosion or othermeteorologi
al phenomena whi
h smooth some parts of the mountains more than others. Multifra
tionalBrownian Motion (MBM) was introdu
ed, independently in [31℄ and [10℄, to over
ome these limitations.Roughly speaking, it is obtained by repla
ing the Hurst parameterH of FBM, by a smooth fun
tion t 7! H(t).More pre
isely, MBM 
an be de�ned as follows.De�nition 1.1 (Harmonizable representation of MBM) Let H(:) : IR d ! [a; b℄ � (0; 1) be a �-H�olderfun
tion (i.e for all t1, t2, one has jH(t1)�H(t2)j � 
jt1 � t2j�) satisfying the te
hni
al assumptionsupt H(t) < �:The MBM with fun
tional parameter H(:) is the 
ontinuous Gaussian pro
ess fZ(t)gt2IR d de�ned for everyt 2 IR d as, Z(t) = Re�ZIR d (eit:� � 1)j�jH(t)+d=2 dfW (�)�; (1.3)where dfW is the 
omplex-valued sto
hasti
 measure introdu
ed in (1.2).MBM is an extension of FBM at least for the following two reasons.� When H(t) = H for all t, then MBM redu
es to an FBM with parameter H.� At any point t, MBM is Lo
ally Asymptoti
ally Self-Similar with index H(t) [10℄, more pre
isely,lim�!0+ law �Z(t+ �u)� Z(t)�H(t) �u2IR d = law fBH(t)(u)gu2IR d ;where fBH(t)(u)gu2IRd is an FBM with parameter H(t). In fa
t, this property means that at anypoint t, there is an FBM with parameter H(t) tangent to the MBM. We refer to the re
ent works ofFal
oner [15, 16℄ for an extensive study of the notion of tangent pro
ess.Similarly to FBM the pointwise H�older regularity of MBM 
an be pres
ribed via its fun
tional parameter.Namely, for every t 2 IR d, (a.s.) �Z(t) = H(t):2



A problem remains with MBM: be
ause H(:) must be a H�older fun
tion, its H�older fun
tion (i.e. thefun
tion t 7! �Z(t)) 
annot evolve irregularly in time. This is a strong limitation in appli
ations su
has turbulen
e, �nan
e, tele
ommuni
ations and textured image modelling. Indeed, in su
h appli
ations,numeri
al eviden
es have shown that the pointwise H�older regularity 
hanges widely from point to point.Note that it is not possible to for
e dis
ontinuities in the pointwise H�older exponent of MBM by simplytaking a dis
ontinuous H(:): it has been proved by Aya
he and Taqqu in [6℄ that when the fun
tion H(:)is dis
ontinuous, then the traje
tories of MBM, are themselves, with probability 1, dis
ontinuous. A morere�ned approa
h is ne
essary to obtain a Gaussian pro
ess with 
ontrolled but very errati
 H�older fun
tion.Daoudi, Ja�ard, L�evy V�ehel and Meyer have 
ompletely des
ribed the 
lass of pointwise H�older fun
tionsof 
ontinuous fun
tions over an arbitrary 
ompa
t 
ube [13, 27℄. They have shown that this 
lass is that ofall lim inf of sequen
es of nonnegative 
ontinuous fun
tions. Re
ently, the authors ([4, 5℄) have introdu
eda 
ontinuous Gaussian pro
ess whose pointwise H�older exponent 
an be of the most general form, i.e.any lim inf of a sequen
e of 
ontinuous and nonnegative fun
tions. This pro
ess is 
alled the GeneralizedMultifra
tional Brownian Motion (GMBM), sin
e it extends both FBM and MBM. Roughly speaking, it isobtained by substituting to the Hurst parameter of FBM a sequen
e of Lips
hitz fun
tions. The De�nitionof GMBM is more or less inspired from that of the Generalized Weierstrass fun
tion [13℄. In order to be ableto give it, we need �rst to introdu
e some notations. We note in passing that another approa
h for obtainingerrati
 H�older fun
tions through a generalization of the mBm is des
ribed in [19, 20℄. Also, a rather di�erentapproa
h for 
onstru
ting pro
esses with both strongly varying lo
al regularity and long range dependen
e,based on the use of pseudo-di�erential operators, is developped in, e.g., [23, 25, 26℄.Let f�1 2 L1(IR) be a fun
tion su
h that its Fourier transform f̂�1 is Cd and ranges in [0; 1℄. Assume inaddition that for every � = (�1; : : : ; �d) 2 IR df̂�1(�) = 8<: 1 if for all i, j�ij � 10 if for some i, j�j � 5=4: (1.4)For all n 2 IN, we denote by fn the fun
tion of L1(IR), de�ned by its Fourier transform as follows: Forall � 2 IR, f̂n(�) = f̂�1(2�n�1�)� f̂�1(2�n�): (1.5)Observe that for ea
h n 2 IN and all � 2 IR df̂n(�) = f̂0(2�n�) (1.6)and 1Xn=0 f̂n�1(�) = 1: (1.7)The fun
tions f̂n are 
ompa
tly supported. Moreover,supp f̂�1 � D1 (1.8)and for all n 2 IN, supp f̂n � Dn+2 nDn; (1.9)where for every n 2 IN, Dn denotes the 
ompa
t 
ubeDn = [�2n; 2n℄d: (1.10)De�nition 1.2 Let [a; b℄ � (0; 1) be an arbitrary but �xed interval. An admissible sequen
e (Hn(:))n2IN isa sequen
e of Lips
hitz fun
tions de�ned on [0; 1℄ and ranging in [a; b℄ with Lips
hitz 
onstants Æn verifying,for all n 2 IN, Æn � 
12n�; (1.11)where 
1 > 0 and � 2 (0; a) are 
onstants. 3



Remarks� We re
all that any liminf of a sequen
e of 
ontinuous fun
tions ranging in [a; b℄ is also a liminf of anadmissible sequen
e [13℄.� The problem of 
onstru
ting an admissible sequen
e of Lips
hitz fun
tions (Hn(:))n 
onverging to thepointwise H�older fun
tion H(:) has been extensively dis
ussed by the authors in [4℄. A general methodfor obtaining su
h sequen
es has been given in the proof of Proposition 1 of [4℄. For the sake of
on
reteness, let us 
onsider here the spe
ial 
ase where the pointwise H�older exponent H(:) takes a�nite number of values. Set for instan
e:H(t) = pXi=1 
i�[di�1;di)(t) + a;where a and the 
i are positive reals. Then for any n big enough one may simply take for every t,Hn(t) = 8>>>><>>>>: 
i + a; for all i = 1; : : : ; n and t 2 [di�1; di � 1n ℄a; for all t 2 (�1; d0 � 1n ℄ [ [dp;+1)an aÆne fun
tion otherwise.We are now in a position to re
all the de�nition of GMBM. For the sake of simpli
ity, the pro
esses we will
onsider in the remainder of this arti
le will be de�ned on [0; 1℄d.De�nition 1.3 Let (Hn(:))n2IN be an admissible sequen
e. The Generalized Multifra
tional Field (GMF)with parameter the sequen
e (Hn(:))n2IN is the 
ontinuous Gaussian �eld fY (x; y)g(x;y)2[0;1℄d�[0;1℄d de�nedfor all (x; y) as Y (x; y) = Re �ZIR d " 1Xn=0 (eix� � 1)j�jHn(y)+1=2 f̂n�1(�)# dfW (�)�; (1.12)where dfW is the sto
hasti
 measure introdu
ed in (1.2). The Generalized Multifra
tional Brownian Motion(GMBM) with parameter the sequen
e (Hn(:))n2IN is the 
ontinuous Gaussian pro
ess fX(t)gt2[0;1℄d de�nedas the restri
tion of fY (x; y)g(x;y)2[0;1℄d�[0;1℄d to the diagonal: for all t 2 [0; 1℄d,X(t) = Y (t; t): (1.13)GMBM is an extension of FBM and MBM at least for the following two reasons.� When all the Lips
hitz fun
tions Hn(:) are equal to the same fun
tion H(:) (resp. to the same real H),then Relation (1.7) implies that GMBM redu
es to MBM with parameter H(:) (resp. to FBM withparameter H).� A

ording to Proposition 3 in [4℄, under some te
hni
al 
onditions on (Hn(:))n2IN, at any point t, theGMBM is Lo
ally Asymptoti
ally Self-Similar with index H(t) = lim infn!1 Hn(t).One of the main interests of GMBM is that similarly to FBM and MBM its pointwise H�older exponent
an be pres
ribed via its parameter (Hn(:))n2IN. Namely, for every t 2 IR d, (a.s.)�X(t) = H(t) = lim infn!1 Hn(t): (1.14)Let us now explain the main obje
tive of our work. The rationale behind the de�nition of the GMBM isthat the variations of the pointwise regularity of many natural pro
esses display the two following features:� They hold some important information, useful for the pro
essing of the data. Typi
al examples in
lude�nan
ial data analysis and medi
al image modelling. In the former 
ase, points with smaller H�olderexponent 
orrespond to time instants where the risk is larger (see se
tion 4.3 for a regularity analysisof a �nan
ial log). In the latter 
ase, smaller exponents are the signature of highly textured regions,or of edge points.� They are very errati
 in time/spa
e. This happens for instan
e in the 
ase of medi
al images, su
h asMR images of the brain or mammographies, where mi
ro
al
i�
ations indu
e strong lo
alized irregu-larities. 4



