
HAL Id: inria-00560400
https://hal.inria.fr/inria-00560400

Submitted on 28 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Catalog Based Representation of 2D triangulations
Luca Castelli Aleardi, Olivier Devillers, Abdelkrim Mebarki

To cite this version:
Luca Castelli Aleardi, Olivier Devillers, Abdelkrim Mebarki. Catalog Based Representation of 2D
triangulations. International Journal of Computational Geometry and Applications, World Scientific
Publishing, 2011, 21 (4), pp.393-402. <10.1142/S021819591100372X>. <inria-00560400>

https://hal.inria.fr/inria-00560400
https://hal.archives-ouvertes.fr

CATALOG-BASED REPRESENTATION OF

2D TRIANGULATIONS
∗

Luca Castelli Aleardi † Olivier Devillers ‡

Abdelkrim Mebarki §

Abstract

Several Representations and Coding schemes have been proposed to
represent efficiently 2D triangulations. In this paper we propose a new
practical approach to reduce the main memory space needed to repre-
sent an arbitrary triangulation, while maintaining constant time for some
basic queries. This work focuses on the connectivity information of the
triangulation, rather than the geometric information (vertex coordinates),
since the combinatorial data represents the main part of the storage. The
main idea is to gather triangles into patches, to reduce the number of
pointers by eliminating the internal pointers in the patches and reducing
the multiple references to vertices. To accomplish this, we define and use
stable catalogs of patches that are closed under basic standard update
operations such as insertion and deletion of vertices, and edge flips. We
present some bounds and results concerning special catalogs, and some
experimental results that exhibits the practical gain of such methods.

1 Introduction

The triangulation is the basic data structure in a large spectrum of application
domains, ranging from geometric modeling, to finite elements and interpola-
tion schemes. This data structure has been widely studied from different points
of view, and several schemes have been recently proposed for representing tri-
angular meshes. One can use classical Half-Edge-Based representation[10], in
which the triangulation is perceived as a set of half-edges. Each half-edge is
represented at least with one of its incident vertices, the opposite half-edge,
and the previous (or the next) half-edge in the same incident face. Moreover,
each vertex stores a reference to an incident half-edge, which yields a global
storage cost of 19n references for a triangulation of n vertices. In the Face-
Based representation[3], the key objects represented in the triangulation are its
faces (triangles). Each face maintains references to its three vertices, and to its

∗This work has been supported by the french ”Aci Masse De Données” Program, via the
Geocomp Project, http://www.lix.polythechnique.fr/∼schaeffe/GeoComp

†Laboratoire d’Informatique, École Polytechnique, 91128 Palaiseau cedex, France. amtur-
ing@lix.polytechnique.fr

‡INRIA, BP 93, 06902 Sophia Antipolis cedex, France. Olivier.Devillers@inria.fr
§INRIA, BP 93, 06902 Sophia Antipolis cedex, France. abdelkrim.mebarki@gmail.com.

Currently Oran University, Algeria

1

Figure 1: Representing triangulations using stable catalogs gathers triangles into

patches to reduce multiple references : leftmost: The basic triangulation ; middle :

The same triangulation coded using Quad-Triangle catalog ; rightmost : The same

triangulation coded using 3-patches catalog.

three neighbors. In addition, each vertex maintains a reference of an incident
face, hence representing a triangulation with n vertices requires 13n references.
These structures allow an efficient navigation over the triangulation: standard
adjacency queries (visiting neighbors), and incident queries (testing incidence
between faces, edges and vertices), are all supported in O(1) time.

From the encoding point of view, many solutions have been developed for
compression purpose, mainly for triangular meshes. In this case, the triangu-
lation is just implicitly encoded (hence there is no actual data structure), and
there does not exist an efficient way to access to the stored data without uncom-
pressing the whole code. From the information theory point of view, we know
that representing an arbitrary planar triangulation requires 3.24 bpv (bits per
vertex), and a linear time optimal encoding has been recently introduced[13]
by Poulalhon and Schaeffer. On the practical side, several efficient compression
schemes have been proposed, achieving very interesting bit rates, especially in
the case of regular meshes[1]. Beyond the usual representation schemes (Half-
Edge based and Face based), some compact representations were proposed to
reduce the memory cost. Star vertices[9] is proposed by Kallmann and Thal-
mann. It is a Vertex-Based representation: each vertex handles a list of all
of its adjacent vertices (the vertex stores the size of this list), resulting in 6n
references plus n integers (sizes of lists) to represent the whole triangulation.
However, the internal structure no longer has an explicit representation of faces,
and queries cost time is proportional to the degree of the involved vertex. In
a recent work [7], Gurung and Rossignac recently propose a new compact data
structure for triangle meshes requiring 6n references: their approach is based
on the Corner Table representation and exploits a reordering of the triangles.
This makes their structure essentially static and, moreover, the access opera-
tor to vertices requires more than constant time (the time is proportional to
the degree of a vertex). Blandford et al.[2] proposed a compact data structure
for representing simplicial meshes, requiring in practice 40 bpf (bits per face).
The representation does admit an Edge-based or Vertex-based representation,
providing basic update operations and standard local navigation between trian-
gles (performing these operations takes O(1) time for the case of meshes with
bounded vertex degree). To gain in memory, difference vertex labels are used

