
HAL Id: inria-00561619
https://inria.hal.science/inria-00561619

Submitted on 14 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Step-wise Approach for Integrating QoS throughout
Software Development

Stéphanie Gatti, Emilie Balland, Charles Consel

To cite this version:
Stéphanie Gatti, Emilie Balland, Charles Consel. A Step-wise Approach for Integrating QoS through-
out Software Development. FASE’11: Proceedings of the 14th European Conference on Fundamental
Approaches to Software Engineering, Mar 2011, Sarrebruck, Germany. pp.217-231. �inria-00561619�

https://inria.hal.science/inria-00561619
https://hal.archives-ouvertes.fr

A Step-wise Approach for Integrating QoS

throughout Software Development

Stéphanie Gatti and Emilie Balland and Charles Consel

Thales Airborne Systems / University of Bordeaux / INRIA, France
first-name.last-name@inria.fr

Abstract. When developing real-time systems such as avionics soft-
ware, it is critical to ensure the performance of these systems. In gen-
eral, deterministic Quality of Service (QoS) is guaranteed by the execu-
tion platform, independently of a particular application. For example,
in the avionics domain, the ARINC 664 standard defines a data net-
work that provides deterministic QoS guarantees. However, this strategy
falls short of addressing how the QoS requirements of an application get
transformed through all development phases and artifacts. Existing ap-
proaches provide support for QoS concerns that only cover part of the
development process, preventing traceability.

In this paper, we propose a declarative approach for specifying QoS re-
quirements that covers the complete software development process, from
the requirements analysis to the deployment. This step-wise approach is
dedicated to control-loop systems such as avionics software. The domain-
specific trait of this approach enables the stakeholders to be guided and
ensures QoS requirements traceability via a tool-based methodology.

Keywords: Quality of Service, Domain-Specific Design Language, Tool-Based
Development Methodology, Generative Programming.

1 Introduction

Non-functional requirements are used to express the quality to be expected
from a system. For real-time systems such as avionics, it is critical to guarantee
this quality, in particular time-related performance properties. For example, the
avionics standard ARINC 653 defines a Real-Time Operating System (RTOS)
providing deterministic scheduling [3] and thus ensuring execution fairness be-
tween applications. Another example is the ARINC 664 that defines Avionics Full
DupleX switched Ethernet (AFDX), a network providing deterministic Quality
of Service (QoS) for data communication [4]. In this domain, deterministic QoS
is generally ensured at the execution platform level (e.g., operating systems, dis-
tributed systems technologies, hardware specificities), independently of a partic-
ular application. When addressing the QoS requirements of a given application,
these platform-specific guarantees are not sufficient.

2 Stéphanie Gatti and Emilie Balland and Charles Consel

There exist numerous specification languages to declare QoS requirements
at the architectural level [1]. Initially, these languages were mostly contempla-
tive. Several recent approaches also provide support to manage specific aspects
(e.g., coherence checking [10], prediction [20], monitoring [17]). These approaches
are generally dedicated to a particular development stage, leading to a loss of
traceability (i.e., the ability to trace all the requirements throughout the devel-
opment process). In the avionics certification processes [11,12,5], traceability is
mandatory for both functional and non-functional requirements. The functional
traceability is usually ensured by systematic development methodologies such as
the V-model that guides stakeholders from the requirements analysis to the sys-
tem deployment. Similarly, QoS should be fully integrated into the development
process as it is a crosscutting concern [19].

In this paper, we propose a step-wise QoS approach integrated through all
development phases and development artifacts. This approach is dedicated to
control-loop systems. Control-loop systems are systems that sense the external
environment, compute data, and eventually control the environment accordingly.
This kind of systems can be found in a range of domains, including avionics,
robotics, and pervasive computing. For example, in the avionics domain, a flight
management application is a control-loop system that (1) senses the environment
for location and other navigation information, (2) computes the trajectory and
(3) modifies the wings configuration accordingly. The contributions of this paper
can be summarized as follows.

A step-wise QoS approach dedicated to control-loop systems. We propose a step-
wise approach that systematically processes QoS requirements throughout soft-
ware development. This integrated approach is dedicated to control-loop sys-
tems, allowing to rely on a particular architectural pattern and thus enhancing
the design and programming support level for non-functional aspects. In this pa-
per, we focus on time-related performance but the approach could be generalized
to other non-functional properties (e.g., CPU or memory consumption).

Requirements Traceability. In the avionics domain, the traceability of both func-
tional and non-functional requirements is critical [11]. In our approach, the trace-
ability is ensured by the systematic propagation of constraints derived from the
QoS declarations and applied to each development step.