The GMBM is 
apable to �nely model su
h pro
esses, be
ause one 
an pres
ribe its pointwise H�olderfun
tion, and this fun
tion may be arbitrarily errati
. In order for the GMBM to be useful in the above 
on-texts, however, one needs to be able to estimate H(t). Another appli
ation of the GMBM is in multifra
talanalysis. The so-
alled multifra
tal formalism has been introdu
ed be
ause physi
ists are 
onvin
ed thatone 
annot estimate a very errati
 pointwise H�older exponent. Being able to identify H(t) might lead toalternative methods for 
omputing multifra
tal spe
tra. These and other appli
ations show that estimatingthe pointwise H�older exponent of the GMBM is important both from the theoreti
al and an applied pointsof view. Using the method of Generalized Quadrati
 Variations, we obtain below the following a prioriunexpe
ted result: as soon as the pointwise H�older exponent of GMBM belongs to the �rst 
lass of Baire (i.ewhen H(:) is a limit of 
ontinuous fun
tions) one may estimate it at any point t almost surely. Furthermore,under some 
onditions, a Central Limit Theorem holds for the estimator.Remarks� As the pointwise H�older fun
tion of a typi
al natural signal is errati
, its stru
ture is generally unknown.One therefore needs to employ a nonparametri
 pro
edure for estimating it.� Generally speaking, the long range dependen
e stru
ture of a sto
hasti
 pro
ess is governed by the\low frequen
ies" part of its Fourier spe
trum, while its H�older regularity is governed by the \highfrequen
ies" part of this spe
trum. In this respe
t, one of the advantages of GMBM is that, 
ontrarily toFBM, di�erent (fun
tional) parameters, namely the �rst terms and the tail of the sequen
e (Hn(:))n2IN,rule the two ends of its Fourier spe
trum. Thus, with GMBM, it is possible to have at the same time avery irregular lo
al behavior (i.e. a small value for H) and long range dependen
e. This is not possiblewith FBM, whi
h displays long range dependen
e only for H > 1=2. GMBM seems therefore adaptedto model pro
esses whi
h display both those features, su
h as Internet traÆ
 or 
ertain highly texturedimages with strong global organization, as are e.g. MR images of the brain. Sin
e di�erent parametersrule the low and high frequen
ies of GMBM, its pointwise H�older fun
tion 
annot be identi�ed bythe methods of Heyde and Gay [21℄ or that of Robinson [32℄. Indeed, all these methods rely on someproperties of the \low frequen
ies" part of the Fourier spe
trum. In view of the remark above, thesemethods 
ould rather be adapted to 
ompute the long range dependen
e exponent of GMBM.A method 
ommonly used in the literature for estimating a H�older exponent is that of Quadrati
 Varia-tions [18, 22, 9, 8, 7, 12℄. Re
all that, if for some integer N � 1, fX( pN ); p 2 f0; : : : ; N�1gdg is a dis
retizedtraje
tory of a pro
ess fX(t)gt2[0;1℄d , then the 
orresponding quadrati
 variations are de�ned asV (1)N = Xp2f0;:::;N�1gd � X�2f0;1gd(�1)�1+:::+�dX�p+ �N ��2; (1.15)where p = (p1; : : : ; pd), � = (�1; : : : ; �d) and p+�N = ( p1+�1N ; : : : ; pd+�dN ). Observe that the random variablesP�2f0;1gd(�1)�1+:::+�dX( p+�N ) are re
tangular in
rements of order 1 of the pro
ess fX(t)gt2[0;1℄d . Guyonand L�eon have noti
ed that the Quadrati
 Variations of an FBM with parameter H, satisfy a standardCentral Limit Theorem when H 2 (0; 3=4) while they fail to satisfy su
h a Theorem when H 2 (3=4; 1) [18℄.This is why Istas and Lang have proposed to repla
e them by the Generalized Quadrati
 Variations (GQVs)[22℄. For the sake of simpli
ity, we will always suppose that they are of the formV (2)N = Xp2f0;:::;N�2gd �Xk2F dkX�p+ kN ��2; (1.16)where F = f0; 1; 2gd and for all k = (k1; : : : ; kd) 2 F ,dk = dYl=1 ekl ; (1.17)with e0 = 1, e1 = �2 and e2 = 1. Observe that the random variables Pk2F dkX( p+kN ) are re
tangularin
rements of order 2 of the pro
ess fX(t)gt2[0;1℄d . Next, let us �x t = (t1; : : : ; td) 2 [0; 1℄d, the GQVs offX(t)gt2[0;1℄d lo
alized around t are de�ned asV (2)N (t) = Xp2�N (t)�Xk2F dkX�p+ kN ��2; (1.18)5



where �N(t) = �1N (t1)� �2N(t2)� : : :� �dN(td) (1.19)and for all i = 1; : : : ; d�iN(ti) = npi 2 IN; 0 � pi � N � 2 and ���ti � piN ��� � N�
o; (1.20)
 2 (0; 1) being �xed. Heuristi
ally speaking �N (t) 
an be seen as a neighborhood of the point t. Under theassumption that H(:) is a C1 fun
tion, using the lo
alized GQVs, Benassi Cohen and Istas have identi�ed,when d = 1, the H�older exponent of MBM at any point t [8℄. We will also use the lo
alized GQVs foridentifying the H�older exponent of the GMBM. However, there is some di�eren
e between our method andthat of [8℄: we show that, up to a negligible part, the GQVs of GMBM are equal to that of the pro
esswith stationary in
rements fY (s; t)gs2[0;1℄d , where t is �xed (re
all that Y is the GMF, see (1.12)). Thestationarity of the in
rements makes these last GQVs easier to study.RemarkIn the spe
ial 
ase of FBM, the estimation of the Hurst parameter H, only requires a parametri
 pro
e-dure. The Whittle estimator is therefore the most eÆ
ient one. However, an equally eÆ
ient estimator maybe obtained by the method of the Generalized Quadrati
 Variations, even if the number of observations issmall (this happens when one lo
alizes the Generalized Quadrati
 Variations), as shown by Coeurjolly inChapter 2 of his Phd Thesis [12℄.At last, let us mention that some results on the identi�
ation of a multifra
tional pro
ess with a dis
on-tinuous pointwise H�older exponent have been obtained in [7℄ and [2℄. Both these papers use the method ofthe Generalized Quadrati
 Variations. The estimation of the pie
ewise 
onstant H�older exponent of the StepFra
tional Brownian Motion has been performed in [7℄. A model 
alled Generalized Multifra
tional GaussianPro
ess, whi
h is similar to GMBM and 
an be studied with the same methods, has been introdu
ed in [2℄.Under some restri
tive assuptions, a kind of average of the values of the pointwise H�older exponent of thismodel has been identi�ed in [2℄.The remainder of our arti
le is organized as follows. In se
tion 2, we will 
onstru
t two strongly 
onsistentestimators of the pointwise H�older exponent of GMBM. In se
tion 3, we will show that the GeneralizedQuadrati
 Variations of some 
lasses of GMBMs satisfy a Central Limit Theorem. Su
h a result is importantfrom a statisti
al point of view sin
e it allows to 
onstru
t tests. At last, in se
tion 4, we give a method forsimulating a GMBM, and we apply our estimation pro
edure to sampled, syntheti
 and real, data.2 Two estimators of pointwise H�older exponents of GMBMsFirst a word about notations. From now on t = (t1; : : : ; td) 2 [0; 1℄d will be �xed and for every integer N � 2VN (t) will the GQVs of the GMBM lo
alized around t. Observe thatVN (t) = Xp2�N (t)�Xk2F dkY �p+ kN ; p+ kN ��2; (2.1)where fY (x; y)g(x;y)2[0;1℄d�[0;1℄d is the GMF that we have introdu
ed in Relation (1.12). The quantity VN(t)seems to be diÆ
ult to handle sin
e the GMBM is with non stationary in
rements. However, thanks toLemma 2.3 below, we will show that up to a negligible part, it is equal to TN (t), where TN(t) denotes theGQV lo
alized around t of the pro
ess with stationary in
rements fY (s; t)gs2[0;1℄d . Observe thatTN (t) = Xp2�N (t) Xk2F dkY �p+ kN ; t�!2 : (2.2)At last it is 
onvenient to introdu
eWN(t) = Xp2�N (t) Xk2F dk�Y �p+ kN ; p+ kN �� Y �p+ kN ; t��!2 : (2.3)Let us now state the main results of this se
tion. 6