2

instead of real pointers, and a preprocessing step consisting of relabelling ver-
tices, for reducing the differences, is needed. This approach takes advantage of
properties of graphs with small separators and require some assumptions on the
input data.

Paper’s contribution

In previous papers, we have proposed an optimal way of representing a trian-
gulation of n points using 3.24 n bits[5, 6], with an additional storage which is
asymptotically negligible (in the case of a triangulation of a topological sphere;
for the triangulation bounded by a polygon of arbitrary size the cost is 2.17 bits
per triangle). The idea is to gather triangles in tiny patches of size between
logn
12

and logn
4

, and to introduce a graph of patches to describe adjacency rela-
tions between them. Each patch is then represented by a reference to a catalog,
consisting of all different tiny patches of size less than logn

4
. The whole size

of all references to the catalog gives the dominant term of 3.24 bpv, while the
representation of the graph of patches requires a negligible amount of space.

Unfortunately this negligible term is of the form O
(

n log logn
logn

)

with some non-

negligible constant which makes the approach essentially of theoretical interest.
Nevertheless, the general idea is interesting and can be used in practice with
some simplifications and this is the object of the present paper, which presents
some non-asymptotical results based on the two following remarks:

1– Even if not negligible, the incidence graph of patches is still smaller
than the incidence graph of original triangles, allowing to reduce the memory
requirements.

2– logn
12

is very small (log 70billions
12

= 4) it would be interesting to study in
detail the composition of small fixed catalogs suitable for our purpose.

In the sequel we propose some catalogs and evaluate in detail the amount
of storage needed for representing triangulations using this approach. The im-
plementation shows that the expected improvements are actually obtained in
practice.

2 Definitions

A Catalog C is a collection {t1, . . . , tp} of planar triangulations with a simple
boundary of arbitrary size, called patches (the ti are called tiny triangulations in
previous papers[5, 6]). A stable catalog for a given operation is a catalog, where
the result of each update operation applied to a triangulation formed by one or
several patches of the catalog is either included in the catalog, or decomposable
(within a restricted neighborhood) to some elements of the catalog. The interest
of such a catalog is that a triangulation T could be represented with a disjoint
union of patches in C: T =

⋃

j∈J tji (1 ≤ ji ≤ p). Examples of stable catalogs
are shown in Figure 2. A catalog C is minimal if no patch ti can be obtained as
the disjoint union of other patches in C.

In this paper, we aim to support the insertion/deletion of degree-3 vertices
and the edge flip as update operations.

Now one may ask, given a parameter k, how to find a minimal catalog C
whose patches have each at least k triangles. We may proceed as follows:

3

C‘1

C1

C2

C‘2 C3

Figure 2: Five stable catalogs for the elementary operations: insertion and deletion

of degree-3 vertex and edge flip. (1) The trivial catalog with only one triangle C1 (2)

Triangle-Quad catalog C
′
1 (3) The minimal catalog with at least 2 triangles/patch C2

(4) A non-minimal catalog with at least 2 triangles/patche C′
2 (5) The minimal catalog

with at least 3 triangles/patch C3.

Firstly, the catalog should contain all of the patches with k triangles. Also,
it includes all of the combinations with between k + 1 and 2k − 1 triangles,
since there is no way to represent a triangulation containing less than 2k − 1
triangles with only patches of k triangles. Then, we have to investigate all of
the configurations produced when applying an update operation on the patches
of the catalog. Whenever we obtain a configuration that is not decomposable
into elements of the catalog C, we add it to C.

3 Simple Catalogs

In this section we present some simple catalogs, provided with upper bounds
on the memory requirements of our structure, based on basic combinatorial as-
sumptions. The first trivial catalog C1 is just composed of one triangulation
having a single triangle and yields to the usual representation using 13n refer-
ences.

