Adaptive Design of Sampling Directions in Diffusion Tensor MRI and Validation on Human Brain Images

Emmanuel Caruyer 1, 2 Rachid Deriche 1
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : Diffusion tensor reconstruction is made possible through the acquisition of several diffusion weighted images, each corresponding to a given sampling direction in the Q-space. In this study, we address the question of sampling efficiency, and show that in case we have some prior knowledge on the diffusion characteristics, we may be able to adapt the sampling directions for better reconstruction of the diffusion tensor. The prior is a tensor distribution function, estimated over a given region of interest, possibly on several subjects. We formulate an energy related to error on tensor reconstruction, and calculate analytical gradient expression for efficient minimization. We validate our approach on a set of 5199 tensors taken within the corpus callosum of the human brain, and show improvement by an order of 10% on the MSE of the reconstructed tensor.
Type de document :
Communication dans un congrès
MICCAI Workshop on Diffusion Modelling and the Fiber Cup, Sep 2009, Londres, United Kingdom. 2009
Liste complète des métadonnées


https://hal.inria.fr/inria-00560054
Contributeur : Emmanuel Caruyer <>
Soumis le : jeudi 27 janvier 2011 - 09:51:59
Dernière modification le : jeudi 9 février 2017 - 15:25:59
Document(s) archivé(s) le : mardi 6 novembre 2012 - 12:30:38

Fichier

miccai09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00560054, version 1

Collections

Citation

Emmanuel Caruyer, Rachid Deriche. Adaptive Design of Sampling Directions in Diffusion Tensor MRI and Validation on Human Brain Images. MICCAI Workshop on Diffusion Modelling and the Fiber Cup, Sep 2009, Londres, United Kingdom. 2009. <inria-00560054>

Partager

Métriques

Consultations de
la notice

316

Téléchargements du document

111