A tool-based methodology. Our approach has been integrated into DiaSuite, a
tool-based development methodology dedicated to control-loop systems [8]. Dia-
Suite is based on a dedicated design language that we have enriched with time-
related performance properties. This non-functional extension has been used to
offer verification and programming support at each development stage.

Experiments in the avionics domain. Our approach has been applied to the de-
velopment of various avionics applications, including a flight management system
and a collision avoidance system. These experiments have demonstrated that our
step-wise approach can effectively guide the avionics certification process.

Integrating QoS throughout Software Development 3

2 Background & Working Example

This section presents a working example used throughout this paper. This pre-
sentation is done in the context of the DiaSuite development methodology [8].
We choose a control-loop system from the avionics domain: a simplified version
of an aircraft guidance application, controlling the trajectory of an aircraft by
correcting the configurations of ailerons.

2.1 Overview of the DiaSuite Approach

The DiaSuite approach is a tool-based methodology dedicated to control-loop
systems. DiaSuite provides support for each development stage (from design to
deployment) as depicted in Figure 1.

Development

Stage

Tool-based

Support

Architecture Design Implementation Test

DiaSpec Language
Programming

Framework Generator

Pervasive Computing

2D Simulator

Deployment

 Back-ends

(e.g., RMI, SIP)

Fig. 1: The DiaSuite tool-based development process

During the design stage, the DiaSpec language allows to design an application
using an architectural pattern dedicated to control-loop systems. This specific
architectural pattern comprises four layers of components: (1) sensors obtain
raw data from the environment; (2) contexts process data and provide high-
level information; (3) controllers use this information to control actuators; (4)
actuators impact the environment. The sensors and actuators are the two facets
of entities corresponding to devices, whether hardware or software, deployed in
an environment.

This specification guides the developer throughout the development process.
The DiaSpec compiler generates a Java programming framework dedicated to
the application. This framework precisely guides the programmer during the
implementation stage by providing high-level operations for entity discovery and
component interactions. Based on these declarations, a simulator dedicated to
pervasive computing environments is used to test and simulate the system. Then,
the DiaSuite back-ends enable the deployment of an application by targeting a
specific distributed systems technology such as RMI, SIP or Web Services.

2.2 Aircraft Guidance Application

The aircraft guidance application uses two sensors for computing the actual
aircraft trajectory: the inertial reference unit, providing the localization, and
the air data unit, supplying such measurements as the airspeed and the angle
of attack. The synchronization of both information sources allows to compute

4 Stéphanie Gatti and Emilie Balland and Charles Consel

the actual aircraft trajectory. This trajectory is then compared to the flight
plan entered by the pilot and used for controlling and correcting ailerons by the
automatic pilot, if necessary.

AutomaticPilot

ActualTrajectory

AirDataUnit
airData

Guidance

Controller

controlAilerons

TrajectoryCorrection

Sensor Layer

Context Layer

Controller Layer

Actuator Layer

FlightPlanDataBase
plannedTrajectory

InertialReferenceUnit
localization

Fig. 2: A data-flow view of the aircraft guidance application

Following the DiaSuite development methodology, the first step identifies the
devices involved in the aircraft guidance application using a domain-specific tax-
onomy of entities, as can be found in the aeronautics literature. In this example,
we have identified four entities: the inertial reference unit, the air data unit, the
flight plan database and the automatic pilot. The second step of the methodol-
ogy consists of designing the application using DiaSpec. The system description
is illustrated in Figure 2, making explicit the four component layers of DiaSpec.

In the example, the InertialReferenceUnit sensor provides the current
localization of the aircraft. The AirDataUnit sensor supplies several air data
such as the airspeed and the angle of attack. All these data are sent to the
ActualTrajectory context that is responsible for computing the current trajec-
tory of the aircraft. This information is then sent to the TrajectoryCorrection
context component. When receiving a new trajectory, the TrajectoryCorrection
component gets the planned trajectory (from the flight plan initially entered
by the pilot) from the FlightPlanDatabase component. By comparing these
information sources, it computes trajectory corrections that are sent to the
GuidanceController component, responsible for controlling ailerons through
the AutomaticPilot actuator.

The avionics certification process requires this trajectory readjustment to
be time-bounded. In the next section, we show how the DiaSuite approach,
enriched with time-related properties, can guide the development of such critical
applications.

3 QoS throughout Software Development

This section presents how QoS requirements can be systematically processed
throughout software development.