3.1 The Triangle-quad catalog

The first non-trivial catalog C′

1 is composed of two basic elements: triangles and
quadrangles. It is clear that C′

1 is stable for the update operations considered
above, but not minimal.

The triangulation is then represented by two sets, one storing the list of tri-
angles, and one for the quads. The triangle representation remains unchanged:
6 references are required (3 for vertices and 3 for neighbors). For each quad-
rangle only 4 references to vertices and 4 to neighbors are needed, which makes
save 2 references over each triangle converted into a quadrangle. The way of a

4

quad is triangulated may be implicitly represented by numbering the vertices
in the quad, i.e. by convention the quad diagonal always join vertices 1 and 3.

The gain in space is then proportional to the number of constructed quad-
rangles. The maximum we can obtain is 9n references for a triangulation of n
points (for a quadrangulation). However, it is not always feasible to construct
a triangulation only with quadrangles.

3.1.1 Static representation

In the static case we assume that the triangulation is entirely constructed: it
only remains to get a partition into patches (as triangles and quads), as required
by our scheme. Several approaches have been proposed to convert triangula-
tions to quadrangulations[8, 14], or create a quadrangulation from an input set
of points[15]. In general, there is no obvious way to guarantee that an arbitrary
triangulation could be converted to a quadrangulation. This is even impossible
in some cases (when the size of the boundary is odd for example[4]). Neverthe-
less, it is always possible to convert a triangulation of a topological sphere to
a quadrangulation, since Petersen’s theorem[12] guarantees that each 3-regular
bridgeless connected graph has a complete matching. Using this theorem on the
dual graph gives that all triangles can be gathered in quadrangles.

3.1.2 Dynamic representation

In the dynamic case we allow update operations on the triangulation, namely
vertex insertion/deletion and edge flip. To keep the update time constant, we
require that the subdivision of patches is decided locally which prevents us from
using the static result.

Lemma 1 Let be T a planar triangulation with n vertices. Then an explicit

Face-based representation using triangles and quads requiring less than 10.6n
references can be maintained dynamically.

Proof. We may assume we are given a decomposition of T such that there
is no pair of adjacent triangles (since adjacent triangles can be gathered to
form a quadrangle). This property can easily be maintained under the update
operations, indeed after each update, we verify locally the neighbors of each
involved triangle and if another triangle is found we create a quad (more details
can be found in [11]).

Let t and q denote respectively the number of triangles and quadrangles in
the decomposition of T , and b denote the number of edges on the boundary.
The total number of original triangles in T is

2n− b− 2 = t+ 2q. (1)

The number edges of T is known to be 3n− 3− b so

3n− b− 3 = eint + etr/quad + equad/quad (2)

where eint is the number of edges internal to a quadrangle (diagonals), etr/quad
is the number of edges shared by quadrangles and triangles, and equad/quad is

5

the number of edges shared by two quads; since triangles are not adjacent, there
is no other kind of edges. We have eint = q and etr/quad = 3t, thus

equad/quad = 3n− 3t− q − 3− b ≥ 0. (3)

Using 1 and 3, we get the following:

q >
3

5
n−

2

5
b+

3

5
. (4)

That means that we have at most 4
5
n − 1

5
b − 6

5
triangles. When the boundary

size is small compared to n, the triangulation can be represented with about
53
5
n = 10.6n references, instead of 13n in the basic representation, inducing a

saving of 19%. �

3.1.3 On the size of references

In the classical representation there are 2n triangles and n vertices; hence, a
vertex reference needs log n bits and a triangle reference 1 + log n bits. For
neighboring relation between triangles, we may want to add to the reference an
index in {0, 1, 2} to be able to find easily the reciprocal references; this yields
to an 3 + log n bits cost per reference. For a triangulation represented with the
triangle/quad catalog described above, we have t ≤ 4

5
n and q ≤ n; hence, a

triangle or quad reference use log n bits, but we must add to it one bit to decide
if it is a triangle or a quad, and 2 bits for the reciprocal references as previously.
All together a face reference cost 3 + log n bits in both cases.

3.2 Catalog with at least 2-triangles per patch

3.2.1 Stable catalog

First, we consider the minimal catalog C2 with at least 2 triangles per patch.
This catalog is drawn in Fig. 2. In a representation using C2, it is plain to
observe that the number of patches is at most n and that we save at least two
references per triangle going from the usual 13n references to 9n references and
saving 31% of the memory.

