A low-memory algorithm for finding short product representations in finite groups

Abstract : We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-rho approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence S of length d log_2 n, where n=#G and d >= 2 is a constant, we find that its expected running time is O(sqrt(n) log n) group operations (we give a rigorous proof for d > 4), and it only needs to store O(1) group elements. We consider applications to class groups of imaginary quadratic fields, and to finding isogenies between elliptic curves over a finite field.
Type de document :
Article dans une revue
Designs, Codes and Cryptography, Springer Verlag, 2011, <10.1007/s10623-011-9527-8>
Liste complète des métadonnées

https://hal.inria.fr/inria-00560256
Contributeur : Gaetan Bisson <>
Soumis le : jeudi 27 janvier 2011 - 18:09:09
Dernière modification le : jeudi 22 septembre 2016 - 14:31:14

Identifiants

Collections

Citation

Gaetan Bisson, Andrew V. Sutherland. A low-memory algorithm for finding short product representations in finite groups. Designs, Codes and Cryptography, Springer Verlag, 2011, <10.1007/s10623-011-9527-8>. <inria-00560256>

Partager

Métriques

Consultations de la notice

76