Integrating QoS throughout Software Development 5

3.1 Requirements Analysis and Functional Specification

In software development methodologies, the requirements analysis stage identi-
fies the users’ needs. Then, the functional specification stage identifies the main
functionalities to be fulfilled by the application to satisfy the users’ requirements.
In the avionics domain, each of these functionalities is generally associated to
a functional chain [26], representing a chain of computations, from sensors to
actuators.

The aircraft guidance system has a unique functional chain, whose execu-
tion should take less than 3 seconds, according to our expert at Thales Airborne
Systems. In avionics, such time constraints, directly associated to a specific func-
tional chain, is referred to as Worst Case Execution Time (WCET)1. If the design
process involves refinement steps such as the identification of functional chain
segments, the WCETs can be further refined. For example, we can identify a
functional chain segment corresponding to the computation of the actual tra-
jectory (from the sensors feeding the ActualTrajectory context). This chain
segment can be reused in other applications, e.g., displaying the actual trajec-
tory on the navigation display unit. According to our expert, this chain segment
must not take more than 2 seconds to execute.

3.2 Architecture Design

During the architecture design stage, the functional chains are decomposed into
connected components. The architect can then refine the WCET of the functional
chain on time-related constraints at the component level.

In the DiaSuite architectural pattern, the data flow between two compo-
nents can be realized using two interaction modes: by pulling data (one-to-one
synchronous interaction mode with a return value) or by pushing data to event
subscribers (asynchronous publish/subscribe interaction mode). Pull interactions
are typically addressed by a response time requirement as is done in Web Ser-
vices [17]. Push interactions raise a need to synchronize two or more input events
of a component. This need is addressed by introducing a freshness requirement
on the input event values. This requirement is in the spirit of synchronization
skew in the multimedia domain [18]. In addition to the freshness constraint, we
define the bounded synchronization-time constraint that authorizes desynchro-
nization during a bounded time, avoiding diverging synchronization strategies.

Figure 3 shows the QoS contracts associated to each component in the flight
guidance application. The WCETs associated to the functional chain of the
aircraft guidance and to the trajectory computing chain segment are mapped
to the GuidanceController and ActualTrajectory components, respectively.
The WCET of the functional chain of the aircraft guidance is refined into (1)
a freshness constraint of 1 second between localization and airData with an
equal bounded synchronization-time constraint (since the WCET is not com-
patible with a longer desynchronization time); and (2) a response time of 100

1 This usage of WCET is only loosely related to the notion of WCET as documented
in the literature for hard real-time systems.

6 Stéphanie Gatti and Emilie Balland and Charles Consel

ActualTrajectory

AirDataUnit
airData

Guidance

Controller

AutomaticPilot
controlAilerons

TrajectoryCorrection

from plannedTrajectory {

 require response in 100 ms;

}

require WCET of 3 s

require WCET of 2 s;

from (localization, airData) {

 require freshness of 1 s;

 require synchronization before 1 s;

}

FlightPlanDataBase
plannedTrajectory

InertialReferenceUnit
localization

Fig. 3: Architecture of the working example, enriched with QoS contracts

milliseconds of FlightPlanDataBase. The WCET associated to the functional
chain of the aircraft guidance is translated into a QoS contract, attached to
GuidanceController as controllers are generally dedicated to a given functional
chain.

The QoS contracts are introduced as an extension of DiaSpec. Figure 4 shows
an extract from the DiaSpec specification.

context ActualTrajectory as Trajectory {
source localization from InertialReferenceUnit;
source airData from AirDataUnit;
qos {

from (localization , airData) {
require freshness of 1 s;
require synchronization before 1 s;

}
}

}

Fig. 4: DiaSpec declaration of the ActualTrajectory component

The ActualTrajectory component is declared with the context keyword,
and returns values of type Trajectory. This component processes two sources
of information: localization and airData. These sources are declared using
the source keyword that takes a source name and a class of entities. Then,
the QoS contract declared using the qos keyword defines freshness and synchro-
nization constraints between localization and airData. This domain-specific
approach guides the stakeholders when adding QoS requirements by automati-
cally enforcing the conformance between the QoS contracts and the functional
constraints.