Lemma 2 Let be T a planar triangulation with n vertices. Then an explicit

Face-based representation using the minimal stable catalog C2 requiring less than

8.5n references can be maintained dynamically.

Proof. We may assume we are given a decomposition of T such that there
is no quadrangle adjacent to more than two other quadrangles.

In fact, if a quadrangle is adjacent to three other quadrangles, two of them
have to be incident to a vertex reached by a diagonal (Fig 3). Hence, we can
construct a pentagon using these quadrangles.

This property can be easily maintained under the update operations. Indeed,
after each update, we verify locally the neighbors of each involved quadrangle
and construct the maximum number of pentagons we can do.

Let q, p and h denote respectively the number of quadrangles, pentagons,
and hexagons in the decomposition of T , and b denote the number of edges on

6

Figure 3: Pentagons can be constructed when a quadrangle has two adjacent quad-

rangles incident to a vertex reached by a diagonal.

the boundary. To obtain the worst storage case, we consider that there is no
hexagon in the triangulation. The total number of triangles is

2n− b− 2 = 2q + 3p. (5)

The number of edges is known to be 3n, and is equal to

3n− b− 3 = eint + equad/quad + erem, (6)

where eint is the number of edges internal to the quadrangles and pentagons,
(diagonals) ; and erem is the sum of the edges shared by the pentagons and
those between pentagons and quads.

Since there are not three quadrangles adjacent to the same quadrangle,
equad/quad is bounded by 2q/2, and hence erem is at least 2q, thus :

erem = 3n− 2q − 2p− b− 3 ≥ 2q. (7)

Using 5 and 7, we get

p >
1

4
n−

1

4
b−

1

4
. (8)

That means that we have at most 5
8
n− 7

8
b− 5

8
quadrangles. The triangulation

can be represented with 17
2
n = 8.5n references, instead of 13n in the basic

representation, inducing a saving of 35%. �

3.2.2 Other catalog

An alternative is to use catalog C′

2 described on Fig. 2 which is not minimal.
In a way similar to what we have done with C1, we can require that two quads
are not adjacent. This is feasible since any two adjacent quadrangles can be
converted into a hexagon. In this case (assuming that there is no hexagons in
the worst case) we cannot get more than 5

11
n quadrangles. On the other hand,

we have at least 4
11
n pentagons, which yields, in the worst case, a storage cost

of 91
11
n = 8.27n, corresponding to a gain of 36% over the basic representation

(using the same counting argument as before).

3.2.3 On the size of references

For C′

2 there is less than 1
2
n faces of each kind, and thus −1+ log n bits to refer

to a face. We need some additional bits to distinguish the kind of the neighbor

7

(quad, pentagon or hexagon) and the index of the edge of it. Thus we have
4+ 5+ 6 = 15 cases which can be distinguished with 3 bits yieldings again to a
face reference of 3+ log n bits. For C2 the number of quads is less under control
and we need to use 4 + log n bits per face reference.

3.3 Minimal catalog with at least 3-triangles per package

Fig. 2 shows the minimal stable catalog C3 for the update operations with no
less than three triangles per patch. This catalog contains triangulations having
between 3 and 7 triangles, whose boundary has size between 5 and 9. Hep-
tagons, octagons and enneagons are represented respectively with 14, 20 and 24
references. This produces respectively gains of 16

5
, 10

3
and 24

7
over each triangle

converted into one of these patches. The worst case cost for this catalog occurs
when all the patches are pentagons. In this case, the global storage cost of
the triangulation is 23

3
n = 7.67n references, which is equivalent to 41% gain in

memory space over the basic representation.

4 Experimental Results

We have implemented the trivial catalog C1, the quad-triangle catalog C′

1, and
the minimal catalog including patches having at least 2 triangles per patch
C2. The experimental results shown in Table 1 are obtained by computing the
Delaunay triangulation, from uniform random distributions of points, adopting
an incremental algorithm. The triangulation is built incrementally, and the
patches are created in the same way. The Delaunay property is maintained by
propagating flips from the new inserted point. An optimization step is performed
after each insertion operation for the two catalogs C′

1 and C2: We look for
adjacent triangles to be converted into quadrangles for C1, and for quadrangle
strips that could be converted into pentagons or hexagons, in order to reduce the
number of quadrangles and pentagon strips and thus to maximize the number
of hexagons, for C2.