Theorem 2.1 Let fX(t)gt2[0;1℄d be a GMBM with parameter an admissible sequen
e (Hn(:))n2IN rangingin [a; b℄ � (0; 1� 12d ). Fix 
 2 (b; 1� 12d ) and assume that the sequen
e of real numbers (Hn(t))n2IN 
onvergesto the real number H(t). Then, almost surely,limN!1 12 �d(1� 
)� log VN (t)logN � = H(t): (2.4)Theorem 2.2 Let fX(t)gt2[0;1℄d be a GMBM with parameter an admissible sequen
e (Hn(:))n2IN rangingin [a; b℄ � (0; 1). Choose Æ, 
 su
h that Æ � 
 > 1=2d and 
 > Æb. Set,eVN(t) = Xp2e�N (t)�Xk2F dkX�p+ kNÆ ��2; (2.5)where e�N(t) = e�1N (t1)� : : :� e�dN (td) (2.6)and where for all i = 1; : : : ; d,e�iN(ti) = npi 2 IN; 0 � pi � N � 2 and ���ti � piNÆ ��� � N�
o: (2.7)Assume that the sequen
e of real numbers (Hn(t))t2IN 
onverges to the real number H(t). Then, almostsurely, limN!1 12Æ  d(1� 
)� log eVN(t)logN ! = H(t): (2.8)We will only give the proof of Theorem 2.1 sin
e that of Theorem 2.2 is similar. This proof mainlyrelies on the following four Lemmas. From now on, we set, for all integers n 2 IN, hn = Hn(t) andh = H(t) = limn!1Hn(t).Lemma 2.3 There exists a random variable ~C1 > 0 with the following properties:� all the moments of ~C1 are �nite,� almost surely, for all t 2 [0; 1℄d and for all integer N � 2,WN (t) � ~C1Nd(1�
)�2
 : (2.9)Lemma 2.4 For all �1 > 0, there exist two 
onstants 0 < 
2 � 
3 (depending only on t and �1) su
h that,for all integer N large enough,
2Nd(1�
)�2h�2�1 � E(TN (t)) � 
3Nd(1�
)�2h+2�1 : (2.10)Lemma 2.5 For all �2 > 0, there exists a 
onstant 
4 > 0 (depending only on t and �2) su
h that, for allinteger N � 2, V ar(TN (t)) � 
4Nd(1�
)�4h+4�2 : (2.11)Lemma 2.6 For all t 2 [0; 1℄d, almost surely,limN!1 TN (t)E(TN(t)) = 1: (2.12)To simplify the notations, we set TN = TN (t), VN = VN(t), WN =WN(t) and �N = �N (t).Lemmas 2.3, 2.4, 2.5 and 2.6 will be proved below.Proof of Theorem 2.1
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>From (2.1),VN = Xp2�N  Xk2F dkY �p+ kN ; p+ kN �!2= Xp2�N  Xk2F dk �Y �p+ kN ; p+ kN �� Y �p+ kN ; t��+Xk2F dkY �p+ kN ; t�!2 :(2.2), (2.3) and the triangular inequality in IR �N (equipped with the Eu
lidean norm) then entail thatjT 1=2N �W 1=2N j � V 1=2N � T 1=2N +W 1=2N : (2.13)Let us now show that, almost surely, limN!1 WNTN = 0: (2.14)>From (2.3), (2.9) and (2.10), we know that, almost surely,0 � WNE(TN ) � ~C1Nd(1�
)�2

2Nd(1�
)�2h�2�1 � ~C5N�2(
�h+�1): (2.15)Now, sin
e 
 > b � h, we �nd that, almost surely, when �1 > 0 is small enough,limN!1 WNE(TN) = 0: (2.16)Writing WNTN = E(TN )TN � WNE(TN ) and using (2.16) and Lemma 2.6, we get (2.14). Besides, it results from(2.13) that log T 1=2N + log ����1� W1=2NT1=2N ���� � log V 1=2N � log T 1=2N + log ����1 + W1=2NT1=2N ���� : (2.17)Note that, for all integerN � 2, one has almost surely TN > 0: indeed, the random variablePk2F dkY ( kN ; t)is almost surely non-zero, sin
e it is Gaussian and non-degenerated. Remark also that, from (2.14), the ran-dom variable log ����1� W1=2NT1=2N ���� is, for all suÆ
iently large N , almost surely well-de�ned.Using (2.14) and (2.17), we get that, almost surely,lim infN!1 log TNlogN � lim infN!1 log VNlogN � lim supN!1 log VNlogN � lim supN!1 log TNlogN : (2.18)Furthermore, from (2.10), one has, for all �1 > 0,d(1� 
)� 2h� 2�1 � lim infN!1 logE(TN )logN � lim supN!1 logE(TN )logN � d(1� 
)� 2h+ 2�1:As a 
onsequen
e, limN!1 logE(TN )logN = d(1� 
)� 2h: (2.19)Finally, for all integer N � 2,log TNlogN = log(TN=E(TN))logN + logE(TN )logN ;(2.12) and (2.19) then entail that, almost surely,limN!1 log TNlogN = d(1� 
)� 2hand (2.18) ensures that almost surely,limN!1 log VNlogN = d(1� 
)� 2h:8



The proof of Lemma 2.3 relies on Lemma 2.7 and on Remark 2.8. Observe that Lemma 2.7 is the naturalmultidimensional extension of Proposition 1 in [1℄, this is why we have omited its proof. We have also omitedthe proof of Remark 2.8, sin
e it is obvious.Lemma 2.7 [1℄ There exists a random variable ~C5 > 0 with the following property: almost surely, for ally; y0 2 [0; 1℄d, supx2[0;1℄d jY (x; y)� Y (x; y0)j � ~C5jy � y0j: (2.20)Furthermore, all the moments of ~C5 are �nite.Remark 2.8 There exists two 
onstants 0 < 
6 � 
7 su
h that, for all N � 2,
6Nd(1�
) � 
ard(�N ) � 
7Nd(1�
): (2.21)Proof of Lemma 2.3>From (2.3) and (2.20)WN � Xp2�N  Xk2F jdkj ����Y �p+ kN ; p+ kN �� Y �p+ kN ; t�����!2� Xp2�N  Xk2F jdkj supx2[0;1℄ ����Y �x; p+ kN �� Y �x; t�����!2 ;� ~C25 Xp2�N  Xk2F jdkj ����p+ kN � t����!2� ~C25 Xp2�N  Xk2F jdkj ��� pN � t���+Xk2F jdkj jkjN !2 :Thus, using (1.19), (1.20) and (2.21),WN � ~C25N�2
  3pdXk2F jdkj!2 
7Nd(1�
)� ~C1Nd(1�
)�2
 :Lemma 2.6 will result from Lemmas 2.4 and 2.5. The following Remark will be useful in the sequel.Remark 2.9 Set, for all N � 2 and all p; p0 2 f0; : : : ; N � 2gd,IN(p; p0) = E0� Xk;k02F dkdk0Y �p+ kN ; t�Y �p0 + k0N ; t�1A : (2.22)Then IN (p; p0) = 16d ZIR d ei( p�p0N ):�gN (�)d�; (2.23)where gN(�) = 8><>: 0 if � = 0;dYl=1 sin4(�l=2N) 1Xn=0 f̂n�1(�)j�jhn+d=2!2 otherwise. (2.24)
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Proof of Remark 2.9For all p; p0 2 f0; : : : ; N � 2gd�(�) = Xk;k02F dkdk0�ei( p+kN ):� � 1��e�i( p0+k0N ):� � 1�:Observe that sin
e Pk2F dk = 0 one has that�(�) = �Xk2F dkei( p+kN ):��� Xk02F dk0e�i( p0+k0N ):��:Then using (1.17) one gets�(�) = ei( p�p0N ):����Pk2F dkeik:�=N ��� 2 = ei( p�p0N ):�Qdl=1 jei�l=N � 1j 4 = 16dei( p�p0N ):�Qdl=1 sin4(�l=2N): (2.25)At last (2.22) and (2.25) entail thatIN(p; p0) = ZIR d �(�) 1Xn=0 f̂n�1(�)j�jhn+1=2!2 d�= 16d ZIR d ei( p�p0N ):� dYl=1 sin4(�l=2N) 1Xn=0 f̂n�1(�)j�jhn+d=2!2 d�:Proof of Lemma 2.4>From (2.2), (2.21) and (2.22), one gets that, for all integer N � 2,
6Nd(1�
)IN(0; 0) � E(TN) � 
7Nd(1�
)IN(0; 0): (2.26)Sin
e h = limn!1hn, for all � > 0, there exists n2 su
h that, for all integer n � n2 + 1,h� � � hn � h� �: (2.27)The triangular inequality in L2(IR d) yields ZIR d dYl=1 sin4(�l=2N) 1Xn=n2+1 f̂n�1(�)j�jhn+d=2!2 d�!1=2 � ZIR d dYl=1 sin4(�l=2N) n2Xn=0 f̂n�1(�)j�jhn+d=2!2 d�!1=2� I1=2N (0; 0)4d�  ZIR d dYl=1 sin4(�l=2N) 1Xn=n2+1 f̂n�1(�)j�jhn+d=2!2 d�!1=2 + ZIR d dYl=1 sin4(�l=2N) n2Xn=0 f̂n�1(�)j�jhn+d=2!2 d�!1=2 :Using (2.27) and the in
lusions (1.8) and (1.9), we get ZIR d Qdl=1 sin4(�l=2N)j�j2h+d+2�  1Xn=n2+1 f̂n�1(�)!2 d�!1=2 � N�2d4d  ZIR d  n2Xn=0 f̂n�1(�)j�jhn !2 j�j 3d d�!1=2� I1=2N (0; 0)4d�  ZIR d Qdl=1 sin4(�l=2N)j�j2h+d�2�  1Xn=n2+1 f̂n�1(�)!2 d�!1=2 + N�2d4d  ZIR d  n2Xn=0 f̂n�1(�)j�jhn !2 j�j 3d d�!1=2 : (2.28)Thus it results from (1.7) and (2.28) thatI1=2N (0; 0)4d �  ZIR d Qdl=1 sin4(�l=2N)j�j2h+d�2� d�!1=2 + 
8N�2d:10