3.3 Implementation

The DiaSuite approach includes a compiler that generates a dedicated program-
ming framework from a DiaSpec description. Our approach enriches this process

Integrating QoS throughout Software Development 7

by generating runtime-monitoring support from QoS declarations. At the imple-
mentation level, QoS requirements on components become runtime verifications
that rely on the communication methods of the generated programming frame-
work. Monitoring mechanisms are encapsulated into component containers that
ensure that the response time and the freshness requirements are respected.
The approach based on containers allows a separation of concerns between func-
tional and non-functional requirements because a container is only in charge of
intercepting calls for monitoring requirements, and forwarding the calls to the
functional component. If a QoS contract is violated, the container throws specific
exceptions ResponseTimeException or SynchronizationException. The treat-
ment of such exceptions is left to the developer. It may involve any number of
actions, including logging or reconfiguration [17]. DiaSuite provides declarative
support at the architectural level to design exceptional treatments [21], prevent-
ing the application to be bloated and entangled with error-handling code.

The code corresponding to the response time requirement is straightforward.
It is based on a timer that calculates the elapsed time between the request and
the response. The more elaborate part concerns the synchronization defined by
the automaton depicted in Figure 5. Suppose we want to synchronize data1 and
data2 values. When receiving the first data (S2 and S4 states), the container
activates the t and t’ timers for measuring respectively synchronization time
and freshness (t,t’:=0). While synchronization time is not reached (t<=ts), the
container waits for fresh data. If the other data is received before the freshness
time has elapsed, the container pushes both data to the functional component
(S5 final state). Otherwise, if the freshness is not respected (t’>tf) ,the data
is rejected. This is not considered as an error state since we authorize desyn-
chronization for a finite period. Thereby the container waits for new values (S3
state). If the synchronization time has elapsed (t>ts), the synchronization is
aborted and a SynchronizationException is thrown (error state).

S1

S2

t' > tf;

data1 rejected

data1 received;

t,t':=0

S5

S4

data2 received

data1 received

t > ts

data2 received;

t,t':=0

S3

data1 received;

t':=0

t' > tf;

data2 rejected
data2 received;

t':=0
t > ts

t > ts

S5

Fig. 5: Synchronization automaton

3.4 Deployment

Our approach offers support for predicting the performance of an application
by injecting deployment parameters, such as distributed systems technologies,

8 Stéphanie Gatti and Emilie Balland and Charles Consel

platform and hardware characteristics. By taking advantage of their QoS charac-
teristics (e.g., the guaranteed deterministic timing of the AFDX network [4]), it
is possible to refine the time-related requirements generated from the QoS dec-
larations, and thus to compare several deployment configurations. In particular,
it allows technologies to be selected according to their time-related properties.

This prediction tool takes numerical constraints generated from the QoS
declarations as input. Then, an external constraint solver [9] checks whether a
configuration respects the WCET of the functional chain and predicts constraints
to the other architectural elements. In the next section, we detail how these
numerical constraints are generated and propagated throughout the software
development process.

4 QoS Requirements Traceability

The requirements traceability is the guarantee for each requirement to be traced
back to its origin (i.e., a QoS declaration), by following its propagation in the
software development process. By generating numerical constraints from the QoS
declarations, our step-wise approach allows the traceability of QoS requirements
during software development. This approach is summarized in Figure 6.

Performance

Evaluation
Informal QoS

requirements

Requirement

Analysis

WCET on

functional chains

Functional

Specification

QoS contracts on

components

Architecture

Design

Monitoring

containers

Implementation Test

Mapping of the

WCET

in the architecture

QoS extension of

Diaspec

Monitoring

support

generation

Reuse of the

monitoring

support

QoS Requirements Traceability Verifier

QoS deployment

specifications

Deployment

Prediction tool

Fig. 6: Development process of Figure 1 extended with QoS concerns

At each development step, QoS declarations are translated into numerical
constraints that are fed to the verifier of requirements traceability. This verifier
propagates these numerical constraints between the development stages, and
checks whether no new constraint invalidates constraints from preceding stages.
In this section, we detail how these numerical constraints are generated and
propagated.

4.1 From Functional Specification to Architecture Design

From functional specification to architecture design, requirements on functional
chains (or chain segments) are refined into requirements on components. By
generating numerical constraints, it is possible to ensure that the refinement
does not invalidate requirements from the previous stage. Doing so amounts
to checking whether the constraint system is still satisfied. The generation of

Integrating QoS throughout Software Development 9

these numerical constraints is inspired by the Defour et al.’s work [10] and relies
on the DiaSuite architectural pattern. It consists of automatically translating
the QoS contracts presented in Section 3 into numerical equations specifying
time relationships between the components. For example, let us detail how these
equations are generated for the aircraft guidance application.

