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Experimental settings

• 3 datasets with 10 5-seconds signals

•Frame-by-frame processing with OLA reconstruction: 75% overlap, 64ms
frames, sine weighting windows

•Algorithms OMP, OMPc, L1, L1c are applied in each frame

•OMPc is compared to spline interpolation and Janssen’s algorithm [1]
based on autoregressive models.

•Algorithm parameters are fixed (tuned on a separate database)

•Dictionary D: redundant sine-windowed DCT

•SNR is computed on the corrupted samples only
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EXPERIMENTS: declipping audio signals

where M+ and M− are the projectors onto the subspace of positive and
negative clipped samples respectively.

Algorithm 4 (OMPc)
After the while loop in Alg. 1, refine xk as

xk ← arg min
x

‖y − D̃Ωk
x‖

2
s.t.

{
M+Dx ≥ θclip

M−Dx ≤ −θclip

ŝ ← DWMDxk

Algorithm 3 (L1c)
Using convex minimization, do

x̂ ← arg min
x

‖x‖1 s.t.






‖y − MDx‖2

2 ≤ θl2

M+Dx ≥ θclip

M−Dx ≤ −θclip

ŝ ← Dx̂

Since the problem (1) is ill-posed, additional a priori is required.

Sparsity assumption on audio data

s = Dx with






D ∈ R
N × R

KD (dictionary)

x ∈ R
KD (sparse coefficients)

‖x‖0 ( N ≤ KD

(2)

Noiseless ideal estimation

x̂ ! arg min
x

‖x‖0 s.t. y = MDx(3)

Inpainting algorithms

Algorithm 1 Inpainting with l1-minimization (L1)
Using convex minimization, do

x̂ ← arg min
x

‖x‖1 s.t. ‖y − MDx‖2

2 ≤ θl2

ŝ ← Dx̂

Algorithm 2 OMP-based inpainting (OMP)

Dictionary D̃ =
[
d̃1, . . . , d̃KD

]
← M × D× W−1

MD (WMD: diag. matrix of norms of MD columns)

Residual r0 ← y

Iteration counter k ← 1, support set Ω0 ← ∅
while k ≤ Kmax AND ‖rk‖2 ≥ θOMP do

Select atom: j ← arg maxj | < rk−1, d̃j > |
Update support Ωk ← Ωk−1 ∪ j
Update current solution xk ← arg minx ‖y − D̃Ωk

x‖
2

Update residual rk ← y − D̃Ωk
xk

Increment iteration counter k ← k + 1
end while
ŝ ← DWMDxk

Specific inpainting algorithms for restoring clipped signals
→ Constrain the restored samples to be beyond the clipping threshold θclip

PROPOSED APPROACH: audio inpainting using sparse
representations

Audio inpainting scheme: an inverse problem where

•a set of reliable audio data y is observed,

•one must estimate the remaining missing or highly corrupted data.

→ A unified scheme covering existing subproblems referred to as interpolation,
extrapolation, imputation, (bandwidth) extension.

Formulation: estimate the original data s from y given M

y = Ms with






s ∈ R
N

y ∈ R
N−M

M ∈ R
N−M × R

N

(1) and

M
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Several kinds of audio data: waveforms [1,2], transforms or mid-level
representations [3].

A number of applications: removing clicks in old recordings, declipping, packet
loss concealment in VoIP or P2P networks, bandwidth extension, recovery of TF
coefficients masked by interfering sources/noise.

...
Audio Inpainting

Inverse Problems

Signals

Interpolation

Extrapolation

Tr
ansfo

rm
s

Image
Inpainting

PROBLEM STATEMENT & APPLICATIONS: a unified scheme for existing tasks
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