Then setting for l = 1; : : : ; d, ul = �l=N , in the last integral, we obtain thatI1=2N (0; 0)4d � 
9N�(h��) + 
8N�2d � 
10N�(h��): (2.29)Using (2.26), we thus obtain the last inequality in (2.10). Let us now prove the �rst inequality in (2.10).From (1.7) and the triangular inequality in L2(IR d), we have, for all suÆ
iently large integer N ZIR d Qdl=1 sin4(�l=2N)j�j2h+d+2�  1Xn=n2+1 f̂n�1(�)!2 d�!1=2�  ZIR d Qdl=1 sin4(�l=2N)j�j2h+d+2� d�!1=2 � ZIR d Qdl=1 sin4(�l=2N)j�j2h+d+2�  n2Xn=0 f̂n�1(�)!2 d�!1=2� N�(h+�)�ZIR d sin4(u=2)juj2h+d+2� d��1=2 � N�2d4d  ZIR d j�j3d�2h�2�  n2Xn=0 f̂n�1(�)!2 d�!1=2� 
11N�(h+�):This last inequality and (2.28) entail that, for all suÆ
iently large integer NI1=2N (0; 0)4d � 
12N�(h+�): (2.30)Finally, the �rst inequality of (2.10) results from (2.30) and (2.26).To prove Lemma 2.5 we need some preliminary results.Lemma 2.10 Let h1; : : : hn be Cd fun
tions de�ned over an open set U � IR d. For every � = (�1; : : : ; �d) 2U , we set g(�) = nYl=1 hl(�): (2.31)Then for all 1 � u � d and � 2 U , we have�1 : : : �ug(�) = X�1;1+:::+�1;n=1 X�2;1+:::+�2;n=1 : : : X�u;1+:::+�u;n=1 nYl=1 ��1;l1 : : : ��u�1;lu�1 ��u;lu hl(�); (2.32)where for all i and l, �i;l 2 f0; 1g and with the 
onvention that:� for any 1 � m � d, �1m = �m is the partial derivative with respe
t of �m and �0m is the identity map.� for any 1 � i � u and any sequen
e fa(�i;1; : : : �i;n); (�i;1; : : : �i;n) 2 f0; 1gng,P�i;1+:::+�i;n=1 a(�i;1; : : : �i;n)denotes the sum of all terms a(�i;1; : : : �i;n) su
h that �i;1 + : : : + �i;n = 1 (observe that only one �i;l isequal to 1 and the others are equal to zero). For example, if n = 3,X�i;1+�i;2+�i;3=1 a(�i;1; �i;2; �i;3) = a(1; 0; 0) + a(0; 1; 0) + a(0; 0; 1):Proof of Lemma 2.10We will prove this Lemma by indu
tion on u. Let us �rst suppose that u = 1. It is 
lear that�1g(�) = X�1;1+:::+�1;n=1 nYl=1 ��1;l1 hl(�):Next let us suppose that for some integer u � 2, one has�1 : : : �u�1g(�) = X�1;1+:::+�1;n=1 : : : X�u�1;1+:::+�u�1;n=1 nYl=1 ��1;l1 : : : ��u�1;lu hl(�):Sin
e �u� nYl=1 ��1;l1 : : : ��u�1;lu�1 hl�(�) = X�u;1+:::+�u;n=1 nYl=1 ��1;l1 : : : ��u�1;lu�1 ��u;lu hl(�)we obtain (2.32). 11



Remark 2.11 For every � 2 IR d and for every integers N � 2 and n � 0, let us setkN(�) = dYl=1 sin4(�l=2N): (2.33)and �n(�) = 8<: 0 if � = 0j�j�hn�d=2 = (�21 + : : : + �2d)�hn=2�d=4 otherwise. (2.34)Then, the fun
tion gN , whi
h has been introdu
ed in (2.24), 
an be written for every � 2 IR d as,gN(�) = kN (�)� 1Xn=0 f̂n�1(�)�n(�)�2: (2.35)Moreover, for every non vanishing � 2 IR d and for all 1 � u � d, j�1 : : : �ugN(�)j is bounded by a sum ofterms of the formj��1;11 : : : ��u;1u kN (�)j � � 1Xn=0 j��1;21 : : : ��u;2u f̂n�1(�)jj��1;31 : : : ��u;3u �n(�)j�� � 1Xn0=0 j��1;41 : : : ��u;4u f̂n0�1(�)jj��1;51 : : : ��u;5u �n0(�)j�; (2.36)where for all 1 � i � u and 1 � l � 5, �i;l 2 f0; 1g anduXi=1 �i;l = 1: (2.37)Proof of Remark 2.11It follows from (2.35) that for every � 2 IR d,gN(�) = Xn;n02INkN (�)f̂n�1(�)�n(�)f̂n0�1(�)�n0(�):Then Lemma 2.10 entails Remark 2.11.Let us now 
ompute the partial derivatives of the fun
tions kN , �n and f̂n.Remark 2.12 For all � 2 IR d, for j = 2 or j = 4 and for all n 2 IN��1;11 : : : ��u;1u kN (�) = � 2N �Pui=1 �i;1 uYi=1 sin4��i;1(�i=2N) � uYi=1 
os�i;1 (�i=2N) � dYl=u+1 sin4(�l=2N); (2.38)for j = 2 or j = 4 ��1;j1 : : : ��u;ju f̂n(�) = 2�nPui=1 �i;j��1;j1 : : : ��u;ju f̂0(2�n�) (2.39)and for all non vanishing � 2 IR d,��1;j+11 : : : ��u;j+1u �n(�) = Qul=1(�hn � d=2� 2Pl�1i=1 �i;j+1)�l;j+1��l;j+1lj�jhn+d=2+2Pui=1 �i;j+1 ; (2.40)with the 
onvention P�1i=1 �i;j+1 = 0.Proof of Remark 2.12Relations (2.38) and (2.39) are obvious. We just have to use Relation (1.6) for obtaining Relation (2.39).Let us prove Relation (2.40) by indu
tion on u. It is 
lear that for all non vanishing � 2 IR d and all n 2 IN,��1;j+11 �n(�) = (�hn � d=2)�1;j+1��1;j+11j�jhn+d=2+2�1;j+1 :12