WCET on functional chains and chain segments. The functional chain that con-
trols the trajectory has a WCET of 3 seconds, represented by the contract
attached to GuidanceController. This leads to the following numerical con-
straints:

T_wcet_GuidanceController <= 3;

T_wcet_GuidanceController =

T_provide_GuidanceController +

T_com(GuidanceController,AutomaticPilot);

The first equation represents the WCET associated to GuidanceController.
The second equation refines this functional chain into a sequence of two func-
tions: one for computing orders (the GuidanceController chain segment), and
one for communicating these orders to the automatic pilot. Thus, the global
time is the sum of the T_provide_GuidanceController time and the commu-
nication time between GuidanceController and AutomaticPilot (denoted by
the T_com function). The T_provide_GuidanceController time corresponds to
the chain segment between the moment when the InertialReferenceUnit or
AirDataUnit sensor sends a value and the moment when GuidanceController

issues orders to AutomaticPilot.
Similarly, the T_provide_GuidanceController time can also be refined into

the time of GuidanceController to compute orders, the communication time
between TrajectoryCorrection and GuidanceController, and the global time
associated to the chain segment of TrajectoryCorrection:

T_provide_GuidanceController =

T_provide_TrajectoryCorrection +

T_com(TrajectoryCorrection,GuidanceController) +

T_compute_GuidanceController;

Response Time. The time associated to TrajectoryCorrection can be refined
with respect to its relation with ActualTrajectory and FlightPlanDataBase:

T_provide_TrajectoryCorrection =

T_provide_ActualTrajectory +

T_com(ActualTrajectory,TrajectoryCorrection) +

2 * T_com(FlightPlanDataBase,TrajectoryCorrection)+

T_provide_FlightPlanDataBase +

T_compute_TrajectoryCorrection;

Between the ActualTrajectory and TrajectoryCorrection contexts, the
communication mode is of type publish/subscribe and thus can be decomposed

10 Stéphanie Gatti and Emilie Balland and Charles Consel

into T_provide_ActualTrajectory corresponding to the chain segment for com-
puting the trajectory and T_com(ActualTrajectory,TrajectoryCorrection)

corresponding to the communication time between these two contexts. Because
the plannedTrajectory source of the FlightPlanDataBase is accessed by pulling
the value in a synchronous manner, it is decomposed into the time to compute
the data (T_provide_FlightPlanDataBase) and the communication round-trip
(2 * T_com(FlightPlanDataBase,TrajectoryCorrection)) between the two
components, assuming the size of the request and the response fit within a MTU
(Maximum Transmission Unit).

Freshness and Bounded Synchronization Time. The QoS contract associated to
ActualTrajectory specifies freshness and bounded synchronization time be-
tween InertialReferenceUnit and AirDataUnit. In the worst case, the syn-
chronization takes the sum of the bounded synchronization time and the maxi-
mum time for receiving an event from InertialReferenceUnit or AirDataUnit.
This leads to the generation of the following constraints:

T_provide_ActualTrajectory <= 2;

T_synchronization <= 1;

T_provide_ActualTrajectory =

max(

T_provide_airData + T_com(AirDataUnit,ActualTrajectory),

T_provide_localization + T_com(InertialReferenceUnit,ActualTrajectory)) +

T_synchronization +

T_compute_ActualTrajectory;

The refinement of the numerical constraints and the checking of coherence at
each step ensures the coherence between all non-functional requirements. Each
numerical constraint is defined using Prolog IV [9], a constraint logic program-
ming language over real numbers, coupled with a real interval arithmetic solver
for checking the coherence of each refinement step.

4.2 From Architecture Design to Implementation

Monitoring support is generated from the non-functional specifications. Each
non-functional container is in charge of monitoring the time-related constraints
associated to a given functional component. Since QoS declarations at the design
level are used to generate the monitoring support, the traceability is automati-
cally ensured between the design and implementation stages. Moreover, as this
support is embedded into the programming framework, it is completely trans-
parent to the developer. Doing so prevents the developer from introducing errors
in the monitoring code. Specifically the DiaSuite exception mechanism allows to
separate the detection mechanism that is generated from the treatment code
that is implemented by the developer.

4.3 From Implementation to Deployment

During the deployment stage, the prediction tool is based on the numerical con-
straints generated from the QoS-extended DiaSpec specification, ensuring the

Integrating QoS throughout Software Development 11

traceability of the requirements. In the avionics domain, the execution plat-
forms offer deterministic QoS characteristics (e.g., the deterministic timing of
the AFDX network). Such information allows to refine the time-related con-
straints generated from a QoS declaration and to compare the performance of
several deployment configurations.