In term of software engineering, the use of catalogs to code triangulations
requires some intermediate levels between the storage level (containing the real
objects of the catalog which are elements of the catalog) and the user level (in
which only logical faces appear). In the case of C2 catalog, the Triangulation is
a quadruple container: the first one is for vertices; the second one is for quad-
rangles; the third one is for pentagons; and the fourth one is for hexagons. At
a higher level, the user manipulates faces, that are triangles, without worrying
about the internal representation. These details affect the time processing of
the triangulation in both steps: construction and manipulation (more details
are given in [11]).

5 Conclusion

In this paper, we have proposed a new representation for triangulations inspired
from previous theoretical work[6]. We describe several catalogs of tiny patches
that are stable under relevant update operations which can be used as patterns
to recognize in the triangulation. This allows us to avoid representing the details
of the connectivity inside a patch (since they are common to all patches of

8

10M of points
(20M of triangles)

Catalogs C1 C
′
1 C

′
1 with C2 C2 with

optimization optimization

Triangles 100% 40% 14% - -

Quadrangles - 60% 86% 60% 24%

Pentagons - - - 32% 35%

Hexagons - - - 8% 41%

Minimal connectivity
saving(%) - - 19% - 35%

Effective connectivity
saving(%) - 19% 27% 35% 40%

Memory 578 Mb 480 Mb 442 Mb 402 Mb 376 Mb

Total memory
saving(%) - 17% 24% 31% 35%

Timing 125 s 382 s 626 s 393 s 939 s

Table 1: First lines show the percentage of triangles belonging to each kind of trian-

gulation in the catalog. The minimal connectivity saving is the one computed in 3.

The effective connectivity saving uses the actual use of the catalog. The total memory

saving refers to the memory used by the program.

the same kind, and thus represented only once). The previous work[6] was
theoretically optimal but quite far of a practical application since it was very
complicated to implement and since the asymptotic optimal behavior is reached
for highly unrealistic size of triangulation. This work gives practical analysis
and experimental evidence that a simplified version of this work allows one to
reduce significantly the storage needed allowing a trade-off between time and
space needed by a triangulation.

References

[1] P. Alliez and C. Gotsman. Recent advances in compression of 3d meshes. In
N. Dodgson, M. Floater, and M. S. Springer-Verlag, editors, Advances in Mul-

tiresolution for Geometric Modelling, pages 3–26. Springer-Verlag, 2005.

[2] D. K. B. G. E. Blelloch D. E. Cardoze C. Kadow. Compact representations of
simplicial meshes in two and three dimensions. Internat. J. Comput. Geom. Appl.,
15:3–24, 2005.

[3] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangula-
tions in CGAL. Comput. Geom. Theory Appl., 22:5–19, 2002.

[4] P. Bose and G. Toussaint. Characterizing and efficiently computing quadrangu-
lations of planar point sets. Comput. Aided Geom. Des., 14(8):763-785,1997.

[5] L. Castelli Aleardi, O. Devillers and G. Schaeffer. Succinct representation of
triangulations with a boundary. In Proc. of WADS 2005, p. 134-145, 2005.

[6] L. Castelli Aleardi, O. Devillers and G. Schaeffer. Succinct representations of
planar maps. Theoretical Computer Science, 408:174–187, 2008.

[7] T. Gurung and J. Rossignac. SOT: compact representation for tetrahedral meshes.
In Proc. of Symp. on Solid and Physical Modeling, p. 79-88, 2009.

9

[8] E. Heighway. A mesh generator for automatically subdividing irregular polygons
into quadrilaterals. In IEEE Transactions on Magnetics, , 19(6):2535–2538, 1983.

[9] M. Kallmann and D. Thalmann Star-vertices: a compact representation for planar
meshes with adjacency information J. Graph. Tools, 6(1):7-18, 2001.

[10] L. Kettner. Using generic programming for designing a data structure for poly-
hedral surfaces. Computational Geometry – Theory and Applications, 13:65–90,
1999.

[11] A. Mebarki. Implantation de structures de données compactes pour les triangula-

tions. PhD thesis, Université de Nice-Sophia Antipolis, France, 2008.

[12] J. Petersen. Die Theorie der regularen Graphs (The theory of regular graphs).
Acta Mathematica, 15:193– 220, 1891.

[13] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations.
Algorithmica, 46:505–527, 2006.

[14] S. Ramaswami, P.A. Ramos and G.T. Toussaint. Converting triangulations to
quadrangulations. Comput. Geom. Theory & Applications 9(4):257-276, 1998.

[15] G. Toussaint. Quadrangulations of planar sets. In Proc. 4th Workshop Algorithms

Data Struct., Lecture Notes Comput. Sci., 955:218–227. Springer-Verlag, 1995.

10