Let us now suppose that for an arbitrary u � 2,��1;j+11 : : : ��u�1;j+1u�1 �n(�) = Qu�1l=1 (�hn � d=2� 2Pl�1i=1 �i;j+1)�l;j+1��l;j+1lj�jhn+d=2+2Pu�1i=1 �i;j+1 :Then sin
e the partial derivative with respe
t of �u of the fun
tion � 7! j�j�hn�d=2�2Pu�1i=1 �i;j+1 is equal to� 7! (�hn�d=2�2Pu�1i=1 �i;j+1)�uj�jhn+d=2+2Pu�1i=1 �i;j+1+2 , we obtain Relation (2.40).>From now on, if A is an arbitrary subset of IR d, then �A will denote its indi
ator, namely the fun
tionsu
h �A(�) = 1 if � 2 A and �A(�) = 0 else. Re
all that for every n 2 IN, Dn = [�2n; 2n℄d.Remark 2.13 Using the same notations as in Remark 2.11, there is a 
onstant 
 > 0, su
h that for all1 � u � d, all non vanishing � 2 IR d and for j = 2 or j = 41Xn=0 j��1;j1 : : : ��u;ju f̂n�1(�)jj��1;j+11 : : : ��u;j+1u �n(�)j� 
 �D0(�)j�jh0+d=2+Pui=1 �i;j + 
 1Xn=0 2�nPui=1 �i;j�Dn+1nDn(�)j�jmin(hn;hn+1)+d=2+Pui=1 �i;j+1 : (2.41)For any integer p � 1,1Xn=p j��1;j1 : : : ��u;ju f̂n�1(�)jj��1;j+11 : : : ��u;j+1u �n(�)j � 
 1Xn=p 2�nPui=1 �i;j�Dn+1nDn(�)j�jmin(hn;hn+1)+d=2+Pui=1 �i;j+1 ; (2.42)� 1Xn=0 j��1;21 : : : ��u;2u f̂n�1(�)jj��1;31 : : : ��u;3u �n(�)j�� 1Xn0=0 j��1;41 : : : ��u;4u f̂n0�1(�)jj��1;51 : : : ��u;5u �n0(�)j�� 
 �D0(�)j�j2h0+d+Pui=1(�i;3+�i;5) + 
 1Xn=0 2�nPui=1(�i;2+�i;4)�Dn+1nDn(�)j�j2min(hn;hn+1)+d+Pui=1(�i;3+�i;5) : (2.43)For any integer p � 1,� 1Xn=p j��1;21 : : : ��u;2u f̂n�1(�)jj��1;31 : : : ��u;3u �n(�)j�� 1Xn0=p j��1;41 : : : ��u;4u f̂n0�1(�)jj��1;51 : : : ��u;5u �n0 (�)j�� 
 1Xn=p 2�nPui=1(�i;2+�i;4)�Dn+1nDn(�)j�j2min(hn;hn+1)+d+Pui=1(�i;3+�i;5) : (2.44)Proof of Remark 2.13Let us �rst prove Relation (2.41). Observe that as the sequen
e (hn)n2IN is bounded, there is a 
onstant
1 > 0, su
h that for all n 2 IN, 1 � u � d and �l;k 2 f0; 1gj uYl=1�� hn � d=2� 2 l�1Xi=1 �i;j+1��l;j+1 j � 
1 (2.45)In addition one has that for all non vanishing � 2 IR d,Qul=1 j�lj�l;j+1j�jhn+d=2+2Pui=1 �i;j+1 � Qul=1 j�j�l;j+1j�jhn+d=2+2Pui=1 �i;j+1� j�j�hn�d=2�Pui=1 �i;j+1 : (2.46)Using Relations (2.40), (2.45) and (2.46), one obtains that for every n 2 IN, 1 � u � d and non vanishing� 2 IR d, j��1;j+11 : : : ��u;j+1u �n(�)j � 
1j�j�hn�d=2�Pui=1 �i;j+1 : (2.47)13



Next, sin
e for all 1 � u � d, ��1;j1 : : : ��u;ju f̂�1 and ��1;j1 : : : ��u;ju f̂0 are 
ontinuous fun
tions, with support,respe
tively, in the domains D1 and D2 nD0, there is a 
onstant 
2 > 0 su
h that for all � 2 IR d,j��1;j1 : : : ��u;ju f̂�1(�)j � 
2�D1 (�): (2.48)and for every n 2 IN, j��1;j1 : : : ��u;ju f̂n(�)j � 2�nPui=1 �i;j j��1;j1 : : : ��u;ju f̂0(2�n�)� 
22�nPui=1 �i;j�Dn+2nDn(�): (2.49)Next it follows from Relations (2.47), (2.48) and (2.49) that there is a 
onstant 
4 > 0, su
h that for all� 2 IR d and for j = 2 or j = 4,1Xn=0 j��1;j1 : : : ��u;ju f̂n�1(�)jj��1;j+11 : : : ��u;j+1u �n(�)j� 
4 �D1(�)j�jh0+d=2+Pui=1 �i;j+1 + 
4 1Xn=0 2�nPui=1 �i;j�Dn+2nDn(�)j�jhn+1+d=2+Pui=1 �i;j+1� 
4 �D0(�)j�jh0+d=2+Pui=1 �i;j+1 + 
4 �D1nD0(�)j�jh0+d=2+Pui=1 �i;j+1+
4 1Xn=0 2�nPui=1 �i;j�Dn+1nDn(�)j�jhn+1+d=2+Pui=1 �i;j+1 + 
4 1Xn=0 2�nPui=1 �i;j�Dn+2nDn+1(�)j�jhn+1+d=2+Pui=1 �i;j+1= 
4 �D0(�)j�jh0+d=2+Pui=1 �i;j+1 + 
4 �D1nD0(�)j�jh0+d=2+Pui=1 �i;j+1+
4 1Xn=0 2�nPui=1 �i;j�Dn+1nDn(�)j�jhn+1+d=2+Pui=1 �i;j+1 + 
4 1Xn=1 2�(n�1)Pui=1 �i;j�Dn+1nDn(�)j�jhn+d=2+Pui=1 �i;j+1� 
 �D0(�)j�jh0+d=2+Pui=1 �i;j+1 + 
 1Xn=0 2�nPui=1 �i;j�Dn+1nDn(�)j�jmin(hn;hn+1)+d=2+Pui=1 �i;j+1 :Similarly, one 
an show that Relation (2.42) holds. At last, Relations (2.43) and (2.44) are straightforward
onsequen
es of Relations (2.41) and (2.42) sin
e all the sets D0 and Dn+1 nDn, n 2 IN are disjoint.Lemma 2.14 For all integer N � 2 and for any p = (p1; : : : ; pd) 2 f0; : : : ; N � 2gd and p0 = (p01; : : : ; p0d) 2f0; : : : ; N � 2gd, with p 6= p0, by reordering the pi and the p0i, one may suppose that there exists 1 � m � d,su
h that for all i = 1; : : : ;m, pi 6= p0i and for all i = m + 1; : : : ; d, pi = p0i. Then, one has that for all1 � u � m, jIN (p; p0)j = 16dNuQul=1 jpl � p0lj ��� ZIR d ei(p�p0):�=N�1 : : : �ugN (�)d����: (2.50)Proof of Lemma 2.14We will prove this Lemma by indu
tion on u. It follows (2.23) and Fubini Theorem thatIN (p; p0)16d = ZIR d eiPdk=1(pk�p0k)�k=NgN (�1; : : : ; �d)d�1 : : : d�d= ZIR d�1 eiPdk=2(pk�p0k)�k=N�ZIR ei(p1�p01)�1=NgN(�1; �2; : : : ; �d) d�1� d�2 : : : d�d:(2.51)Then by integrating by parts and using Remarks 2.11 and 2.13 one obtains that for almost all (�2; : : : �d) 2IR d�1,ZIR ei(p1�p01)�1=NgN(�1; �2; : : : ; �d) d�1 = � Ni(p1 � p01) ZIR ei(p1�p01)�1=N�1gN(�1; �2; : : : ; �d) d�1: (2.52)Relations (2.51) and (2.52) imply that Lemma 2.14 holds when u = 1. Next suppose that this Lemmaholds for some u � m� 1. Then one may show that it also holds for u+ 1, by repla
ing in Relations (2.51)and (2.52) gN by �1 : : : �ugN and �1 by �u+1. 14



Lemma 2.15 For any arbitrarily small � > 0, there is a 
onstant 
 > 0 su
h that for all integers N � 2and 1 � m � d, ZIR d j�1 : : : �mgN(�)j d� � 
N�m�2(h��): (2.53)Proof of Lemma 2.15First, let us noti
e that as limn!1 hn = h, there is n2 2 IN, su
h that for all n � n2 + 1,h� � � hn � h+ �: (2.54)Now let us introdu
e some notations. For j = 2 or j = 4 and for K = n2 or K = 1 and for all nonvanishing � 2 IR d, let us setIj;K(�) = KXn=0 j��1;j1 : : : ��m;jm f̂n�1(�)jj��1;j+11 : : : ��m;j+1m �n(�)j; (2.55)and Lj(�) = 1Xn=n2+1 j��1;j1 : : : ��m;jm f̂n�1(�)jj��1;j+11 : : : ��m;j+1m �n(�)j: (2.56)Observe that one hasZIR d j�1 : : : �mgN(�)j d�� ZIR d j��1;11 : : : ��m;1m kN (�)jI2;n2 (�)I4;n2(�) d� + ZIR d j��1;11 : : : ��m;1m kN (�)jI2;n2 (�)I4;1(�)d�+ZIR d j��1;11 : : : ��m;1m kN (�)jI2;1(�)I4;n2(�)d� + ZIR d j��1;11 : : : ��m;1m kN (�)jL2(�)L4(�) d�: (2.57)>From now on our aim will be to bound ea
h of these integrals. To simplify our notations, let us set forall l = 1; : : : ; 5 �l = mXi=1 �i;l: (2.58)Observe that sin
e for 1 � i � m, 5Xl=1 �i;l = 1; (2.59)Clearly one has that �1 + �3 + �5 � 5Xl=1 �l = m � d: (2.60)Next Relations (2.48), (2.49), (2.40) and (2.41) imply that there is a 
onstant 
 > 0, su
h that for all1 � u � d and all non vanishing � 2 IR d, one hasIj;n2 (�) � 
j�j�d=2��j+1 max(j�j�a; j�j�b)�Dn2+1(�) and Ij;1 � 
j�j�d=2��j+1 max(j�j�a; j�j�b): (2.61)Thus, when K2 = n2 or K4 = n2, using Relations (2.38), (2.60) and (2.61) one obtains thatZIR d j��1;11 : : : ��m;1m kN(�)jI2;K2 (�)I4;K4(�)d�� 
1� 2N ��1 ZDn2+1 mYi=1 j sin4��i;1 (�i=2N)j � dYi=m+1 sin4(�i=2N) � j�j�d��3��5 �max(j�j�2a; j�j�2b) d�� 
2N�4d ZDn2+1 j�j3d��1��3��5 max(j�j�2a; j�j�2b)d�� 
3N�4d ZDn2+1 j�j2dmax(j�j�2a; j�j�2b) d�� 
4N�4d; (2.62)15