In the generated constraints, there are several numerical variables that de-
pend on the deployment. The T_com_<component_name> variables depend on
the communication mode. If the application is deployed on a non-distributed
platform, the communication time can be considered as null between applicative
components, simplifying the numerical constraints. If the application executes
on a distributed platform, the communication time between the applicative com-
ponents depends on the distributed systems technologies. In avionics, the most
commonly used network is the AFDX. The communication constraints can be
refined according to the AFDX bandwidth and the associated Bandwidth Allo-
cation Gap (BAG). Concerning the communication between applicative compo-
nents and devices, different sort of communication technologies can be used, such
as a serial link (e.g., ARINC429, RS422) that leads to different communication
times. The T_compute_<component_name> variables depend on the complexity
of the algorithm and the execution platform (e.g., CPU frequency and memory
access time). Finally, the T_provide_<data_sensed> variables depend on sensor
technologies (e.g., mechanical or LASER probes for air data).

For example, assume we enrich the system with a new functionality for dis-
playing the trajectory on the navigation display. We want to reuse the chain
segment computing the actual trajectory but with stronger QoS requirements,
leading to the constraint T_provide_ActualTrajectory <= 0.8. From all these
constraints, the prediction tool infers the following value range for the Air Data
Unit: 0 <= T_provide_airData <= 0.8. This constraint is propagated to the
stakeholders in charge of selecting the technologies for the execution platform.
In this situation, they will choose LASER probes whose performance is conform
with this constraint.

5 Towards Certification of Avionics Systems

Our approach has been applied to the design of several avionics applications,
including the flight management system, the aircraft guidance system, and the
traffic collision avoidance system. These experiments have shown that the Dia-
Suite methodology is well-suited for the development of avionics control-loop
systems. In this section, we discuss how our integrated QoS approach guides the
avionics certification process.

In avionics, aircrafts have to respect the Certification Specification (CS) stan-
dard to obtain the airworthiness certificate. CS proposes the classification of the
failure conditions: conditions impacting the aircraft and/or its occupants. They
depend on the flight phases (e.g., landing) and the environmental conditions.
Failure conditions are associated with a Design Assurance Level, indicating their
degree of criticality and safety objectives. To reach safety objectives, aeronau-

12 Stéphanie Gatti and Emilie Balland and Charles Consel

tical standards specify constraints on the development process (e.g., distribute
the development stages across several teams) and the testing process (e.g., struc-
tural and black-boxes tests). These constraints cover all the levels of a system,
including the software and hardware layers. Both functional and non-functional
requirements [22] have to be guaranteed, including performance concerns.

Modern avionics platforms such as the Integrated Modular Avionics (IMA)
allow to host several functions on the same platform [25]. The IMA approach in-
troduces different stakeholders in the development process. The system integrator

is the leading authority (generally, the airframer). The role of this stakeholder
is to integrate all IMA systems: the software applications, provided by the func-

tion suppliers, and the hardware systems, provided by the platform suppliers.
The integrator and suppliers play different roles in the certification process [12].
The system integrator specifies general constraints about all the systems at the
aircraft level. For example, this stakeholder defines the Worst Case Communi-
cation Time (WCCT) of the network, ensured by the AFDX technology [4], and
the WCET of the applications. These WCET requirements are passed on to the
function suppliers. To fulfill them, in turn, function suppliers produce specific
requirements for platform suppliers regarding issues such as time slots, CPU
power, memory capacity and throughput. To do so, the platform suppliers have
to provide the function suppliers with all the characteristics of this platform, in-
cluding WCET for core software services (e.g., drivers and health monitoring).

From the high-level WCET constraints delivered by the system integrator,
our approach guides the function suppliers in systematically specifying and re-
fining all the non-functional requirements during the development of the applica-
tion. Function suppliers can also use the generated monitoring support for vali-
dating the performance of their application. Furthermore, the prediction tool can
be helpful in determining an interval of timing on each deployment technologies
and passing these constraints on to the platform suppliers. The platform suppli-
ers are now responsible for giving applications the means to access input data
from the sources, and send output data to the actuators. Regarding constraints
issued by all the function suppliers, the platform supplier can use the prediction
tool for proposing a platform configuration that matches all their needs. Fi-
nally, the system integrator can use the generated monitoring support for both
controlling the applications in flight, and performing aircraft maintenance. In
doing so, information about the non-functional behavior of the application can
be logged in flight and the pilot can be alerted in case of unexpected behaviors.
The monitoring support can also be used on-ground for correcting errors. As this
support is entirely generated, it is sufficient to test and certify the generator for
guaranteeing the correctness of all future generated monitoring containers.