where the 
onstant 
4 > 0 is �nite. Next, let us give an upper bound of � = RIR d j��1;11 : : : ��m;1m kn(�)jL2(�)L4(�)d�.Using Relation (2.44) with p = n2 + 1 and u = m, one obtains that for all non vanishing � 2 IR d,L2(�)L4(�) � 
5 1Xn=n2+1 2�n(�2+�4)�Dn+1nDn(�)j�j2min(hn;hn+1)+d+�3+�5 :Then Relations (2.38) and (2.54) imply that� � 
10N��1 1Xn=1 2�n(�2+�4) ZDnnDn�1 Qmi=1 j sin4��i;1 (�i=2N)jQdi=m+1 sin4(�i=2N)j�j2h�2�+d+�3+�5 d�: (2.63)Next let n0 � 1, be the integer su
h that2�n0�1 < 1=N � 2�n0 ; (2.64)let �1 = n0Xn=1 2�n(�2+�4) ZDnnDn�1 Qmi=1 j sin4��i;1 (�i=2N)jQdi=m+1 sin4(�i=2N)j�j2h�2�+d+�3+�5 d� (2.65)and let �2 = 1Xn=n0+1 2�n(�2+�4) ZDnnDn�1 Qmi=1 j sin4��i;1(�i=2N)jQdi=m+1 sin4(�i=2N)j�j2h�2�+d+�3+�5 d�: (2.66)First we will give an upper bound of �2. Relation (2.64) implies that�2 � N��2��4 ZIR d Qmi=1 j sin4��i;1 (�i=2N)jQdi=m+1 sin4(�i=2N)j�j2h�2�+d+�3+�5 d�: (2.67)Next setting in this last integral, for all i = 1; : : : ; d, vi = �i=N , one obtains that�2 � N�2(h��)�P5l=2 �l ZIR d Qmi=1 j sin4��i;1(vi=2)jQdi=m+1 sin4(vi=2)jvj2h�2�+d+�3+�5 dv:Next, using the inequality j sin(vi=2)j � jvj and Relation (2.60) one gets that�2 � N�2(h��)�P5l=2 �l�Zjvj�1 jvj2d�2h+2� dv + Zjvj>1 jvj�2h+2��d��3��5 dv�: (2.68)Next let us give an upper bound of �1. Using the inequality j sin(�i=2N)j � N�1j�j and Relations (2.58),(2.60) and (2.64), one obtains the following inequalities, where �d(Dn nDn�1) denotes the Lebesgue measureof the set Dn nDn�1.�1 � N�4d+�1 n0Xn=1 2�n(�2+�4) ZDnnDn�1 j�j3d�2(h��)��1��3��5 d�� 
N�4d+�1 n0Xn=1 2n(3d�2h+2��P5l=1 �l)�(Dn nDn�1)� 
0N�4d+�1 n0Xn=1 2n(4d�2h+2��m) � 
00N�4d+�12n0(4d�2h+2��m) � 
00N�m+�1�2(h��): (2.69)Next Relations (2.63), (2.65), (2.66), (2.68) and (2.69) entail that� � 
N�m�2(h��) (2.70)At last, it follows from Relations (2.57), (2.62) and (2.70) that there is a 
onstant 
 > 0 su
h that for all1 � m � d and N � 2, ZIR d j�1 : : : �mgN (�)j d� � 
N�m�2(h��):16



Lemma 2.16 For any arbitrarily small � > 0, there is a 
onstant 
 > 0 su
h that for all integer N � 2, allp = (p1; : : : ; pd) 2 f0; : : : ; N � 2gd and p0 = (p01; : : : ; p0d) 2 f0; : : : ; N � 2gd, one hasjIN (p; p0)j � 
N�2h+2�[ dYl=1(1 + jpl � p0lj)℄�1: (2.71)Proof of Lemma 2.16Using Relation (2.29) one 
an easily show that Lemma 2.16 holds when p = p0. Next, observe that there isa 
onstant 
0 > 0 su
h that for all pl 2 ZZ and p0l 2 ZZ satisfying pl 6= p0l, one hasjpl � p0lj � 
0(1 + jpl � p0lj)�1: (2.72)At last, Relation (2.72) and Lemmas 2.14 and 2.15 imply that Lemma 2.16 holds when p 6= p0.We are now in a position to prove Lemma 2.5.Proof of Lemma 2.5Sin
e the pro
ess fY (s; t)gs2[0;1℄d is Gaussian and 
entered, one has for all integer N � 2,V ar(TN) = 2 Xp;p02�N(IN (p; p0))2:Then using Lemma 2.16, it follows that for any arbitrarily small � > 0, there is a 
onstant 
0 > 0 su
h thatV ar(TN ) � 
0N�4h+4� Xp2�N Xp02ZZ d dYl=1(1 + jpl � p0lj)�2 � 
00
ard(�N)N�4h+4�; (2.73)where 
00 = 
0�Pq2ZZ(1 + jqj)�2�d. At last Relation (2.73) and Remark 2.8 entail Lemma 2.5.To prove Lemma 2.6, we shall use the following remark.Remark 2.17 There exists a 
onstant 
 > 0 su
h that for all integer N � 2,E[(TN �E(TN))4℄ � 
V ar2(TN ): (2.74)This property results from the Gaussianity of the pro
ess fY (s; t)gs2[0;1℄. For a proof, see for instan
e[9℄ pages 42 and 43.Proof of Lemma 2.6We shall apply the Borel-Cantelli Lemma. One has, for all � > 0 and all integer N � 2P ����� TNE(TN ) � 1���� � �� = P  ���� TNE(TN ) � 1���� 4 � � 4!= P (jTN �E(TN )j 4 � �4E4(TN )):Markov inequality and Remark 2.17 entail that, for all integer N � 2P ����� TNE(TN) � 1���� � �� � E(jTN �E(TN )j 4)�4E4(TN )� 
V ar2(TN )�4E4(TN ) :Applying Lemmas 2.4 and 2.5 with �1 = �2 = �, where � > 0 is arbitrarily small, one getsP ����� TNE(TN ) � 1���� � �� � 
0N2d(1�
)�8h+8�N4d(1�
)�8h�8� = 
0N�(2d(1�
)�16�) : (2.75)Sin
e 
 2 (0; 1� 12d ), one has, for � > 0 suÆ
iently small, 2d(1� 
)� 16� > 1. Thus1XN=2P ����� TNE(TN) � 1���� � �� <1:17



3 A Central Limit Theorem for the Generalized Quadrati
Variations of some 
lass of GMBMsCentral Limit Theorems are quite useful sin
e they allow to 
onstru
t tests. In this se
tion, our goal willbe to prove the following Central Limit Theorem for the GQVs of GMBMs. For the sake of simpli
ity, wehave restri
ted to GMBMs de�ned over [0; 1℄, but our results 
an be extended to GMBMs de�ned over anarbitrary 
ompa
t 
ube of IR d.Theorem 3.1 Let fX(s)gs2[0;1℄ be a GMBM with parameter the admissible sequen
e (Hn(:))n2IN. Lett 2 [0; 1℄ be a point satisfying the following property:(P) there is n1 = n1(t) 2 IN su
h that for all n � n1, Hn(t) = H(t), with H(t) 2 (0; 1=8).As usual, we denote VN (t) with N � 2 the GQVs of fX(s)gs2[0;1℄ lo
alized around t. We assume that
 2 ( 1+4H(t)3 ; 12 ) and we set �N (t) = E(VN(t)) and SN (t) =pV ar(VN (t)): (3.1)Then, one has that VN(t) = �N (t) + SN (t)�N (t);where the random variable �N(t) 
onverges in distribution to a N (0; 1) Gaussian variable as N !1.Let us �rst introdu
e some notations:� As previously, we set h = H(t) and for all n 2 IN, hn = Hn(t).� fBh(s)gs2[0;1℄ denotes an FBM with Hurst parameter h.� For every integer N � 2 and for every p 2 f0; : : : ; N � 2g, �NX(p), �t;NY (p) and �NBh(p) arerespe
tively the in
rements of order 2 of the pro
esses fX(s)gs2[0;1℄, fY (s; t)gs2[0;1℄ and fBh(s)gs2[0;1℄de�ned as �NX(p) = 2Xk=0 dkX�p+ kN � = 2Xk=0Y �p+ kN ; p+ kN �; (3.2)�t;NY (p) = 2Xk=0dkY �p+ kN ; t�; (3.3)and �NBh(p) = 2Xk=0 dkBh�p+ kN �: (3.4)Re
all that d0 = 1, d1 = �2 and d2 = 1.� (JN (p; p0))p;p02�N (t), (IN(p; p0))p;p02�N (t), (KN (p; p0))p;p02�N (t) are respe
tively the 
ovarian
e matri
esof the 
entered Gaussian ve
tors (�NX(p))p2�N(t), (�t;NY (p))p2�N(t) and (�NBh(p))p2�N(t). Thusone has for every p; p0 2 �N (t), JN (p; p0) = E(�NX(p)�NX(p0)); (3.5)IN (p; p0) = E(�t;NY (p)�t;NY (p0)); (3.6)and KN (p; p0) = E(�NBh(p)�NBh(p0)): (3.7)To prove Theorem 3.1 we need some preliminary results. The following Remark is a dire
t 
onsequen
eof some results in [22℄. This is why we omit its proof.18