Requirements traceability is key to obtain avionics certification. Because the
role separation proposed by the IMA platforms leads to the collaboration of
several companies, requirements traceability has become significantly more chal-
lenging. The tool-based approach proposed in this paper can facilitate this certi-
fication process by offering support for propagating automatically QoS require-
ments between the stakeholders.

Integrating QoS throughout Software Development 13

6 Related Work

Among existing QoS specifications languages, some of them focus on performance
properties and already offer design and programming support. For example, in
the spirit of our approach, Defour et al. generate numerical constraints from
time-based requirements specified with the QoSCL language [10]. These con-
straints are not only used to check the requirements compatibility according to
the architecture, but also to predict the QoS from the number of instances of each
component. AlTurki et al. propose a real-time rewriting model backing a timing
specification language [2]. It allows them to verify various real-time properties
using the Maude rewriting engine. Krogmann et al. have set up a quantitative
performance prediction tool into the Palladio Component Model [20], allowing
architects to choose between different architectural designs. They define many
types of performance requirements that would be interesting for us to take into
account for critical systems (e.g., CPU). Bertolino et al. [6] also propose an-
other performance-based prediction approach that focuses on the assembling of
existing components. In contrast to our work, the above approaches are general-
purpose and are limited to the design phases of the development process.

Other approaches are domain-specific, for example dedicated to the specifica-
tion of real-time systems. As a result, they can offer better design and program-
ming support. For example, Fredriksson et al. propose a framework for leveraging
non-functional requirements (e.g., time and memory consumption) to build con-
trol systems components [15] and thus to predict the functional/non-functional
behavior of the composed system. Doose et al. formalize real-time systems as
a set of functionalities linked within timed communications and then verify
the time-coherency of the whole system using model-checking techniques [13].
Carcenac et al. also validate real-time systems according to the incremental spec-
ification of non-functional requirements [7]. Yet, these approaches only focus on
the validation of the systems.

In contrast, the approach of Robert et al. enables generating monitoring sup-
port from non-functional requirements, represented as exceptional transitions in
timed-automata [24]. In the same spirit, Duclos et al. [14] have proposed to
specify QoS requirements as aspects in the architectural models for providing
separation of concerns, monitoring these requirements at runtime. The approach
of Genssler et al. enables generating scheduling support based on QoS declara-
tions [16].

The above QoS approaches are dedicated to real-time systems and offer sup-
port at design time (e.g., prediction) and/or at runtime (e.g., monitoring). How-
ever, they are mostly dedicated to specific development stages and do not con-
sider the traceability of non-functional concerns through the software develop-
ment process.

To conclude, specifying non-functional requirements only at the architecture
level is not sufficient. As observed by Koziolek et al. [19], it is crucial to clearly
identify the stakeholders and the workflow between the functional development
and the non-functional layer. Towards this end, we propose a unified approach
that integrates QoS into the complete development process.

14 Stéphanie Gatti and Emilie Balland and Charles Consel

7 Conclusion

In this paper we have presented a step-wise approach integrating QoS concerns
through all phases of software development. This approach dedicated to control-
loop systems extends the DiaSuite tool-based methodology by offering support
for specifying, validating and monitoring time-related requirements. We have
shown that this domain-specific approach allows to guide the stakeholders in
systematically refining non-functional requirements and ensures requirements
traceability by generating numerical constraints. We have illustrated our ap-
proach in the avionics domain where such QoS requirements are critical.

We are currently working on a deeper evaluation of this approach with the de-
velopment of an autopilot application coupled to the FlightGear simulator [23].
This work will allow to leverage DiaSpec’s architectural support of error han-
dling [21] for treating the violation of a QoS contract at runtime. In particular,
we plan to show how the error handling support provided by DiaSpec can be used
to implement logging and reconfiguration treatments. This evaluation would also
help in refining the specification language (e.g., time constraints depending on
input parameters). Future work concerns the integration of this methodology
into the avionics certification process. In particular, we will need to certify our
tools and their associated development approach.

References

1. J. Ø. Aagedal. Quality of service support in development of distributed systems.
PhD thesis, University of Oslo, 2001.

2. M. AlTurki, D. Dhurjati, D. Yu, A. Chander, and H. Inamura. Formal specification
and analysis of timing properties in software systems. In Proceedings of the 12th
International Conference on Fundamental Approaches to Software Engineering,
volume 5503 of LNCS, pages 262–277. Springer, 2009.