Remark 3.2 Theorem 3.1 is implied by the following property:limN!1 �N (t)SN (t) = 0; (3.8)where �N (t) is the spe
trum of the 
ovarian
e matrix (JN (p; p0))p;p02�N (t) i.e �N (t) is the maximum of theeigenvalues of this matrix. One generally bound �N (t) by the quantity�N (t) = maxp2�N(t) Xp02�N (t) jJN (p; p0)j; (3.9)whi
h is less diÆ
ult to handle. Relation (3.8) therefore results from,limN!1 �N (t)SN (t) = 0: (3.10)The following two Lemmas will allow us to bound �N (t).Lemma 3.3 There is a 
ontant 
2 > 0 su
h that the inequalityjJN (p; p0)� IN (p; p0)j � 
2N�
 ; (3.11)holds for all integer N � 2 and for every p; p0 2 �N(t).Proof of Lemma 3.3One has � = jJN (p; p0)� IN (p; p0)j = jE(�NX(p)�NX(p0))�E(�t;NY (p)�t;NY (p0))j� E(j�NX(p)jj�NX(p0)��t;NY (p0)j) +E(j�t;NY (p0)jj�NX(p)��t;NY (p)j):Then using Cau
hy-S
hwarz inequality and Relations (3.2) and (3.3), one obtains that,� � � 2Xk=0 jdkj


Y �p0 + kN ; p0 + kN �� Y �p0 + kN ; t�


2�� 2Xk=0 jdkj


X�p+ kN �


2�+� 2Xk=0 jdkj


Y �p+ kN ; p+ kN �� Y �p+ kN ; t�


2�� 2Xk=0 jdkj


Y �p0 + kN ; t�


2� (3.12)Next, observe that the fun
tions x 7! kX(x)k2 and x 7! kY (x; t)k2 being 
ontinuous on [0; 1℄, they arebounded on this interval. At last, Lemma 3.3 follows from Lemma 2.7 and Relation (1.20).Lemma 3.4 There is a 
onstant 
3 > 0 (depending on t) su
h that the inequalityjKN (p; p0)� IN (p; p0)j � 
3N�4; (3.13)holds for all integer N � 2 and for every p; p0 2 �N(t).Proof of Lemma 3.4First, observe that it follows from Relations (1.7) and (1.9) that for all non vanishing � 2 IR d,� 1Xn=0 f̂n�1(�)j�jhn �2 = � n1+1Xn=0 f̂n�1(�)j�jhn + 1Xn=n1+2 f̂n�1(�)j�jh �2= � n1+1Xn=0 f̂n�1(�)j�jhn �2 + � 1Xn=n1+2 f̂n�1(�)j�jh �2 + 2f̂n1 (�)j�jhn1+1 � 1Xn=n1+2 f̂n�1(�)j�jh �and 1j�j2h = � 1Xn=0 f̂n�1(�)j�jh �2= � n1+1Xn=0 f̂n�1(�)j�jh �2 + � 1Xn=n1+2 f̂n�1(�)j�jh �2 + 2f̂n1 (�)j�jh � 1Xn=n1+2 f̂n�1(�)j�jh �19



Thus, sin
e hn1+1 = h, one obtains that for every non vanishing � 2 IR,���� n1+1Xn=0 f̂n�1(�)j�jhn �2 � 1j�j2h ��� � � n1+1Xn=0 f̂n�1(�)j�jhn �2 + � n1+1Xn=0 f̂n�1(�)j�jh �2:Next, using Remark 2.9 and the inequality j sin(�=2N)j � N�1j�j, one gets that for all integer N � 2and every p; p0 2 f0; : : : ; N � 2g,jKN (p; p0)� IN(p; p0)j � N�4 ZIR j�j3h� n1+1Xn=0 f̂n�1(�)j�jhn �2 + � n1+1Xn=0 f̂n�1(�)j�jh �2i d�and this last integral is 
learly �nite.We are now in a position to prove Theorem 3.1.Proof of Theorem 3.1Thanks to Remark 3.2 it is suÆ
ient to prove thatlimN!1 �N (t)SN (t) = 0: (3.14)Using Remarks 2.8, Lemmas 3.3 and 3.4, one obtains that there is a 
onstant 
1 > 0, su
h that for allinteger N � 2, �N (t) � 
1�N1�2
 + maxp2�N(t) jKN (p; p0)j�: (3.15)Next, let us give a lower bound of SN . It follows from the Gaussianity of the pro
ess fX(s)gs2[0;1℄, fromRelation (3.10) and from the stationarity of the in
rements of the pro
ess fY (s; t)gs2[0;1℄, thatSN(t) � 0� Xp2�N(t)�JN (p; p)�21A1=2� 0� Xp2�N(t)�IN(p; p)�21A1=2 �0� Xp2�N(t)�IN(p; p)� JN (p; p)�21A1=2 (3.16)� N1=2�
=2IN (0; 0)� 
2N1=2�3
=2 : (3.17)Next Relations (2.30), (3.16) and the assumption 
 > 1+4h3 > 2h imply that there is a 
onstant 
3 > 0,su
h that for all integer N � 2, SN (t) � 
3N1=2�
=2�2h�2� : (3.18)Next, similarly to Relation (2.23) one 
an show that for any integer N � 2 and all p; p0 2 �N (t), one hasKN(p; p0) = 16 ZIR ei(p�p0)�=N sin4(�=2N)j�j2h+1 d�: (3.19)Then by setting u = �=N in this last integral and by integrating twi
e by part, it follows that there is
onstant 
6 > 0, whi
h is independent on N , p and p0, su
h that,jKN (p; p0)j � 
6N�2h(1 + jp� p0j)�2: (3.20)Next Relations (3.18), (3.20) and the assumption 
 < 1=2 entail thatlimN!1 maxp2�N (t)Pp02�N (t) jKN (p; p0)jSN (t) = 0: (3.21)Next Relations (3.15) and (3.18) imply that0 � �N (t)SN (t) � 
7(N1�2
 +maxp2�N (t)Pp02�N (t) jKN (p; p0)jSN (t)� 
7�N1=2+2h+2��3
=2 + maxp2�N (t)Pp02�N (t) jKN (p; p0)jSN (t) �: (3.22)At last Relation (3.14) follows from (3.21), (3.22) and the assumption 
 > 1+4h3 .20



4 Numeri
al ExperimentsWe elaborate brie
y in this se
tion on the applied aspe
ts of our work. In order to test our estimator, we�rst need to generate sample paths of GMBMs. While synthesis methods exist for the mBm ([31℄), thequestion of simulating GMBMs has been left unaddressed so far. We propose in subse
tion 4.1 a pro
edurebased on dis
retizing the integrals de�ning the GMBM. Next, in subse
tion 4.2, we display results on theidenti�
ation of H(t) using the estimator proposed above, in simple 
ases where the H�older fun
tion isdis
ontinuous. Finally, subse
tion 4.3 deals with an appli
ation to �nan
ial data analysis.4.1 Numeri
al Simulation of GMBMFor the sake of simpli
ity, throughout this se
tion we restri
t to GMBMs de�ned on the interval [0; 1℄ andwe suppose that f̂�1 is the C1 fun
tion de�ned for every � 2 IR asf̂�1(�) = 8>><>>: 1 if j�j � 1,0 if j�j � 5=4,
os2(2�(� � 1)) if � 2 [1; 5=4℄,
os2(2�(� + 1)) if � 2 [�5=4;�1℄. (4.1)Sin
e f̂�1 is an even fun
tion the 
orresponding GMBMs 
an be represented asX(t) = �4X1(t)� 2X2(t); (4.2)where X1(t) = Z +10 h 1Xn=0 sin2(t�=2)j�jHn(t)+1=2 f̂n�1(�)idW1(�) (4.3)and X1(t) = Z +10 h 1Xn=0 sin(t�)j�jHn(t)+1=2 f̂n�1(�)i dW2(�); (4.4)dW1 and dW2 being two independent real valued Brownian measures. For simulating the GMBM, we shalluse a dis
retization of the sto
hasti
 integrals (4.3) and (4.4). SetÆ = 2�p; (4.5)where p � 0 is a �xed integer. One hasX1(t) = 1Xm=0 2m�1Xq=0 Z (2m+q+1)Æ(2m+q)Æ h 1Xn=0 sin2(t�=2)j�jHn(t)+1=2 f̂n�1(�)i dW1(�)' 1Xm=0 2m�1Xq=0 1Xn=0 sin2(2�1(2m + q)Æt)((2m + q)Æ)Hn(t)+1=2 f̂n�1((2m + q)Æ)(W1((2m + q + 1)Æ)�W1((2m + q)Æ)):Using (1.4) and (4.1), it follows that the sto
hasti
 integral (4.3) 
an be approximated by the randomseries 2�p=2 5:2p�2Xl=0 sin2(2�p�1lt)(2�pl)H0(t)+1=2 f̂�1(2�pl)�l+2�p=2 1Xn=0 2n+p�1Xq=0 sin2((2n�1 + q2�p�1)t)(2n�1 + q2�p�1)Hn(t)+1=2 f̂0(1 + q2�n�p)�n;q+2�p=2 1Xn=0 2n+p�1Xq=0 sin2((2n + q2�p�1)t)(2n + q2�p�1)Hn(t)+1=2 f̂0(1 + q2�n�1�p)�n+1;q;where the �l and the �n;q are independent N (0; 1) Gaussian variables. Similarly one 
an show that thesto
hasti
 integral (4.4) 
an be approximated by the random series21



2�p=2 5:2p�2Xl=0 sin(2�plt)(2�pl)H0(t)+1=2 f̂�1(2�pl)�l+2�p=2 1Xn=0 2n+p�1Xq=0 sin((2n + q2�p)t)(2n�1 + q2�p�1)Hn(t)+1=2 f̂0(1 + q2�n�p)�n;q+2�p=2 1Xn=0 2n+p�1Xq=0 sin((2n+1 + q2�p)t)(2n + q2�p�1)Hn(t)+1=2 f̂0(1 + q2�n�1�p)�n+1;q ;where the �l and the �n;q are independent N (0; 1) Gaussian variables.4.2 H�older Exponent Estimation of Simulated GMBMWe show three examples of simulated GMBMs along with the estimation of their H�older fun
tion. Theseexamples 
orrespond to situations of pra
ti
al interest, where one needs to dete
t a) a sudden jump in H�olderregularity, b) an irregular point on a regular ba
kground, and 
) a regular point on an irregular ba
kground.The sample path displayed on �gure 1 is obtained with a sequen
e of fun
tions Hn 
onverging to a stepfun
tion having a dis
ontinuity at 0.6: H(t) = 0:3 for t � 0:6, H(t) = 0:7 for t > 0:6. The sequen
e Hnis shown on �gure 1 along with the GMBM. Figure 2 displays the estimated H(t). As 
an be seen, thedis
ontinuity is 
learly dete
ted.The se
ond example deals with an irregular point on a regular ba
kground, i.e. a sequen
e of Hn
onverging to the fun
tion H(t) = 0:7 for t 6= 0:6, H(0:6) = 0:25. Again, �gure 3 shows the sample path ofthe GMBM along with the sequen
e Hn. The estimated H�older fun
tion is displayed on �gure 4.Finally, we 
onsider the more diÆ
ult 
ase of a regular point on an irregular ba
kground. The sequen
eHn 
onverges to H(t) = 0:2 for t 6= 0:6, H(0:6) = 0:8. The sample path of the GMBM and the sequen
e Hnare on �gure 5. Figure 6 displays the estimated H�older fun
tion.In both 
ases, the estimator is able to dete
t the point of interest with good a

ura
y.
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Figure 1: Simulated GMBM and asso
iated sequen
e Hn 
onverging to a step fun
tion.22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Estimated H�older fun
tion of the GMBM in �gure 1.
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Figure 3: Simulated GMBM and asso
iated sequen
e Hn 
onverging to H(t) = 0:7 for t 6= 0:6, H(0:6) = 0:25.23
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Figure 4: Estimated H�older fun
tion of the GMBM in �gure 3.
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Figure 5: Simulated GMBM and asso
iated sequen
e Hn 
onverging to H(t) = 0:2 for t 6= 0:6, H(0:6) = 0:8.24
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Figure 6: Estimated H�older fun
tion of the GMBM in �gure 5.4.3 Analysis of Finan
ial DataWe end this se
tion with the analysis of a �nan
ial re
ord. It is well-known that sto
k market logs arevery irregular. Moreover, this irregularity is a fun
tion of time, and we expe
t that, for instan
e, at "quiet"periods, the market should evolve smoothly, resulting in a large value of H(t), while kra
hs translate intosudden 
hanges 
orresponding to small exponents.We analyze in this se
tion a log of the Nikkei225 index during the period 01/01/1980 to 05/11/2000. Thelog 
onsists in 5313 daily values 
orresponding to that period. As �nan
ial analysts do not work dire
tly onthe pri
es, but on their logarithms, we shall deal with the logarithm of the Nikkei225 index re
ord, whi
h isdisplayed on �gure 7. The signal is 
learly quite errati
. Note in parti
ular the large variations around thepoints 1780, 2040, 2650, 2760 or 3200. Although we are not able to verify whether these data may a
tuallybe well modelled with a GMBM, simple tests show that they are approximatively Gaussian. As we nowshow, a lo
al regularity analysis based on the estimator proposed above allows to highlight signi�
ant eventsin the log. The estimated H�older fun
tion is displayed on �gure 8. As 
an be seen on the �gure, most valuesof the H�older exponents are between 0.2 and 0.8, with a few peaks up to 1. Re
all that lower exponents
orrespond to more irregular parts of the signal. Looking at the original data, it appears obvious that thelog is nowhere smooth, whi
h is 
onsistent with the values of the exponents. What is more interesting is thatimportant events in the log have a spe
i�
 signature in the H�older fun
tion : Periods where \things happen"are 
hara
terized by a sudden in
rease in regularity, whi
h rea
hes 1, followed by very small values, e.g.below 0.2, whi
h 
orrespond to low regularity. Let us take some examples. The most prominent feature ofthe H�older fun
tion is the peak at abs
issa 2018 with amplitude 1. Note also that the points with the lowestvalues in regularity of the whole log are lo
ated just after this peak: The H�older exponent is around 0.2 atabs
issa roughly between 2020 and 2050, and around 0.05 at abs
issa between 2075 and 2100. Both valuesare well below the mean of the H�older fun
tion, whi
h is 0.4 (its varian
e of is 0.036). As a matter of fa
t,only 10 per
ent of the points of the signal have an exponent smaller than 0.2. Now the famous O
tober 191987 kra
h 
orresponds to abs
issa 2036, right in the middle on the �rst low regularity period after the peak.The days with smallest regularity in the whole log are thus, as expe
ted, lo
ated in the weeks following thekra
h, and one 
an assess pre
isely whi
h days were more errati
. However, if one looks at �gure 7, thesefeatures do no show as 
learly: Although the kra
h is easily seen as a strong downward variation at abs
issa2036, the area around this point does not appear to be more \spe
ial" than, for instan
e, the last part ofthe log. 25



Consider now another region whi
h 
ontains many points with small H�older exponents along with a fewisolated regular points (i.e. with exponent 
lose to 1). Look at the area between abs
issa 4450 and 4800:This roughly 
orresponds to the "Asian 
risis" period, whi
h approximately took pla
e between January1997 and June 1998 (there are no pre
isely de�ned dates for the beginning and end of the 
risis. Someauthors pla
e the beginning of the 
risis mid-1997, and the end by late 1999, or even later). On the graphof the original log of the Nikkei225, one 
an see that this period is quite errati
, with some rapid variationsand pseudo-
y
les (this behaviour arguably seems to extend between points 3500 and maybe the end of thetra
e). Looking now at the H�older fun
tion, one noti
es that there are two peaks with exponents aroundone in the 
onsidered period (there is an additional su
h point around abs
issa 4300, whi
h, however, is notfollowed by points with low values of regularity -e.g. smaller than 0.15-, but is pre
eded by su
h points,between abs
issa 4255 and 4285). The �rst peak is around 4455, and is followed by irregular points between4465 and 4475. The se
ond is around 4730. This region, between abs
issa 4450 and 4800, has a largeproportion of irregular points: 12 per
ent of its points have an exponent smaller than 0.15. This is threetimes the proportion observed in the whole log. In addition, this area is the one with highest density ofpoints with exponent smaller than 0.15 (we ex
lude in these 
al
ulations the �rst and last points of the log,be
ause of border e�e
ts).Although the analysis above is very 
rude, it shows that estimating the H�older regularity based on amodelling with a GMBM yields interesting insights on the data.
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Figure 7: Logarithm of the Nikkei225 index during the period 01/01/1980 to 05/11/2000A
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