3. ARINC 653, system partitioning and scheduling (Aeronautical Radio, Inc.), 2003.
4. ARINC 664, AFDX: Avionics Full DupleX switched ethernet (Aeronautical Radio,

Inc.), 2005.
5. ARP4754, certification considerations for highly-integrated or complex aircraft sys-

tems (SAE), 1996.
6. A. Bertolino and R. Mirandola. CB-SPE tool: putting component-based perfor-

mance engineering into practice. In Proceedings of the 7th International Symposium
on Component-Based Software Engineering, pages 233–248. Springer, 2004.

7. F. Carcenac and F. Boniol. A formal framework for verifying distributed embedded
systems based on abstraction methods. International Journal on Software Tools
for Technology Transfer, 8(6):471–484, 2006.

8. D. Cassou, B. Bertran, N. Loriant, and C. Consel. A generative programming
approach to developing pervasive computing systems. In Proceedings of the 8th In-
ternational Conference on Generative Programming and Component Engineering,
pages 137–146. ACM, 2009.

9. A. Colmerauer. Specifications of Prolog IV, 1996.
10. O. Defour, J.-M. Jézéquel, and N. Plouzeau. Extra-functional contract support in

components. In Proceedings of the 7th International Symposium on Component-
Based Software Engineering, pages 217–232. Springer, 2004.

Integrating QoS throughout Software Development 15

11. DO-178B, software considerations in airborne systems and equipment certification
(RTCA, Inc.), 1992.

12. DO-297, Integrated Modular Avionics (IMA) development guidance and certifica-
tion considerations (RTCA, Inc.), 2005.

13. D. Doose and Z. Mammeri. Polyhedra-based approach for incremental validation
of real-time systems. In Proceedings of the International Conference on Embedded
and Ubiquitous Computing, pages 184–193. Springer, 2005.

14. F. Duclos, J. Estublier, and P. Morat. Describing and using non-functional as-
pects in component-based applications. In Proceedings of the 1st International
Conference on Aspect-Oriented Software Development, pages 65–75. ACM, 2002.

15. J. Fredriksson, M. Tivoli, and I. Crnkovic. A component-based development frame-
work for supporting functional and non-functional analysis in control system de-
sign. In Proceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 368–371. ACM, 2005.

16. T. Genssler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Aré-
valo, B. Schönhage, P. O. Müller, and C. Stich. Components for embedded software:
the PECOS approach. In Proceedings of the Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems, pages 19–26. ACM, 2002.

17. R. B. Halima, K. Drira, and M. Jmaiel. A QoS-oriented reconfigurable middle-
ware for self-healing web services. In Proceedings of the 6th IEEE International
Conference on Web Services, pages 104–111. IEEE, 2008.

18. S. Jha and A. Seneviratne. Synchronization skew: a QoS measurement study. In
Proceedings of the Conference on Local Computer Networks, pages 77–78, 1999.

19. H. Koziolek and J. Happe. A QoS driven development process model for
component-based software systems. In Proceedings of the 9th International Sympo-
sium on Component-Based Software Engineering, pages 336–343. Springer, 2006.

20. K. Krogmann, C. M. Schweda, S. Buckl, M. Kuperberg, A. Martens, and
F. Matthes. Improved feedback for architectural performance prediction using
software cartography visualizations. In Proceedings of the 5th International Con-
ference on the Quality of Software Architectures, volume 5581 of LNCS, pages
52–69. Springer, 2009.

21. J. Mercadal, Q. Enard, C. Consel, and N. Loriant. A domain-specific approach to
architecturing error handling in pervasive computing. In Proceedings of the 25th
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity. ACM, 2010.

22. M. Paulitsch, H. Ruess, and M. Sorea. Non-functional avionics requirements. In
Proceedings of the 3rd International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, pages 369–384. Springer, 2009.

23. A. R. Perry. The FlightGear flight simulator. In Proceedings of the USENIX
Annual Technical Conference, 2004.

24. T. Robert, J.-C. Fabre, and M. Roy. On-line monitoring of real time applications
for early error detection. In Proceedings of the 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pages 24–31. IEEE, 2008.

25. C. B. Watkins and R. Walter. Transitioning from federated avionics architectures
to Integrated Modular Avionics. In Proceedings of the 26th IEEE/AIAA Digital
Avionics Systems Conference, page 2. IEEE, 2007.

26. J. Windsor and K. Hjortnaes. Time and space partitioning in spacecraft avionics. In
Proceedings of the 3rd IEEE International Conference on Space Mission Challenges
for Information Technology, pages 13–20. IEEE, 2009.

